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Abstract: Assessing student mathematical knowledge is an important factor in the mathematics
learning process because students obtain important feedback to improve their knowledge and
learning. Despite the importance of student assessment, several researchers have shown that student
grades comprise noncognitive and metacognitive factors and teachers’ prejudices and beliefs. One
method to obtain a more objective view of student mathematical knowledge is through standardized
assessments. In this paper, we analyze two methods of assessing student mathematical knowledge
by considering their written and oral grades and achievements on the Italian National Assessment of
Knowledge (INVALSI). The final grade was produced using the fuzzy logic inference system. It was
tested on a sample of 2279 Grade 13 Italian high school students, who had both an oral and written
grade in mathematics and who took the INVALSI assessment in the school year 2020–2021. Both
tested fuzzy-logic-based assessment methods lowered the mean grades.
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1. Introduction

Although the assessment of student knowledge is a key element of the pedagogical
process [1,2], student grades do not reflect only student academic knowledge; they include
information on students’ noncognitive, metacognitive, and affective elements, and their
participation in class, attendance, frequency and readiness in delivering homework, and
teachers’ prejudices [3–5]. In this case, unobjective grades could lead educators and school
authorities to have a distorted or even a false picture of the quality of the students’ real
knowledge and abilities [6]. For this reason, it is important to develop more objective
techniques to assess student knowledge [7].

Another problem related to grades is grade inflation (i.e., the phenomenon that occurs
when teachers tend to grade student knowledge with higher grades than those students
would obtain in standardized tests of knowledge) [8]. Some researchers [1,9] have pro-
posed using a standardized assessment of student knowledge to normalize excessively
high grades and provide a more objective picture of student learning. A study [1] compared
teacher-given mathematics grades to student achievements on standardized national as-
sessments of mathematical knowledge, finding that the hypothetical grades students would
obtain by considering only their achievements on the national mathematics assessment
differ from their actual grades. Similarly, other studies compared teacher-given mathemat-
ics grades to student achievements on standardized assessments, finding that these two
variables are correlated but not very strongly [3,10]. Similar results have also been reported
for Italy, where teacher-given grades weakly correlate with student achievements on the
Italian national assessment of mathematical knowledge [11].

From the mentioned research, we understand that teacher-given grades are a subjec-
tive measurement of student mathematical competencies, whereas national assessments
represent a more objective method of evaluating student mathematical knowledge. Both
measures should be considered to determine a more objective method of determining
student grades in mathematics [1,9]. However, the current literature has not yet extensively
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investigated how to implement these two achievements to reduce grade inflation and nor-
malize student grades. To this end, in this paper, we explore a novel method of assessing
student mathematical knowledge by considering both teacher-given grades and student
achievements on standardized mathematical tests. We use the mathematical theory of
fuzzy logic, which is briefly described in the following sections. The results are discussed,
and suggestions for educators and policymakers are also presented.

Background

When Italian students finish middle school (i.e., Grade 8), they can choose to continue
their secondary education (high school) between four school typologies: scientific lyceums
(SLs), other lyceums (OLs), technical schools (TSs), and vocational schools (VSs). The
main aim of these four school typologies is to provide students with different knowledge
and abilities; thus, the school curriculum differs between the four school types. There
is a common curriculum that each school typology must follow, and it is determined
on a national basis. Lyceums provide a higher-level academic education specializing in
humanities, sciences, arts, and languages, whereas TSs provide more general education and
more qualified technical specialization. Moreover, VSs offer students working knowledge,
preparing them for the job market [12]. Thus, the different focuses of these four kinds of
high schools differentiate the school mathematics programs. In particular, mathematics
represents the leading subject in SLs, and it is studied for at least four hours weekly. In OLs
(e.g., linguistic), it is not the main subject, and the number of weekly hours is reduced (e.g.,
two or three [13]).

In Italian high schools, grades are numerical and range from 1 to 10, with 1 being the
lowest possible grade and 10 the highest, representing excellency. All grades from 1 to
5 are failing grades, and those from 6 to 10 are passing grades [14]. According to Italian
law [14,15], the final student grades are determined by the Class Council, comprising all
teachers that teach in a specific class, based on the suggestions of the subject teacher.

Moreover, the School Council, comprising all teachers from a school, decides how
grades are obtained [14]. There are two main categories of grades: written and oral [16].
Written grades comprise all grades of the so-called “compiti in classe” (class tests), which are
written tests and are protected by special laws. Oral grades comprise all oral assessments,
portfolios, assignments, and other written tests not legally recognized as compiti in classe.
In some schools, students receive two grades in mathematics at the end of the first semester
(i.e., written and oral grades), whereas students receive one grade (e.g., only a written or
oral grade) in other schools. However, at the end of the school year, students receive only
one grade, a weighted average of all available grades [17].

The Italian national assessment of mathematical knowledge is a standardized assess-
ment, which is prepared, organized, and corrected by the National Institute to evaluate
the instruction, formative, and educative system (INVALSI). All students must take a
compulsory test of knowledge of Italian (or another minority language), mathematics, and
English in Grades 2, 5, 8, 10, and from the school year 2018–19 on in Grade 13 [14]. In
particular, the tests for students in Grades 8, 10, and 13 are computer-based tests [14,18].
The mathematical topics assessed by the INVALSI are present in the “Indicazioni per la
scuola secondaria di secondo grado” (Indications for high schools), which is a document
that presents the topics that teachers should teach in high schools. The INVALSI tests
include several questions, varying each year, that are closed-ended (e.g., multiple-choice
questions) or open-ended questions (e.g., short answers and long answers). As high school
students solve computer-based tests, the questions are chosen randomly from a database;
nevertheless, all tests are equally difficult and are comparable [18]. Each student is assessed
with a numerical value on a quantitative scale (Rasch), where the average of all Italian
students is 200, and the standard deviation is 40 [19,20]. The method is also used by several
international standardized tests (e.g., the PISA and TIMSS) and is detailed in the official
documents [21,22]. The INVALSI assessment is believed to be an objective measure of
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student knowledge [23], although it cannot measure some factors, especially metacognitive
and cognitive ones, involved in learning mathematics [18].

2. Review of Literature
2.1. Fuzzy Logic

Fuzzy logic is part of mathematical logic, developed by the Iranian mathematician
Lofti A. Zadeh in 1965 [24]. Fuzzy logic represents a mathematically precise way to deal
with uncertain quantities, normally verbal descriptions [25]. One of the main concepts
in fuzzy logic is fuzzy sets and, related to this, membership functions. A membership
function is a function that determines the level of membership of a certain element in
a set. In classical logic, an element x might be part of set A (for which we write x ∈ A)
or not (x /∈ A); there is no other possibility. In fuzzy logic, such sharp boundaries are
“softened,” and we consider the possibility that an element is partially an element of set A.
The membership function determines the membership level to a set [26].

Formally, we define a fuzzy set in the following way. We let U be the universal set
(of all considered elements) and µA : U → [0, 1] be the membership function associated
with each element of the universal set of its grade of membership in set A. Then, set
A = {(x, µA(x)); x ∈ U} is called a fuzzy set. The membership function is defined by the
user [27]. Several families of membership functions are used frequently:

• triangular function ([26]; a < b < c):

Trian(x, a, b, c) =


0 x ≤ a, x ≥ c
x−a
b−a a < x < b
c−x
c−b b ≤ x < c

• trapezoidal function ([26]; a < b < c < d):

Trap(x, a, b, c, d) =


0 x ≤ a, x ≥ d
x−a
b−a a < x ≤ b
1 b < x ≤ c
d−x
d−c c < x ≤ d

• Gaussian function [28]:

Gauss(x,µ,σ) = e−
(x−µ)2

2σ2 .

If we want to use fuzzy logic in real-life applications, we follow three phases, which
are known as the “fuzzy process” ([26]; see Figure 1):

• fuzzification: We convert clear (crisp) values into fuzzy values via the membership
function;

• inference: We use a set of inference rules set by the user, permitting conversion of the
fuzzy input values into fuzzy output values; and

• defuzzification: We convert fuzzy output values into clear (crisp) output values using
some defuzzification methods.
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Figure 1. The fuzzy process.

The fuzzification of crisp values represents the first step in the fuzzy process. This
process comprises two steps [25]: determine the membership function for both the input
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and output data and convert crisp data into verbal variables. Membership functions have
different shapes and are chosen by the user, basing the decision on the output. For instance,
Gaussian functions are used when greater precision is needed, whereas trapezoidal and
triangle functions are used in some rapidly changing dynamic systems [25]. After the
fuzzification of crisp data, the inference rule must be defined. It is a logical sequence of the
form IF-THEN. The user defines these rules based on everyday experience [25]. The last
step is the defuzzification of the data. The result of the inference step combines fuzzy input
data and must be converted into crisp data again. Several methods of defuzzification exist.
The most used methods are the following [25]:

• Mean of maximum (MOM) is defined as follows:

MOM(A) =
1
|T| · ∑x∈T

x,

where T = {x : µA(x) = “maximal grade o f membership”} is the set of all data x which
have the maximal grade of membership, and |T| is the cardinality of the set (i.e., the
number of elements that composes the set T);

• Center of Gravity (COG) is defined as follows:

COG(A) =
∑x µA(x) · x

∑x µA(x)
,

if the value x is discrete and as:

COG(A) =

∫
µA(x) · x dx∫

µA(x) dx
,

if the value x is continuous.

2.2. Assessing Students’ Knowledge with Fuzzy Logic

The reasons to use fuzzy logic for the assessment are presented by several authors [27,29],
summarized as follows. We consider a grading criterion where students obtain a “sufficient”
(or “passing”) grade at 50% of the points of a test. We consider two students who achieved
50.1% and 49.9%. Considering the difference in percentages, students have very similar
achievements; nevertheless, the first student passes the exam, whereas the second does not.
Hence, considering the classical discrimination between passing and not passing might
be unfair [27]. Fuzzy logic might soften the boundary between passing and not passing.
Another problem in several countries is that the final student grades are determined by
averaging all student grades. In most cases, grades are ordinal variables, and no average
should be computed [30]. Thus, fuzzy logic represents a solution to this problem because it
can be inferred from verbal data.

Fuzzy logic for assessing student work has been studied worldwide, and several
models have been proposed. For instance, ref. [31] presented an example of determining
the final student grade by considering two written exams and a practical exam. Through a
fuzzification of the two written exams and the practical exam with triangular membership
functions, ref. [31] inferred the first fuzzy student grade from the two written exams
and combined it with the fuzzified grade of the practical exam by defining an inference
rule, considering five levels of student achievements. Moreover, they considered the
achievements of 20 students and analyzed their final grades, which were obtained using
the fuzzy process. The results indicated that the fuzzy process produced lower grades for
better-achieving students, whereas it graded lower-achieving students more leniently.

Similarly, ref. [32] proposed a model of assessing student knowledge by considering
several factors that influence the final grade. In particular, the author considered four
factors. Student achievements were fuzzified using generalized bell-shaped curves, and
final grades were obtained using the COG method. In the study, ref. [32] found that, in
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an experiment conducted with 33 students, grades obtained using the fuzzy process were
similar to those grades students obtained using the classical grading methods.

In addition, ref. [26] used student grades from the middle and end terms (i.e., the
first and second semesters) to determine the final student grade. Student grades were
fuzzified with triangle membership functions, and three levels were considered (i.e., low,
middle, and high). After defining the inference rule, they used the continuous COG
defuzzification method.

Furthermore, ref. [33] considered a method of assessing student knowledge consider-
ing three elements (i.e., student attendance of lectures, internal examination, and external
examination (end-of-term examination)). Researchers found that in a sample of 54 students,
no statistically significant differences exist between traditional grades and those obtained
with the fuzzy process.

Similar research, including student grades and lecture attendance, was proposed
by [34]. This research found that students graded using the fuzzy process had significantly
higher grades than those graded using the traditional method.

Similar results were found by [29], who found that the average grade of the students
graded using the fuzzy process was significantly higher than the average of the students
graded using the traditional methods. Nevertheless, these two variables are positively
and statistically significantly correlated. In contrast, ref. [35] found the opposite: it lowers
student achievements. Moreover, ref. [29] also presented some negative aspects of using
fuzzy logic for the assessment of student knowledge:

• inference rules are defined based on experience;
• it is impossible to predict the final result; and
• experience is again used to define membership functions.

Thus, considering these limitations, the major issue with the assessment using fuzzy
logic is the subjectivity of the definition of the inference rules and membership functions.
Nevertheless, fuzzy logic permits teachers to assess students more objectively because
several factors are included [36].

2.3. The Proposed Model

According to the discussed research, assessing student knowledge using fuzzy logic is
possible, and several models have been proposed. In the present work, we aim to extend
the literature concerning student assessment with fuzzy logic by considering a model that
aims to normalize student grades and lower the grade-inflation issue.

The model of assessing student knowledge we propose considers two teacher-given
grades and student achievements on the Italian national assessment of mathematical
knowledge INVALSI. Final student grades (also “hypothetical grades”) are the combination
of the written and oral grades and their achievements on the INVALSI test (Figure 2). We
transformed the written and oral grades into fuzzy grades using inference Rule 1 (Fuzzy
logic 1). Then, we retrieved the final fuzzified grades through a final inference rule (Fuzzy
logic 2).
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3. Materials and Methods
3.1. Aims of the Research

The present paper aims to analyze a novel method of assessing student mathematical
knowledge through fuzzy logic. The goal is to generate final student grades from three
inputs: (1) written grades; (2) oral grades; and (3) achievements on the Italian national
assessment of mathematical knowledge INVALSI. The research questions are the following:

RQ1: How are the COG hypothetical grades different from school grades?

• RQ1.1: Are the COG, student grades, and INVALSI scores correlated?
• RQ1.2: Is there a difference between COG hypothetical grades and student grades?
• RQ1.3: Do the COG grades differ between the four high school typologies?

RQ2: How are the MOM hypothetical grades different from the school grades?

• RQ2.1: Are the MOM, student grades, and INVALSI scores correlated?
• RQ2.2: Is there a difference between MOM hypothetical grades and student grades?
• RQ2.3: Do the MOM grades differ between the four high school typologies?

RQ3: Is there any difference between the COG and MOM hypothetical grades?

3.2. Methodology

To answer the research questions, we used the nonexperimental quantitative re-
search method.

3.3. Sample

In this study, we considered a sample of all Grade 13 Italian students who took
the compulsory national assessment of mathematical knowledge INVALSI in the school
year 2020–2021. The original sample was retrieved from the INVALSI Statistical Office
web page [37] with the previous registration. The official INVALSI sample comprised
20,281 Grade 13 Italian high school students, among which 18,726 (92.3%) had an oral
grade in mathematics, 1555 (8.7%) students had a missing oral grade in mathematics; 2500
(12.3%) students had a written grade in mathematics, and 17,781 (87.8%) had a missing
written grade in mathematics. From the initial sample, we included only those students
with both a written and oral grade in mathematics at the end of the first semester. The
sample comprised 2279 Grade 13 Italian high school students, among which 1242 (54.5%)
were females and 1037 (45.5%) were males. Moreover, 290 (12.7%) of the sample were
students of a SL, 767 (33.7%) were students of an OL, 623 (27.3%) were students of a TS,
and 599 (26.3%) were students of a VS.

3.4. Data Collection

In the official sample retrieved from the Servizio Statistico web page [37], several
pieces of information are available:

• school typology (i.e., SL, OL, TS, and VS);
• oral and written grades in mathematics; and
• achievement on the INVALSI mathematics test.

These are the only variables of interest. The data were analyzed by the INVALSI
Institute and represent a reliable source [20,38]. There is still a slight possibility that
the retrieved data contain minor errors, such as in the transcription of oral or written
mathematics grades, which is normally the duty of the school [39].

3.5. Procedure

We present the procedure of the fuzzification, inference, and defuzzification of crisp
data. To define the membership functions for the written and oral grades, we distinguished
five levels: (1) extremely low, (2) low, (3) average, (4) good, and (5) very good. In Table 1,
we present the definition of each membership function [26,31]. In Figure 3, we present a
graphical representation of such membership functions.



Educ. Sci. 2022, 12, 266 7 of 17

Table 1. Definition of the membership functions for written and oral grades.

Level Membership Function

Extremely low (EL) Trap(x, 1, 1, 2, 4)
Low (L) Trian(x, 2, 4, 6)

Average (A) Trian(x, 4, 6, 8)
Good (G) Trian(x, 6, 8, 10)

Very good (VG) Trian(x, 8, 10, 10)
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We define the inference rule depicted in Table 2 [26,31].

Table 2. The inference rule for Fuzzy logic 1.

Written Grade

EL L A G VG

Oral grade

EL EL EL L L A
L EL L L A A
A L L A G G
G L A G G VG

VG A G G VG VG
Notes: EL: extremely low, L: low, A: average, G: good, VG: very good.

The INVALSI scores were obtained through standardization with an average µ = 200
and standard deviation σ = 40; thus, we used Gaussian membership functions to de-
scribe student achievements on the INVALSI test with five levels, defined in Table 3 and
represented in Figure 4.

Table 3. Definition of membership functions for student achievements on the INVALSI test (Fuzzy
logic 2).

Level Membership Function

Extremely low (EL) Gauss(x, 120, 40)
Low (L) Gauss(x, 160, 40)

Average (A) Gauss(x, 200, 40)
Good (G) Gauss(x, 240, 40)

Very good (VG) Gauss(x, 280, 40)
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Figure 4. Graphical representation of the membership functions for the INVALSI test.

We defined the inference rule for Fuzzy logic 1 (i.e., the written and oral grades) and
the INVALSI achievements, as presented in Table 4.

Table 4. The inference rule for Fuzzy logic 2.

Fuzzy Logic 1

EL L A G VG

INVALSI

EL EL EL L L A
L EL L L A A
A L L A G G
G L A G G VG

VG A G G VG VG
Notes: EL: extremely low, L: low, A: average, G: good, VG: very good.

The defuzzification process requires a membership function, presented in Table 5. We
used the COG and MOM defuzzification methods.

Table 5. Definition of the membership functions for the defuzzification process.

Level Membership Function

Extremely low (EL) Trap(x, 1, 1, 2, 4)
Low (L) Trian(x, 2, 4, 6)

Average (A) Trian(x, 4, 6, 8)
Good (G) Trian(x, 6, 8, 10)

Very good (VG) Trian(x, 8, 10, 10)

The defuzzified grades were approximated to the nearest integer, representing the
final student grade (or hypothetical grade). In the following sections, “COG hypothetical
grades” denote outcomes obtained using the COG defuzzification method, and “MOM
hypothetical grades” represent outcomes obtained using the MOM method.

For example, in Table 6, we present how Fuzzy logic 1 (combination of oral and written
grades) and Fuzzy logic 2 (final grade) vary for a student with a written grade of 5 and an
INVALSI score of 235 among all possible oral grades. We also approximate the outcome of
Fuzzy logic 2 to the nearest integer and present the final student grades.
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Table 6. Example of the fuzzy logic system.

Oral
Grade

COG
Fuzzy

Logic 1 *

COG
Fuzzy

Logic 2 *

COG
Final
Grade

MOM
Fuzzy 1 *

MOM
Fuzzy 2 *

MOM
Final
Grade

1 3.24 5.71 6 3.00 5.00 5
2 3.24 5.71 6 3.00 5.00 5
3 3.24 5.71 6 3.00 5.00 5
4 4.00 5.87 6 4.02 6.04 6
5 5.00 5.98 6 5.01 7.00 7
6 5.00 5.98 6 5.01 7.00 7
7 6.00 6.69 7 6.00 8.02 8 **
8 7.00 6.81 7 6.99 7.00 7
9 7.00 6.81 7 6.99 7.00 7

10 8.00 7.77 8 7.98 8.02 8
* Approximated to two decimals. ** See the Discussion section.

3.6. Data Analysis

Crisp (i.e., clear, original) grades were fuzzified using MATLAB R2020b software. We
used the Fuzzy Logic Toolbox, which has been used in research related to fuzzy logic [40].
The data were analyzed using the methods of descriptive and inferential statistics with the
statistical software Jamovi. We applied the Shapiro–Wilk test to verify that the normality
assumption, and nonparametric tests were used because all data significantly deviated
from the normal distribution. We employed the Wilcoxon W-test for paired samples to
compare two variables, Spearman’s’ ρ correlation coefficient, and the Kruskal–Wallis χ2-test
to check the differences between groups. As a post hoc test, we used the Dwass–Steel–
Crichlow–Fligner (DSCF) pairwise comparison. Whenever possible, we present the Cohen’s
d measure of effect size [41].

4. Results
4.1. Student Grades and Achievements on INVALSI

An initial screening of the raw data was performed to gain an overview of the written
and oral grades and achievements on the INVALSI national assessment of mathematical
knowledge (Table 7).

Table 7. Descriptive statistics of written grades, oral grades and the INVALSI scores.

Written Grade Oral Grade INVALSI

Mean 6.50 6.59 178
Median 6 7 175

Standard deviation 1.43 1.41 35.4
Minimum 1 2 90.1
Maximum 10 10 311
Skewness −0.102 −0.176 0.512
Kurtosis −0.214 0.0209 0.239

The Shapiro–Wilk test of normality indicates that the written grades (W = 0.988;
p < 0.001), oral grades (W = 0.987; p < 0.001), and INVALSI scores (W = 0.985; p < 0.001)
depart significantly from normality. Thus, nonparametric tests were used. The Wilcoxon
W-test for paired samples revealed that oral grades are significantly higher than written
grades (W = 136,705; p < 0.001; Cohen’s d = −0.116), with a mean difference of 0.0878
(SE = 0.0158). Further analysis of the data demonstrated a positive and strong correlation
between the written and oral mathematics grades (ρ = 0.856; p < 0.001). A significant mod-
erate correlation exists between written grades and INVALSI scores (ρ = 0.384; p < 0.001)
and between oral grades and INVALSI achievements (ρ = 0.380; p < 0.001). Moreover,
differences in grades and INVALSI achievements were checked for the four typologies of
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high schools. The Kruskal–Wallis test indicated statistically significant differences between
the four school typologies in the written grade (χ2 = 49.4; p < 0.001; ε2 = 0.0217), oral grade
(χ2 = 78.2; p < 0.001; ε2 = 0.0343), and INVALSI score (χ2 = 591.9; p < 0.001; ε2 = 0.2598), as
presented in Table 8.

Table 8. Grades and INVALSI scores between the four school typologies.

Variable School Typology Mean Standard Deviation Median

Written grade

SL 6.65 1.40 7
OL 6.65 1.42 7
TS 6.58 1.50 7
VS 6.15 1.33 6

Oral grade

SL 6.73 1.40 7
OL 6.74 1.31 7
TS 6.75 1.53 7
VS 6.16 1.30 6

INVALSI

SL 219.35 35.25 -
OL 175.47 30.44 -
TS 183.41 29.83 -
VS 155.41 26.28 -

Notes: SL: scientific lyceum; OL: other lyceum; TS: technical school; VS: vocational school.

The DSCF pairwise comparison highlighted some statistically significant differences
in student achievements between the four school typologies, listed in Table 9.

Table 9. Dwass–Steel–Crichlow–Fligner pairwise comparison for school grades and INVALSI scores
between school typologies.

VS TS SL

Written
grades

OL
W −9.25 −1.73 −0.189

p-value <0.001 0.614 0.999

VS
W - 6.93 7.08

p-value - <0.001 <0.001

TS
W - 1.25

p-value - 0.815

Oral grades

OL
W −11.35 0.0152 0.180

p-value <0.001 1.000 0.999

VS
W - 9.85 8.45

p-value - <0.001 <0.001

TS
W - 0.089

p-value - 1.000

INVALSI

OL
W −16.87 7.02 23.17

p-value <0.001 <0.001 <0.001

VS
W - 22.04 29.39

p-value - <0.001 <0.001

TS
W - 19.15

p-value - <0.001
Notes: SL: scientific lyceum; OL: other lyceum; TS: technical school; VS: vocational school.

4.2. Center of Gravity Fuzzy Logic and Hypothetical Grades

We calculated the final student grade (i.e., the hypothetical grade) and rounded the
real number to the closest integer following the procedure described earlier. Table 10
presents the descriptive statistics of the hypothetical grades.

Table 10 reveals that no student scored lower than 3 or scored a 10. The Shapiro–Wilk
test of normality reveals a violation of such an assumption (W = 0.938; p < 0.001); thus, the
data are not normally distributed. The hypothetical grades strongly and positively correlate
with written grades (ρ = 0.772; p < 0.001), oral grades (ρ = 0.768; p < 0.001), and achievements
on the INVALSI test (ρ = 0.750; p < 0.001). Further investigations confirmed that hypothetical
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grades (M = 5.73; SD = 1.19; Mdn = 6) are lower than the written grades (M = 6.50; SD = 1.43;
Mdn = 6) with a mean difference of 0.766 (SE = 0.0192). Such differences are statistically
significant (W = 1.25 × 106; p < 0.001; Cohen’s d = 0.835). Moreover, hypothetical grades
are also lower than oral grades (M = 6.59; SD = 1.41; Mdn = 7), with a mean difference of
0.854 (SE = 0.0192). These differences are statistically significant (W = 1.38 × 106; p < 0.001;
Cohen’s d = 0.931). Moreover, differences in hypothetical grades were checked between the
four typologies of high schools. The Kruskal–Wallis test indicated statistically significant
differences between the four school typologies (χ2 = 289; p < 0.001; ε2 = 0.127; see Table 11).

Table 10. Descriptive statistics of the COG hypothetical grades.

Hypothetical Grades

Mean 5.73
Median 6

Standard deviation 1.19
Minimum 3
Maximum 9
Skewness −0.329
Kurtosis −0.0879

Table 11. Center of gravity hypothetical grades between the four school typologies.

Variable School Typology Mean Standard Deviation Median

COG
hypothetical

grade

SL 6.53 1.15 6
OL 5.77 1.11 6
TS 5.90 1.10 6
VS 5.14 1.11 5

Notes: SL: scientific lyceum; OL: other lyceum; TS: technical school; VS: vocational school.

The DSCF pairwise comparison in Table 12 demonstrates that all differences between
school typologies (except the OL and TS comparison) are statistically significant.

Table 12. Dwass–Steel–Crichlow–Fligner pairwise comparison of center of gravity hypothetical
grades between school typologies.

VS TS SL

OL
W −14.62 2.57 13.14

p-value <0.001 0.264 <0.001

VS
W - 16.11 21.25

p-value - <0.001 <0.001

TS
W - 10.89

p-value - <0.001

4.3. Mean of Maximum Fuzzy Logic and Hypothetical Grades

We calculated the final student grade (i.e., the hypothetical grade) and rounded the
real number to the closest integer following the procedure described earlier. Table 13
presents the descriptive statistics of the hypothetical grades.

The Shapiro–Wilk test of normality indicated that the MOM grades are not normally
distributed (W = 0.929; p < 0.001). The hypothetical grades moderately and positively
correlate with the written grades (ρ = 0.671; p < 0.001) and oral grades (ρ = 0.676; p < 0.001),
and strongly correlate with achievement on the INVALSI test (ρ = 0.814; p < 0.001). Further
investigations confirmed that hypothetical grades (M = 5.56; SD = 1.76; Mdn = 5) are lower
than the written grades (M = 6.50; SD = 1.43; Mdn = 6) with a mean difference of 0.941
(SE = 0.0267). Such differences are statistically significant (W = 1.12× 106; p < 0.001; Cohen’s
d = 0.738). Moreover, hypothetical grades are also lower than the oral grades (M = 6.59;
SD = 1.41; Mdn = 7), with a mean difference of 1.03 (SE = 0.0267). These differences are
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statistically significant (W = 1.19 × 106; p < 0.001; Cohen’s d = 0.806). Moreover, differences
in hypothetical grades were checked between the four typologies of high schools. The
Kruskal–Wallis test demonstrated statistically significant differences between the four
school typologies (χ2 = 354; p < 0.001; ε2 = 0.155; Table 14).

Table 13. Descriptive statistics of the MOM hypothetical grades.

Hypothetical Grades

Mean 5.56
Median 5

Standard deviation 1.79
Minimum 1
Maximum 10
Skewness 0.314
Kurtosis −0.225

Table 14. Mean of maximum (MOM) hypothetical grades between the four school typologies.

Variable School Typology Mean Standard Deviation Median

MOM
hypothetical

grade

SL 6.96 1.73 7
OL 5.57 1.64 5
TS 5.80 1.70 6
VS 4.61 1.38 4

Notes: SL: scientific lyceum; OL: other lyceum; TS: technical school; VS: vocational school.

The DSCF pairwise comparisons in Table 15 reveal that all differences between school
typologies are statistically significant, except for the OL and TS comparison.

Table 15. Dwass–Steel–Crichlow–Fligner pairwise comparison for mean of maximum hypothetical
grades between school typologies.

VS TS SL

OL
W −15.76 3.00 15.15

p-value <0.001 0.147 <0.001

VS
W — 17.34 24.43

p-value — <0.001 <0.001

TS
W — 12.48

p-value — <0.001
Notes: SL: scientific lyceum; OL: other lyceum; TS: technical school; VS: vocational school.

4.4. Comparing the Two Fuzzy Grading Methods

As illustrated, both the COG and MOM methods of grading students produce grades
statistically lower than the student grades. However, a difference of 0.175 (SE = 0.0197)
exists between them. The COG (M = 5.73; SD = 1.19; Mdn = 6) method is less strict than
the MOM (M = 5.56; SD = 1.76; Mdn = 5) grading method (W = 57,1125; p < 0.001; Cohen’s
d = 0.185). Thus, the grades obtained using the MOM method are statistically lower than
those obtained using the COG method. The correlation between the two variables is strong
and positive (ρ = 0.809; p < 0.001). Checking the possible differences between the four school
typologies, we applied the Wilcoxon W-test for each school, finding that the COG grading
system produced higher grades in all school typologies except SL students (Table 16).
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Table 16. Center of gravity (COG) and mean of maximum (MOM) hypothetical grades between four
school typologies.

School Typology Higher Grade W p Cohen’s d

SL MOM 2513 <0.001 0.481
OL COG 68,382 <0.001 0.211
TS COG 39,709 <0.001 0.103
VS COG 54,143 <0.001 0.617

5. Discussion and Conclusions

The present research aimed to analyze how the two proposed fuzzy-logic-based as-
sessment methods differ from the traditional teacher assessment. Before doing so, we
screened the raw sample data to gain a clearer view of student achievements. Our prelimi-
nary analysis reveals that written grades, oral grades, and achievements on the INVALSI
test are not normally distributed. Oral and written grades are strongly and positively
correlated, indicating that students with higher written grades have higher oral grades
and vice versa. A deeper investigation demonstrates that oral grades are generally higher
than written grades. The underlying reason for this difference might be explained by
considering what comprises oral grades. For instance, oral grades include information
about oral examinations, written tests that are not compiti in classe, homework, project
work, and attendance. Thus, several elements are included in this information [3–5]. In
contrast, written grades consist solely of in-class written tests compiti in classe, which do
not include other information about the students.

Although the correlation between written and oral grades is strong, the correlation
between written grades and achievements on the INVALSI assessment and between oral
grades and INVALSI is moderate. The results indicate that students with higher school
grades have higher achievements on the Italian national assessment and vice versa. The
correlation agrees with previous research in the Italian context [11]; however, it is much
lower than the correlations found in the international literature [3,10]. This fact indicates
that several factors influence teacher-given grades, not solely student academic knowledge.
The INVALSI assessment, although an objective measure of student mathematical out-
comes [23], cannot measure some metacognitive and cognitive factors involved in learning
and understanding mathematics [18]. Thus, the fact that the correlations are not strong
might be explained by considering what comprises each grade and the peculiarity of the
INVALSI assessment.

Moreover, from the initial analysis, the average score on the INVALSI was M = 178,
which is lower than the national average of M = 200, and the standard deviation SD = 35.4
is lower than the national SD = 40 [18,19]. Thus, additional care should be taken when data
are interpreted and generalized to the whole population of Grade 13 Italian students.

Furthermore, we analyzed student grades between different typologies of high schools,
finding statistically significant differences concerning written and oral grades and the
INVALSI assessment. Students from SLs have the highest achievements on the INVALSI
assessment, followed by TSs, OLs, and, finally, VSs. Such differences have also been
found by the INVALSI Institute [18,19] and other research [11] and might be understood
considering the different focuses of the schools [12]. Students from SLs have the most hours
of mathematics per week [13]; thus, they are more likely to study some topics in detail
that are assessed by the INVALSI tests. However, VSs aim to provide students practical
knowledge, and mathematics represents a marginal subject. Students from all schools have
similar grades, except for VSs, which have the lowest achievements concerning student
written and oral grades. This fact might be explained by considering that individual
teachers use different assessment methods and criteria, leading to different grades between
the four high school typologies.

After a general analysis of the sample, we applied the procedure of fuzzification,
inference, and defuzzification using both the COG and MOM methods. First, we checked
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the final student (hypothetical) grades found using the COG method. The minimal grade
was 3, and the maximal grade was 9. No student obtained an excellent (10) grade.

Our first research question regarded student COG hypothetical grades and whether
they are different from traditional school grades. First, we aimed to determine whether a
correlation exists between hypothetical grades and student grades and INVALSI scores. The
correlational analysis found that hypothetical grades are positively and strongly correlated
with written and oral grades and achievements on the national test, suggesting that students
with higher grades or achievements on the INVALSI test obtained a higher hypothetical
grade. This result is unsurprising because hypothetical grades are created using student
school grades and scores on the INVALSI test.

Second, a deeper analysis of the differences between traditional teacher-given grades
and hypothetical grades reveals a statistically significant difference between these variables.
Hypothetical grades are lower than written and oral grades. Considering the Cohen’s
d measure of the effect size (d = 0.835 for written grades and d = 0.931 for oral grades),
substantial differences might exist between hypothetical grades and student grades. Thus,
the fuzzy logic assessment method is stricter than the traditional grading system. Consid-
ering a student with oral and written grades of 10 and INVALSI of 280 (i.e., very good),
the student would obtain a 9.36 as a Fuzzy logic 1 output and an 8.45 (i.e., a score of 9)
as the final output, which does not correspond to what one would expect for excellent
performance. Moreover, a student with oral and written grades of 10 and an INVALSI
score of 311 (the maximum for the INVALSI in this sample) would obtain a total grade of
8.65 (i.e., a score of 9 once again). A student with a 100 on the INVALSI test (i.e., very low)
and a 1 for the oral and written grades would obtain a 2.06 for the Fuzzy logic 1 output
and a 2.53 (i.e., a score of 3) as the final grade. Thus, from the presented limitations, the
proposed method penalizes excellent students and is a more lenient grading method for
extremely low-achieving students. The proposed COG method is unfair considering the
three models of grading [42]. Considering a fair grade as the achievement students receive
as a reward or punishment for learning or failing to learn course content or institutional
values, we understand that excellent students are penalized because they master the course
topics (their school grades are excellent) and other institutional material (the grade on the
INVALSI test is excellent). Hence, excellent grades are unjustly lowered by at least one
grade level in this specific case.

Finally, an analysis of the grade distribution between the four high school typologies
was considered. The results indicate a statistically significant difference between the four
school typologies. Students from the SLs had the highest average, followed by students
from TSs, OLs, and VSs. Although no statistically significant difference was found in oral
and written grades for the school typology, with the only exception of VS with the lowest
mean, hypothetical grades no longer reflect such a distribution. Nevertheless, hypothetical
grades reflect the situation depicted concerning the INVALSI test, where students from the
SLs outperformed students from all other school typologies. Thus, the hypothetical grades,
reflecting student performances on the INVALSI test, maintain such differences between
the four school typologies, with the only exception in comparing OLs and TSs, which have
a statistically nonsignificant difference in hypothetical grades.

Our second research question regarded student MOM hypothetical grades and whether
they are different from traditional school grades. First, we aimed to understand the cor-
relation between the MOM hypothetical grades and student grades and INVALSI scores.
A correlational analysis found that hypothetical grades are positively and statistically
significantly moderately correlated with school grades and are strongly correlated with
achievements on the INVALSI test. Once again, the result is unsurprising because the MOM
hypothetical grades also include information from both student grades and achievements
on the national assessment of mathematical knowledge.

Second, we verified whether a difference exists between traditional grades and MOM
hypothetical grades. The results demonstrated that hypothetical grades are statistically
significantly lower than written and oral grades. The interpretation of the Cohen’s d
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measures of the effect size (d = 0.738 for written grades and d = 0.806 for oral grades)
revealed that the differences between the traditional and novel methods of assessing
student knowledge are substantial; hence, the MOM hypothetical grades are generally
stricter than traditional ones. A student with oral and written grades of 10 and an INVALSI
of 280 (i.e., very good) would obtain a 10 as a Fuzzy logic 1 output and a 10 as a final output,
which corresponds to what one would expect from excellent performance. Moreover, a
student with oral and written grades of 10 and an INVALSI score of 311 (the maximum
possible INVALSI score in this sample) would obtain a total grade of 9.78 (i.e., a 10). In
contrast, a student with a 100 on the INVALSI test (i.e., very low) and a 1 for oral and
written grades would obtain a 1.50 (i.e., a score of 2) as a Fuzzy logic 1 output and a
1.59 (i.e., a score of 2) as a final grade. Hence, the MOM hypothetical grade does not
penalize excellent students as much as the COG method. Thus, the MOM hypothetical
grade might be considered a fairer method than the COG, despite some anomalies (e.g.,
those presented in Table 6 (**)). These anomalies are related to the way data are fuzzified
and defuzzified. A graphical example is presented in Figure 5, where the surface of the
COG Fuzzy logic 2 (denoted by fuzzy2) is depicted. The anomalies are present due to the
waves and irregularities of the surface.
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Finally, the results indicate a statistically significant difference in student MOM hy-
pothetical grades between the four high school typologies. A deeper analysis confirmed
that students from SLs have the highest grades, followed by TSs, OLs, and VSs. All dif-
ferences in grades are statistically significant, except the OL and TS difference in grades.
Hence, the results reveal that the MOM hypothetical grades, similarly to the COG method,
discriminate between the school typology similarly to the INVALSI score.

This fact partially answers the last research question (i.e., whether differences exist
between the COG and MOM hypothetical grades). Both methods privilege SL students,
who had the highest scores on the INVALSI assessment [11,18]. Nevertheless, students
from VSs have the lowest hypothetical grades. Thus, both fuzzy methods create a gap in
achievements between students from the four high school typologies. Students from SLs
have a stronger theoretical basis and a higher-level academic preparation [12]; thus, it is
unsurprising that their scores on the INVALSI test are the highest; however, SL students
in the sample had written and oral grades similar to those of students from other school
typologies. Thus, although their levels of mathematical knowledge measured through
the INVALSI test are higher than those of students from other schools, their final grade,
which universities can later use to select future students [43,44] or employers to select
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employees [45], might provide incomplete information about their real knowledge and
competencies in mathematics. Thus, including information about student performance on
the national assessment (or, in general, other standardized assessments) might contribute
to a clearer view of student knowledge and competencies [1,9].

The results demonstrated that the COG and MOM methods produced lower grades
than the grades the students obtained on their report cards, both written and oral. Further
analysis identified the MOM method as statistically stricter than the COG method, although
the latter did not produce any grade below 3 or higher than 9. The correlation between the
two kinds of hypothetical grades is strong and positive, indicating that higher grades of one
kind would produce higher grades of the other. An analysis of student grades between the
four school typologies reveals that SL students received higher grades when graded using
MOM methods, whereas students from any other school typology received statistically
significantly higher grades using the COG method.

Overall, this research highlights that lower achievements are expected when student
scores on the INVALSI test are added to student school grades. Higher-achieving students
were penalized using the COG defuzzification method, whereas lower-achieving student
grades increased, similar to the findings by [31,35]. Thus, the COG method is unfair in
this case. The MOM defuzzification method represents a fairer grading method, despite
some anomalies detected due to the definition of the membership functions and inference
rules [29]. Nevertheless, the proposed grading system also considers student achievements
on standardized assessments, promoting the objectivity of the final student grade [36].
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