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Abstract: Not many efficient similarity detectors are employed in practice to maintain academic
integrity. Perhaps it is because they lack intuitive reports for investigation, they only have a command
line interface, and/or they are not publicly accessible. This paper presents SSTRANGE, an efficient
similarity detector with locality-sensitive hashing (MinHash and Super-Bit). The tool features intuitive
reports for investigation and a graphical user interface. Further, it is accessible on GitHub. SSTRANGE
was evaluated on the SOCO dataset under two performance metrics: f-score and processing time.
The evaluation shows that both MinHash and Super-Bit are more efficient than their predecessors
(Cosine and Jaccard with 60% less processing time) and a common similarity measurement (running
Karp-Rabin greedy string tiling with 99% less processing time). Further, the effectiveness trade-off
is still reasonable (no more than 24%). Higher effectiveness can be obtained by tuning the number
of clusters and stages. To encourage the use of automated similarity detectors, we provide ten
recommendations for instructors interested in employing such detectors for the first time. These
include consideration of assessment design, irregular patterns of similarity, multiple similarity
measurements, and effectiveness–efficiency trade-off. The recommendations are based on our 2.5-year
experience employing similarity detectors (SSTRANGE’s predecessors) in 13 course offerings with
various assessment designs.

Keywords: programming; plagiarism; collusion; similarity detection; recommendations; higher
education

1. Introduction

Programmer is a high-demand job, which is projected to have a 22% demand increase
in 2030 ( https://www.bls.gov/ooh/computer-and-information-technology/software-d
evelopers.htm#tab-6 accessed on 2 November 2022). In that job, reusing one’s code is
quite common since programmers often search online for references and many of them
put their code in online public repositories (e.g., GitHub). However, while reusing code,
some programmers fail to acknowledge the original sources, which can lead to plagiarism
or collusion. The former refers to reusing code without acknowledgment and awareness of
the original author [1]. The latter is similar, except that the original author is aware of the
act. There is a need to inform future programmers about the matter in academia [2].

In programming education, instructors typically maintain academic integrity by in-
forming students about their expectation regarding the matter [3] and penalizing students
whose programs are suspected of plagiarism or collusion. Given that searching similar pro-
grams manually can be a tedious task [4], automated similarity detectors, such as MOSS [5],
are sometimes employed to initially filter similar programs.

There are a number of automated similarity detectors [6], many of which detect
similarities based on program structure. Although such a mechanism is effective, it is
impractical for assessments with large submissions; extracting and comparing program
structure can be time consuming [7].

A few similarity detectors aim for efficiency, but according to our observation on
papers listed in a recent review [7], they do not report which parts of the programs are
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similar. This is perhaps because mapping similar features to the programs is not straight-
forward. Reporting only similarity degrees in percentages complicates the investigation
process as evidence should be provided for any suspicion [8]. Instructors need to locate
the similarities by themselves. Further, the similarity detectors are only featured with a
command line interface, at which instructors may experience technical difficulties with [9].
In addition, the similarity detectors are not publicly accessible. Instructors need to contact
the authors or recreate these detectors, with no guarantee that the detectors will satisfy the
instructors’ needs.

Employing automated similarity detectors is another challenge, as the effectiveness of
similarity detectors relies heavily on the assessment design. Common similarity detectors,
for instance, may not work on weekly assessments that expect the solutions to be syntac-
tically similar [10]. Moreover, not all similarities are useful for raising suspicion; some
are expected among submissions, such as template code or obvious implementation [11].
Experience in employing similarity detectors on various assessment designs needs to be
shared with instructors interested in using similarity detectors for the first time.

In response to the aforementioned issues, this paper presents SSTRANGE, an effi-
cient automated similarity detector with locality-sensitive hashing [12]. The algorithm is
relatively fast and tends to generate the same hash for similar submissions. SSTRANGE
reports not only similarity degrees among Java and Python submissions but also the simi-
larities in HTML pages. SSTRANGE is featured with a graphical user interface, and it is
publicly accessible on GitHub ( https://github.com/oscarkarnalim/SSTRANGE accessed
on 2 November 2022) along with the documentation and the code. The tool is now being
used by our faculty to raise suspicion of plagiarism and collusion. We also report ten
recommendations from our 2.5-year experience employing automated similarity detectors
(SSTRANGE’s predecessors) in courses offered at our faculty with various assessment
designs. It is summarized from discussions with instructors teaching 13 course offerings.

To the best of our knowledge, our study is the first of its kind. The study has four
research questions:

• RQ1: Is locality-sensitive hashing more efficient than common similarity algorithms
used for automated similarity detectors?

• RQ2: How much is the effectiveness trade-off introduced by locality-sensitive hashing?
• RQ3: What are the impacts of overlapping adjacent token substrings, number of

clusters, and number of stages in locality-sensitive hashing for similarity detection?
• RQ4: Which are the recommendations for employing automated similarity detectors

for the first time?

2. Literature Review

To maintain academic integrity in programming, instructors inform students about the
matter and penalize those who are involved in such misconduct. While informing students
about academic integrity is practical, penalizing students suspected of plagiarism and
collusion can be challenging. Any suspicion should be supported with strong evidence [8],
but manually checking all submissions for evidence is impractical [4]. Automated similarity
detectors are therefore employed by some instructors to initially select similar submissions,
which they will further investigate.

Many similarity detectors aim for effectiveness (i.e., reporting a large proportion of
copied submissions) by comparing program structure among submissions. Token string is
a popular example of such program structure; it is an array of string representing source
code tokens (‘words’). The representation is employed by a number of similarity detectors,
including the popular ones [6]: MOSS [5], JPlag [13], and Sherlock [8]. Some similar-
ity detectors consider the tokens without further preprocessing [4,14]; others generalize
identifiers [15,16], generalize program statements [17,18], and/or ignore several types of
tokens [19,20].

Three more advanced representations are sometimes used for similarity detectors.
They are argued to be more semantic preserving. Compiled token string is an array of

https://github.com/oscarkarnalim/SSTRANGE
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tokens obtained from executable files [21,22]. Syntax tree is generated from grammars
of the programming language [23]. Sometimes, the tree is linearized to the token string
for efficient comparison [24,25]. Program dependency graphs map interactions among
program statements [26,27].

For the purpose of efficiency, a number of similarity detectors consider program char-
acteristics instead of program structure. Early instances of such similarity detectors consider
occurrence frequencies of certain types of tokens [28] and/or syntax constructs [29,30].
The set of n-gram token substrings is therefore employed by later versions for better accu-
racy. The set is formed by breaking down token string to substrings with the size of n, and
counting the occurrence frequencies [31,32].

For measuring similarities, efficient similarity detectors often adapt techniques from
classification, clustering, and information retrieval [7]. Occurrence frequencies of program
characteristics are considered features.

Classification-based similarity detectors argue that plagiarism and collusion are ex-
pected to have a particular pattern in their features. Ullah et al. [33] use principal compo-
nent analysis and multinomial logistic regression to detect cross-language plagiarism and
collusion. Yasaswi et al. [34] use support vector machine with learning features trained
from source code of a Linux kernel. Elenbogen and Seliya [35] use decision trees to detect
plagiarism and collusion via programming style.

Clustering-based similarity detectors argue that suspicious submissions can be clus-
tered as one group based on their similarity. Jadalla and Elnagar [36] group submissions
with a density-based partitional clustering algorithm, DBScan. Acampora and Cosma [19]
rely on fuzzy C-means for clustering while Moussiades and Vakali [37] rely on their dedi-
cated algorithm, WMajorClust.

Information-retrieval-based similarity detectors preprocess submissions to index prior
comparisons. In such a manner, program similarity can be calculated in linear time. Cosine
correlation is employed by Flores et al. [38] and Foltynek et al. [39]. Latent semantic
analysis is employed by Ullah et al. [40] and Cosma and Joy et al. [41].

A few similarity detectors combine two similarity measurements. Ganguly et al. [42],
for example, combine field-based retrieval with a random forest classifier for higher effec-
tiveness. Mozgovoy et al. [43] introduce an information-retrieval-based filtering prior to
comprehensive comparison with Plaggie [18], to compensate efficiency trade-off introduced
by Plaggie that relies on program structure.

To help instructors collect evidence, some similarity detectors map and highlight
detected similarities in suspected submissions (see MOSS for example). However, to the
best of our knowledge, such a reporting mechanism is not available for efficient similarity
detectors, even for those relying on set of n-gram token substrings. Instructors exclusively
rely on reported similarity degrees, which are clearly insufficient evidence. High similarity
does not necessarily entail academic dishonesty [44]. Further, existing efficient similarity de-
tectors are neither featured with a graphical user interface for instructors’ convenience nor
are they publicly accessible (to immediately test the tools on their teaching environment).

A number of studies report experiences using similarity detectors on teaching en-
vironments. Bowyer and Hall [45] report their experience on employing MOSS in a C
programming course. They found that the tool can facilitate detection of academic mis-
conduct although it does not cover the ‘ghost author’ case, where a student pays a person
to complete their work. Pawelczak [46] also reports how their own similarity detector is
used in a C programming course in engineering. They found that the tool usage reduces
instructors’ workload but discourages solidarity among students. Le Nguyen et al. [47]
integrate MOSS and JPlag on Moodle, and ask both instructors and students about their
experience with the tool for a programming assessment. They found that the integration is
helpful for classes with a large number of students, where manual checking is not possible.
It can also deter students for breaching academic misconduct. They also suggested that
assessments should be neither reused nor adapted from other assessments. Karnalim
et al. [10] summarize how instructors check for irregularities in similar programs to raise
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suspicion of plagiarism and collusion. They found that in addition to verbatim copying,
unusual superficial look, and inadequate de-identification can be a basis for evidence.
Incompleteness or over-completeness of the work can also be useful.

To the best of our knowledge, none of these studies discuss their experience employing
similarity detectors on various assessment designs. They are only focused on a particular
assessment design and that might be less useful for instructors interested in using similarity
detectors for the first time.

3. Our Search for Suitable Similarity Detectors

For contextual purpose, we will explain our search for suitable similarity detectors to
maintain academic integrity in our programming courses. In 2016, we were interested in
employing similarity detectors and our initial goal was to nullify syntactic variations as
much as possible (assuming these were attempts to disguise copied programs). We first
experimented with JPlag [13] and developed a prototype that can detect similarity based on
program binaries [48]. Two years later, we realized that nullifying many syntactic variations
is not practical for our weekly assessments since programs would be considered similar
regardless of whether they are copied or not. It is difficult to gather evidence for raising
suspicion. Further, high similarities are expected among assessments with easy tasks (e.g.,
writing hello world program) and those with detailed directions (e.g., translating algorithms
to program code) [10,44]. In addition, implementing advanced program disguises might be
considered a substantial programming task for students [8].

In 2019, we started developing STRANGE, a similarity detector that focuses on gather-
ing evidence. The tool relies on syntactic similarity and explains all reported similarities
in human language [15]. It works by converting programs to token strings, generalizing
some of the tokens, and comparing them one another with Karp–Rabin greedy string
tiling (RKRGST). The tool had been used since January 2020 in our faculty and was further
developed to CSTRANGE (Comprehensive STRANGE) in 2021 [49]. CSTRANGE relies
on three levels of granularity in reporting similarities, making it useful for many kinds of
assessments. Further, it is featured with a graphical user interface. CSTRANGE’s detection
is similar to that of STRANGE except that it uses three levels of preprocessing. The tool has
been used in our courses since January 2022.

Both STRANGE and CSTRANGE focus on effectiveness and comprehensiveness; their
processing time is quite slow for large submissions. Hence, this motivates us to develop
SSTRANGE (Scalable STRANGE), an efficient similarity detector with locality-sensitive
hashing, a clustering-based similarity measurement. The tool highlights similarities for
supporting suspicion and features a graphical user interface. Unique to SSTRANGE, it
optimizes the reporting mechanism and shows only crucial information for instructors.
The tool, its source code, and its documentation are available on GitHub ( https://github.c
om/oscarkarnalim/SSTRANGE accessed on 2 November 2022).

4. SSTRANGE: Scalable STRANGE

The tool accepts Java and Python submissions, compares them with one another, and
generates similarity reports in an HTML format. Figure 1 shows that SSTRANGE works
in five steps. First, it accepts a directory containing student submissions in which each
submission can be represented as a single Java/Python code file, a project directory of
Java/Python code files, or a zip file containing such a project directory. All submissions are
then converted to token strings (tokenisation) with the help of ANTLR [50]. Comments
and white space are ignored since they can be easily modified with limited programming
knowledge [13]. Further, identifiers are replaced with their general names, as they are
commonly modified as part of disguising the copied programs [51]. The replacement also
applies for constants and some data types.

https://github.com/oscarkarnalim/SSTRANGE
https://github.com/oscarkarnalim/SSTRANGE
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Figure 1. Five steps of SSTRANGE for detecting program similarities.

Second, each submission’s token string is converted to an index, a set of key-value
tuples at which keys refer to token substrings and values refer to their occurrence frequen-
cies [52]. The token string is split to overlapping n-adjacent tokens, where n is the minimum
matching length of matches (modifiable but set to 20 by default). For instance, if the token
string is {‘public’, ‘static’, ‘void’, ‘main’} and n is set to 2, the resulting substrings are ‘public
static’, ‘static void’, and ‘void main’. A larger n typically results in a higher proportion of
reported copied programs, but with a trade-off ignoring copied programs with moderate
evidence. Occurrence frequencies of any distinct token substrings are then counted and
mapped to indexes.

Third, all indexes are compared with each other using either MinHash or Super-Bit.
MinHash [53] is a locality-sensitive hashing algorithm that generates the same hash for
similar submissions and put them in the same cluster. The algorithm relies on Jaccard
coefficient [52], a similarity measurement that considers which distinct token substrings
are shared. MinHash requires two arguments. The number of clusters (buckets) determines
how many buckets will be used for clustering (two by default); programs falling on the
same cluster will be considered similar. More clusters tend to limit the number of reported
copied programs. The number of stages determines how many clustering tasks will be
performed (one by default). Programs are considered similar if they fall on the same cluster
at least once. More stages tend to report more copied programs.

Super-Bit [54] is another locality-sensitive hashing algorithm. Instead of relying on
Jaccard, it uses Cosine similarity [52], which considers occurrence frequencies of shared
distinct token substrings. Similar to MinHash, it requires number of clusters and numbers
of stages.

Fourth, matches for submissions with the same hash (i.e., located in the same bucket)
are selected by mapping shared token substrings to original forms of the submissions. Any
adjacent or overlapping matches will be merged, ensuring that each large match is reported
as a single match instead of several shorter matches.

Fifth, pairwise similarity reports are generated for submissions, in which the average
similarity degree [13] is no less than the minimum similarity threshold (modifiable but set to
75% by default). The average similarity degree is calculated as 2 × match(A, B) / (len(A) +
len(B)), where match(A, B) is the matched tokens, while both len(A) and len(B) are the
total tokens of each involved submission. The instructor can also set the maximum number
of pairwise similarity reports shown (10 by default). A larger minimum similarity threshold
and/or smaller maximum number of reports means stronger evidence for reported copied
programs and faster similarity report generation. However, the tool might not report copied
programs with the moderate level of evidence. These might be useful for those teaching
large classes; instructors are only able to investigate a small proportion of the programs
and they want to prioritize copied programs with strong evidence.

Some similarities are not useful for raising suspicion [11]. They can be legitimately
copiable code or code needed for compilation. They can also be a result of intuitive or
suggested implementation. The first two are template code and instructors are expected to
provide such code, which will be removed from submissions prior to comparison with a
simple search mechanism. The other two are naturally common code; they are first selected
based on the occurrence frequencies and then removed in the same manner as that of
template code. The removal mechanisms are adapted from CSTRANGE.

SSTRANGE’s graphical user interface for input can be seen in Figure 2. Assessment
path refers to a directory path containing all submissions at which each of them is rep-
resented either as a code file, a directory, or a zip file. Submission type refers to the
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representation of each submission (code file, directory, or zip file). Submission language
refers to programming language of the submissions, either Java or Python. Explanation
language refers to human language of the generated similarity reports. It can be either
English or Indonesian.

Figure 2. SSTRANGE’s user interface for input.

Minimum similarity threshold can be set from 0% to 100%. Only programs whose
average similarity degree no less than such a threshold will be reported. Maximum reported
submission pairs can be set with any positive integer no more than the total number of
program pairs. It defines the maximum number of program pairs reported. Minimum
matching length can be set with any positive integer no less than two. Larger minimum
matching length can result in stronger evidence for raising suspicion.

Template directory path refers to a directory containing all template code files. Com-
mon content (code), if not allowed, will be selected and removed prior to comparison.

SSTRANGE provides five similarity measurements: MinHash, Super-Bit, Jaccard,
Cosine, and running Karp–Rabin greedy string tiling. MinHash and Super-Bit are locality-
sensitive hashing similarity measurements that are also considered as clustering-based
similarity measurements. Exclusive to these two, pop-ups asking the number of clusters
and the number of stages will be shown prior to processing the inputs. Jaccard and
Cosine [52] are information-retrieval-based similarity measurements. They tend to result in
higher effectiveness than MinHash and Super-Bit, but with a trade-off in processing time.
Both measurements apply similar steps as MinHash and Super-Bit. Running Karp–Rabin
greedy string tiling (RKRGST) [55] is a structure-based measurement that is common for
similarity detectors [7]. It converts submissions to token strings and pairwise compares
them. RKRGST is probably the most effective among our five similarity measurements, but
it is also the slowest.

Based on the inputs, SSTRANGE will generate similarity reports at which their nav-
igation layout can be seen in Figure 3. The layout is inspired from CSTRANGE and it
lists all reported program pairs with their average similarity degrees and same cluster
occurrences (automatically set to one for Jaccard, Cosine, and RKRGST). The instructor can
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sort the program pairs based on a particular column by clicking its header. Information
about similarity measurements and the tool is also provided on the right panel. Further
investigation can be conducted by clicking each program pair’s ‘observe’ button. It will
redirect the instructor to the pairwise similarity report.

Figure 3. SSTRANGE’s navigation layout at which each column can be sorted in ascend-
ing/descending order by clicking the arrow toggle sign at the header.

Layout of the pairwise similarity report can be seen in Figure 4 and again, it is inspired
from CSTRANGE. It shows the compared programs and highlights the similarities. Once
a similar code segment is clicked, it will be highlighted in a darker red color for both
programs. Further, the similarity will be explained in the explanation panel.

Figure 4. SSTRANGE’s generated pairwise similarity report.

The instructor can see all similarities listed in the table. Each similar code segment
is featured with the left code line (number), right code line (number), minimum (number
of matched) character length, and number of matched tokens. If needed, similar code
segments can be sorted based on a particular feature by clicking the column header.

For instructors interested in integrating SSTRANGE to larger systems or just simply to
automate the input process, they can run SSTRANGE via a command prompt interface. The
tool requires eleven arguments: assessment path, submission type, submission language,
explanation language, minimum similarity threshold, maximum reported submission pairs,
minimum matching length, template directory path, common content flag, similarity mea-
surement, and resource path. The first ten arguments are the same to those of SSTRANGE’s
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graphical user interface, while resource path, the last one, refers to a directory path where
all SSTRANGE’s supporting files are located. For locality-sensitive hashing algorithms, two
more arguments can be added: number of clusters and number of stages. Further details
can be found on the documentation on Github.

5. Methodology for Addressing the Research Questions

This section describes how we addressed the four research questions mentioned at
the end of the introduction. The first three were addressed by evaluating SSTRANGE,
while the last one was addressed by reporting our instructors’ experience in employing
similarity detectors.

5.1. Addressing RQ1, RQ2, and RQ3: SSTRANGE’s Evaluation

This section addresses the first three research questions. RQ1 is about whether locality-
sensitive hashing is more efficient than common similarity algorithms used for automated
similarity detectors. RQ2 is about how much effectiveness trade-off is introduced by
locality-sensitive hashing. RQ3 is about the impact of overlapping adjacent tokens, number
of clusters, and number of stages in locality-sensitive hashing for similarity detection.

For RQ1 (efficiency), we employed processing time (seconds) as the metric where a
lower value is preferred. It was measured for all similarity measurements starting from the
first step (tokenisation) to the fourth (matches selection). The last step (report generation) is
not included as such a mechanism is essentially the same for all similarity measurements.

For RQ2 (effectiveness), we employed f-score [52], the harmonic mean of precision and
recall. The metric is represented as percentage (0–100%), where a high value is preferred.
It is measured as (precision × recall)/(precision + recall). Precision is the proportion of
copied and retrieved program pairs to all retrieved program pairs. Recall, on the other
hand, is the proportion of copied and retrieved program pairs to all copied program pairs.

Five scenarios were considered in the evaluation. Each of them refers to one of our
similarity measurements: MinHash, Super-Bit, Jaccard, Cosine, and RKRGST. The first two
are our locality-sensitive hashing measurements and the rest are common measurements in
similarity detection, especially RKRGST [7]. Each scenario was conducted on the SOCO
dataset [56] provided by Ragkhitwetsagul et al. [57]. It is a publicly available dataset that
is often used in evaluating similarity detectors. The dataset has 258 Java submissions
with 97 copied program pairs from a programming competition. All scenarios were set to
retrieve 100 suspected program pairs.

For RQ3 (impact of overlapping adjacent token substrings, number of clusters, and
number of stages), f-score and processing time were considered as comparison metrics. The
impacts of overlapping adjacent tokens in building indexes were measured by comparing
that to scenarios without such overlapping. Jaccard and Cosine scenarios were also involved
in addition to MinHash and Super-Bit, as they also rely on indexes.

The impact of number of clusters was measured by comparing the performance of
MinHash and Super-Bit scenarios in nine arbitrary numbers of clusters, starting from two to
ten in one interval (2, 3, 4, . . . , 10); number of stages is set to one by default. The impact of
number of stages was measured in a similar manner, but with the first ten positive integers
as arbitrary numbers of stages and two as the number of clusters.

Prior to addressing the three research questions, it is recommended to know the most
effective minimum matching length for each scenario. Such optimal length varies across
datasets and scenarios. This was obtained by testing ten constants that are first multiples of
ten (10, 20, 30, . . . , 100). The next ten multiples of ten would be considered if at least one
scenario had not reached its effectiveness peak. The number of clusters of MinHash and
Super-Bit was set to two and their number of stages was set to one. These are minimum
reasonable values for both arguments.
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5.2. Addressing RQ4: Recommendations

This section addresses RQ4, which is about recommendations on employing auto-
mated similarity detectors for the first time. They are compiled from two-and-one-half
years of instructors’ experience employing SSTRANGE’s predecessors, from January 2020
to June 2022.

For each academic semester, instructors interested in employing similarity detectors in
their courses were contacted. They were given a short briefing about how to use a similarity
detector and how to interpret the similarity reports. The similarity detector was usually
run for each two or three weeks, covering assessments with a passed deadline during
that period. We then asked them about their experience and concerns after each use. Any
urgent concerns were addressed immediately but only relevant ones were reported here.
At the end of the semester, we asked them about overall experience and concerns. Some of
which would be considered for the next semester’s integration. All of the findings were
qualitatively summarized and converted to recommendations.

Course offerings in which similarity detectors were employed can be seen in Table 1;
they are sorted based on their semesters. Each offering is featured with its major (IT for
information technology and IS for information system), expected student enrollment year,
and number of enrolled students. In total, there are 13 offerings of 9 distinct courses, with
435 students involved. Introductory programming is counted as two different courses
given that it was offered to two majors. All courses were compulsory for the students and
they were offered online due to the pandemic.

Table 1. Courses in which similarity detectors were employed.

Semester Name Major Enrollment Year Students

2020 1st sem Basic data structure IT 1st year 46
Adv. data structure IT 2nd year 9

2020 2nd sem Introductory prog. IS 1st year 33
Adv. data structure IT 2nd year 43

2021 1st sem Object oriented prog. IS 1st year 37
Introductory prog. IT 1st year 45

2021 2nd sem Introductory prog. IS 1st year 35
Business application prog. IS 3rd year 19

Data structure IT 2nd year 33
Adv. object oriented prog. IT 3rd year 32

2022 1st sem Object oriented prog. IS 1st year 15
Introductory prog. IT 1st year 55

Machine intelligence IT 3rd year 33

In the first semester of 2020, we used STRANGE in basic and advanced data struc-
ture courses offered to IT undergraduates. Basic data structure covered concepts of data
structure and several linear data structures (e.g., array, stack, queue, and linked list) in
Python. Students were given weekly assessments that should be completed in lab sessions
(two hours each). Per assessment, students were expected to translate and/or implement
algorithms to code.

Advanced data structure covered non-linear data structures such as trees and graphs.
The course also introduced a bridging language from Python to Java and C#. Python
was the first programming language for IT undergraduates, while Java and C# were
two programming languages that they would heavily use in later courses. The bridging
language was written on top of Java but with some syntax simplified. The assessment
design is comparable to that of basic data structure except that some of the topics are about
translating from one programming language to another.

In the next semester, STRANGE was employed on another offering of advanced
data structure. This time, students were expected to complete two assessments per week.
One should be completed in the corresponding lab session (two hours), while another
should be submitted before next week. The assessments were essentially about the same
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tasks—translating and/or implementing algorithms to code. Homework assessments were
designed to encourage students finishing tasks that they had not completed during the lab
session. Previous offering of advanced data structure (first semester of 2020) had a limited
number of enrolled students (9) as it was dedicated to repeating students.

STRANGE was also employed on introductory programming for IS undergraduates.
The course covered basic programming concepts, including input, output, branching, loop-
ing, function, and array. Students were given weekly lab and homework assessments.
Lab assessments were to be completed within the lab session, while homework assess-
ments were to be completed at home and submitted before next week’s lab session. Each
assessment consisted of three tasks: easy, medium, and challenging. Per task, students
were expected to solve it in both Java and Python (counted as two assessments). On most
occasions, they solved the tasks in Java first and then converted the solutions to Python.

In the first semester of 2021, two more courses were considered. Object-oriented
programming was the successive course of introductory programming for IS undergradu-
ates. It covered the concepts of object-oriented programming (class, interface, overriding,
abstraction, etc.) but only in Java. The course also covered basic application development
with Java Swing. Per week, students were given lab assessments. Homework assessments
were also issued but only for the first half of the semester. Each assessment required the
students to implement object-oriented concepts and/or solving a case study.

Introductory programming offered to IT undergraduates was another course employ-
ing STRANGE in that semester. The course and its assessment design were comparable
to that offered to IS undergraduates except that IT introductory programming only used
Python as the programming language.

In the second semester of 2021, four courses employed STRANGE: introductory
programming, business application programming, data structure, and advanced object-
oriented programming. The first half were offered to IS undergraduates, while the re-
maining were offered to IT undergraduates. The offering of IS introductory programming
was similar to that in the second semester of 2020. Business application programming
was the successive course of object-oriented programming offered one semester before. It
covered advanced concepts of Java application development and database. The course
issued weekly lab assessments about developing simple applications.

The second half were offered to IT undergraduates. Data structure was a new course
introduced in the new curriculum to replace both basic and advanced data structure. As-
sessments were mostly about implementing linear data structure in Python, and they were
issued as homework that should be completed within one week. Advanced object oriented
programming covered the same materials as IS business application programming: Java
application development with database. Each week, the offering issued two assessments
covering the same tasks. The first one should be completed in the lab session, while the
second one should be completed within one week. The purpose of homework assessments
was similar to that of IT advanced data structure offered in the second semester of 2020:
encouraging students to finish tasks that they had not completed in the lab session.

In 2022, we replaced STRANGE with CSTRANGE as the latter is featured with a
graphical user interface and reports three layers of similarity. CSTRANGE was employed
on three courses during the first semester: IS object-oriented programming, IT introductory
programming, and IT machine intelligence. Object-oriented programming and introductory
programming were offered in the same manner as those offered in the first semester of 2021.

Machine intelligence was about artificial intelligence (AI) and the assessments expected
students to implement such AI in Python with some predefined libraries. Students were
expected to complete such assessments in the lab session. However, if they were not able to
do that, they could resubmit the revised version within one week.

6. Results and Discussion

This section reports and discusses our findings from addressing the research questions.
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6.1. The Most Effective Minimum Matching Length for the Similarity Measurements

Before addressing RQ1–RQ3, it is recommended to search the most effective minimum
matching length (MML) for each similarity measurement. While a larger MML threshold
can prevent many coincidental matches to be reported, it can also lower the chance of copied
programs to be suspected as the resulted similarity degree is reduced. Figure 5 shows
that each similarity measurement has different optimal MML. MinHash and RKRGST
reach its peak at 20 with 70% and 94% f-score respectively; Super-Bit reaches its peak at
60 with 81% f-score, and Jaccard reaches their peak at 30 with 93% f-score. Cosine is the
only measurement that did not reach its peak even after its MML was set to 100. After
evaluating another set of ten MML thresholds (110 to 200), it appears that Cosine reached
its peak at 130 with 84% f-score.

Figure 5. F-score (%) across various minimum matching lengths for all scenarios.

Setting each similarity measurement with its most effective MML is reasonable. Table 2
shows that on most similarity measurements, processing time only becomes a little longer
on larger MML. RKRGST is the only similarity measurement at which such a trend is not
applicable due to its greedy mechanism for searching matches.

Table 2. Processing time (seconds) of various minimum matching lengths for all scenarios.

MML MinHash Super-Bit Jaccard Cosine RKRGST

10 6 4 12 11 1324
20 5 5 13 12 1441
30 6 6 13 12 1354
40 7 6 14 13 1400
50 7 7 15 13 1339
60 7 7 15 14 1328
70 8 7 15 14 1337
80 8 8 16 15 1373
90 8 8 17 17 1384

100 11 10 17 16 1355
110 11 10 22 17 1444
120 10 11 20 18 1390
130 15 14 17 18 1448
140 15 15 19 19 1315
150 16 13 22 20 1253
160 13 13 19 21 1238
170 14 14 19 22 1200
180 15 14 20 25 1179
190 15 15 20 26 1170
200 16 16 21 21 1141
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6.2. Efficiency of Locality-Sensitive Hashing (RQ1)

In terms of efficiency, similarity measurements with locality-sensitive hashing (MinHash
and Super-Bit) are the fastest with five and seven seconds processing time respectively
(see Table 3). For MinHash, it had a 60% decrease in processing time compared to Jaccard,
its base measurement (13 to 5 s). Super-Bit also resulted in a comparable decrease when
compared to its base measurement (Cosine); the processing time decreased from 18 to 7 s.
Unlike Jaccard and Cosine, MinHash and Super-Bit do not consider the whole content of
submissions for comparison as they only take some representative portion of it.

RKRGST, a common measurement for similarity detection is substantially slower than
other similarity measurements (1441 s or about 24 min). Although RKRGST applies a
hashing mechanism, it does not index the tokens before comparison. Further, it searches for
the longest possible matches. These result in cubic time complexity while other similarity
measurements only have linear time complexity.

Table 3. Performance of most effective MML for all scenarios.

Metric MinHash Super-Bit Jaccard Cosine RKRGST

MML 20 60 30 130 20
F-score (%) 70% 81% 93% 84% 94%

Processing time (s) 5 7 13 18 1441

6.3. Effectiveness of Locality-Sensitive Hashing (RQ2)

Table 3 shows that MinHash and Super-Bit, two similarity measurements with locality-
sensitive hashing, are the least effective compared to other measurements. This is expected
as the offset of improved efficiency (shorter processing time).

Compared to its base measurement, MinHash’s best f-score (70%) was 23% lower than
Jaccard’s (93%). This also happens on Super-Bit although the decrease was not substantial;
Super-Bit’s best f-score (81%) was only 3% lower than Cosine’s (84%). Locality-sensitive
hashing measurements only take a random portion of submissions’ content for comparison
and few of them might be less representative. Their mechanism to not consider the whole
submissions’ content is also the reason why both measurements have less consistent f-scores
over increasing MMLs.

RKRGST results in the highest f-score (94%). However, it is comparable to Jaccard
(93%) and its f-score difference to Super-Bit and Cosine was moderate (13% and 10%,
respectively). RKRGST’s greedy mechanism to search the largest possible matches can
be somewhat replaced with our mechanism to merge matches on remaining similarity
measurements.

6.4. Impact of Overlapping Adjacent Token Substrings in Building Indexes (RQ3)

Figure 6 depicts that overlapping adjacent token substrings positively affects effective-
ness; it results in substantially higher f-score (more than 40%). The overlapping mechanism
provides more flexibility in detecting matches. It considers any arbitrary position in the
token strings as starting points, not only those divisible by MML.

The f-score increase becomes substantially higher on similarity measurements that con-
sider occurrence frequencies (Cosine and Super-Bit). They rely more heavily on generated
indexes than Jaccard and MinHash.

The overlapping mechanism slightly slows down the processing time (see Figure 7).
This is expected as such a mechanism results in more token substrings to index and compare.
For a string with X tokens, it considers (X − n) substrings, while the non-overlapping one
only considers (X/n) substrings. However, the increase in processing time is acceptable
given that all similarity measurements are efficient by default (linear time complexity).
Further, the overlapping mechanism substantially increases effectiveness.
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Figure 6. F-score (%) for both overlapping and non-overlapping similarity measurements.

Figure 7. Processing time (s) for both overlapping and non-overlapping similarity measurements.

6.5. Impact of Number of Clusters in Locality-Sensitive Hashing (RQ3)

As shown in Figure 8, assigning different number of clusters can result in different
f-score. Copied submissions and their originals might not fall in the same cluster as
locality-sensitive hashing does not consider the whole content to cluster submissions. They
only focus on seemingly representative ones. MinHash reaches its best f-score with seven
clusters while Super-Bit reaches its best f-score with only two clusters.

Having more clusters does not necessarily slow down the processing time. Figure 9
shows that the processing time is quite stable across various numbers of clusters. Some
iterations might perform slightly worse than others due to hardware and operating system
dependencies. The processing time is relatively fast by default.
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Figure 8. F-score (%) on various numbers of clusters in locality-sensitive hashing.

Figure 9. Processing time (s) on various numbers of clusters in locality-sensitive hashing.

6.6. Impact of Number of Stages in Locality-Sensitive Hashing (RQ3)

Having more stages means a higher chance of programs to be considered similar. On
locality-sensitive hashing similarity measurements (MinHash and Super-Bit), programs are
similar if they fall on the same cluster at least once. While this might be able to detect more
copied programs, it can also result in more false positives: programs written independently
but reported as suspicious. The most effective number of stages may vary across datasets.
For the SOCO dataset, Figure 10 shows MinHash reaches its best f-score with nine as the
number of stages, while Super-Bit reaches its best f-score when its number of stages is set
to two or larger.
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Figure 10. F-score (%) on various numbers of stages in locality-sensitive hashing.

The number of stages does not generally affect processing time (see Figure 11) perhaps
since similarities on the dataset are relatively fast to compute. Variance might be a result of
hardware and operating system dependency. It is interesting to see that assigning number
of stages larger than one increases the processing time. Additional computation might be
needed to introduce extra stages.

Figure 11. Processing time (s) on various numbers of stages in locality-sensitive hashing.

6.7. Experience and Recommendations on Employing Similarity Detectors (RQ4)

This section reports our instructors’ experience on employing similarity detectors
starting from early 2020 to mid 2022. Such a report is then converted to recommendations
that can be useful for instructors interested in employing similarity detectors for the
first time.

6.7.1. Experience from the First Semester of 2020

We first employed a similarity detector (STRANGE) in the first semester of 2020 with
two courses for information technology (IT) undergraduates: basic and advanced data
structure. Each course was taught by two instructors, one teaching the class session(s), while
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another teaching the lab session(s). Basic data structure had two classes while advanced
data structure had only one class. All four instructors found that the similarity detector
helps them find copied programs. They were only expected to investigate programs
suspected by the similarity detector instead of checking all programs.

Basic data structure’s assessments are about translating and/or implementing algo-
rithms to code. Such assessments typically resulted in solutions with similar program flow
and high similarity alone was not sufficient for evidence. The instructors relied on irregular
patterns found while investigating suspected cases. The patterns included similarities in
comments, strange white space (e.g., unexpected tabs or spaces), unique identifier names,
original author’s student information, and unexpected program flow. While gathering
evidence, the instructors needed to check whether similar code segments were legitimately
copied from lecture materials or files provided by the instructors.

Advanced data structure’s assessments were similar to those of basic data structure
except that the solutions were in Java (at which the bridging language was built) and
they used template code. High similarity alone was not sufficient and irregular patterns
were often needed for evidence. The instructors specifically noted about two things. First,
minimum matching length should be set relatively long so that each match was meaningful
on its own. Java syntax tends to have many tokens, especially if compared to Python used
in basic data structure. Second, although template code could be easily ignored while
investigating suspected cases, it was convenient to have them automatically excluded from
being reported. This inspired the development of template code removal in STRANGE and
its successors.

6.7.2. Experience from the Second Semester of 2020

In the second semester of 2020, STRANGE was employed on two more courses:
introductory programming for information system (IS) undergraduates (one instructor for
both class and lab sessions) and IT advanced data structure (two instructors; one for class
session and another for lab). Introductory programming had one class while advanced
data structure had two classes. All instructors thought that STRANGE’s similarity reports
are relatively easy to understand.

For introductory programming, each assessment contained three tasks at with each
of them resulted in one independent program. Hence, to limit the number of similarity
reports, for each student, solutions of the three tasks were merged and treated as a single
submission prior to comparison. For evidence itself, the instructor relied on irregular
patterns of similarity, unexpected program flow in particular. For Python assessments,
minimum matching length should be set lower than that of Java assessments. In this case,
MML was set to ten for Python and 20 for Java. Both constants were assumed to cover two
program statements. Given that many easy and medium assessment tasks expected similar
solutions, there was a need to automatically select common code and exclude that prior to
comparison. This feature was developed as part of CSTRANGE and SSTRANGE.

For advanced data structure, it was similar to the preceding semester, except that
two assessments were issued weekly instead of one. The second weekly assessment
covered the same tasks as the first but could be completed within a week instead of within
two-hour lab session. Their experience was somewhat comparable to that offered in the
preceding semester. One of the instructors noted that each week, students were unlikely to
be suspected in only one assessment. They were either suspected in both assessments or
not at all.

6.7.3. Experience from the First Semester of 2021

For the first semester of 2021, two courses employed STRANGE, the similarity detector.
The first course was IS object-oriented programming. It had one class taught by one instruc-
tor for both of its class and lab sessions. The second course was introductory programming
but unlike the one offered in the preceding semester, it is for IT undergraduates. Three
instructors were involved in the teaching process: two for class sessions and two for lab
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sessions. There were a total of three classes; one class instructor and one lab instructor
taught two sessions each. Some instructors teaching this semester implied the need of a
graphical user interface for the similarity detector. This inspired the development of such
an interface on CSTRANGE and SSTRANGE.

The instructor of object-oriented programming noted that since the assessments de-
fined the class structure, they expected many common code: attributes, constructors, getters,
and setters. Finding strong evidence was quite complex although it was still manageable.
Similar to many instructors previously employing the similarity detector, they relied on
irregular patterns of similarity, especially strange ways of implementing methods. At the
second half of the semester, assessments were focused on application development and
finding strong evidence became more challenging. Such assessments typically expected
long solutions and many of the reported similarities were code for generating application
interface. To deal with this, the instructor focused on gathering evidence found in the main
program and/or major methods.

Instructors of IT introductory programming had comparable experience to the instruc-
tor of IS introductory programming offered in the preceding semester. To have a reasonable
number of similarity reports, all task solutions in one assessment were grouped based on
the submitter and merged before being compared. Irregular patterns of similarity were
often used as evidence. Given that such irregular patterns were quite common to use
among instructors, there was a need to capture such patterns via more lenient similarity
detection. This was implemented as another layer of similarity in CSTRANGE.

6.7.4. Experience from the Second Semester of 2021

In the second semester of 2021, four courses employed STRANGE: IS introductory
programming, IS business application programming, IT data structure, and IT advanced
object oriented programming. Each course was taught by one instructor except IT advanced
object-oriented programming (two instructors, one for class sessions and another for lab
sessions). All IS courses had one class each, while IT courses had two classes. Instructors of
IS business application programming and IT advanced object-oriented programming found
that STRANGE was quite slow for large assessments. This motivated the development of
SSTRANGE, a scalable version of STRANGE.

For IS introductory programming, the instructor shared the same experience as previ-
ous offerings of such a course. Per assessment, solutions for all tasks were merged prior
to comparison, limiting number of similarity reports. The instructor relied on irregular
patterns of similarity for evidence, especially unexpected program flow. They specifically
noted that fewer similarities were reported in homework assessments than the lab ones.
Perhaps, it is because students had more time to complete homework assessments (one
week instead of two hours), encouraging them to write the solutions by themselves. There
was also a small possibility that few students might misuse given time to disguise their
copying acts.

For IS business application programming, the assessments were about developing
applications with database. The instructor found it difficult to gather evidence, as the
expected solutions were typically long and some of the reported similarities are code for
generating application interface. The issue was exacerbated by the fact that some code files
and syntax other than the application interface code were also automatically generated
(e.g., hibernate classes). Consequently, the instructor checked only the main program and a
few major methods for evidence. Some assessments were about following detailed tutorial
and the instructor decided not to check similarities on such assessments; all solutions were
expected to have the same syntax, and even surface appearance.

IT data structure is a new course introduced in the new curriculum to replace both
basic and advanced data structure. The assessments were intentionally given with general
instructions (e.g., implement a data structure with a case study). This made detection of
plagiarism and collusion much easier; programs with similar syntax is less likely to be
a result of coincidence or following the instructions. The instructor used the tool for the



Educ. Sci. 2023, 13, 54 18 of 23

first time and at the beginning, they were uncertain why two programs having different
superficial looks were considered as the same. They were made clear about the matter after
a follow-up discussion.

For IT advanced object-oriented programming, the assessments were somewhat simi-
lar to those of IS business application programming. Consequently, the instructors checked
evidence only in the main program and a few major methods.

6.7.5. Experience from the First Semester of 2022

At that time, CSTRANGE replaced STRANGE and it was employed on three courses.
The first course was IS object-oriented programming (one class) taught by one instructor
for both class and lab sessions. The second course was IT introductory programming (two
classes), taught by two instructors: one managing class sessions, while another managing
lab sessions. The third course was machine intelligence (two classes) at which the class
sessions were taught by an instructor and the lab sessions were taught by another instructor.

For IS object-oriented programming, the assessments were somewhat comparable to
those issued in the previous offering of the course. CSTRANGE was arguably helpful for
the instructor in gathering evidence. They could rely on three levels of similarity instead of
one. However, as CSTRANGE reported more information than STRANGE, it was slower,
especially on assessments about application development.

For IT introductory programming, the instructors found that having superficial simi-
larities reported helped them in gathering evidence. Some of the assessment tasks were
trivial and they expected the same solutions even at syntax level. One instructor noted
that the similarity detector could not detect all copied programs. They found some copied
programs that were not reported by the tool. This is expected as a trade-off using a similar-
ity detector for time efficiency: instructors are not required to check all programs but the
automation does not guarantee to detect all copied programs [8]. The instructor also found
that few students were suspected because they only finished easy tasks (which solutions
were expected to be highly similar).

For IT machine intelligence, the assessments had detailed instructions and those
relatively limited variation across the solutions. Further, students were only taught a
few ways of using third-party libraries. The instructors expected the solutions to be
similar. They relied on irregular patterns of similarity at which some of them were reported
by CSTRANGE.

6.8. Recommendations

Based on our instructors’ experience, we have a number of recommendations (sorted
by the importance):

1. While choosing a similarity detector, it is recommended to consider the assessment
design. An effective similarity detector is not always the one that nullifies many code
variations. Some variations need to be kept to prevent coincidental similarities from
being reported, especially on assessments with small tasks, trivial solutions and/or
detailed instructions [10,44]. Many of our assessments, for example, expect similar
program flow in the solutions. Common similarity detectors, such as JPlag [13], might
report most submissions to be similar as they report program flow similarity.

2. Instructors need to generally understand about how the employed similarity detec-
tor works. Some instructors can be uncertain about why two programs are considered
similar despite having different superficial looks. They can also get confused when a
number of copied programs are not reported by the tool. Instructors should read the
tool’s documentation. Otherwise, they can be briefed with other instructors who have
used the tool before.

3. If possible, assessments need to have space for students’ creativity and/or space
for using their own case studies. Detection of plagiarism and collusion can be easier
as reported similarities are less likely to be a result of coincidence [58].
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4. Strong evidence can be obtained by observing irregular patterns of similarity. These
include similarities in comments, strange white space, unique identifier names, orig-
inal author’s student information, and unexpected program flow. Many students
conduct plagiarism and collusion because they are not fluent in programming [59].
They lack skill to disguise copied programs with unique characteristics.

5. Template and common code should not become evidence for raising suspicion.
They are expected among submissions. For each similar code segment, it is important
to check whether it is part of template code: whether it is legitimately copiable code
(from lecture slides or assessment documents); whether it is compulsorily used for
compilation; whether it is suggested by instructors; and whether it is the most obvious
implementation for the task [11]. Several similarity detectors offer automatic removal
of such code but the result is not always accurate (for the purpose of efficiency).
JPlag [13], MOSS [5], and CSTRANGE [49] are three examples of similarity detectors
that offer template code removal. The last two also cater for common code removal.

6. Evidence should be based on manually written code. Some assessments (e.g., those
developing applications) encourage the use of automatically generated code and
searching evidence on such code is labor intensive. It is preferred to focus on code
parts that are manually written such as the main program or major methods.

7. To have a reasonable number of similarity reports, several short programs in one
assessment can be merged before comparison. More programs tend to result in
more similarity reports. The number of similarity reports needs to be reasonable given
that each of the reports will be manually investigated.

8. Assessments expecting the same solutions even at superficial level (e.g., following
a detailed tutorial) should be ignored for similarity detection. Searching for strong
evidence in such assessments is labor intensive. Instructors are expected not to allocate
a large portion of marks for such assessments.

9. Investigation can be more comprehensive via the consideration of several similar-
ity measurements. Each similarity measurement has its own benefits and weaknesses.
Having more than one similarity measurement can lead in more objective investiga-
tion. Sherlock [8] and CSTRANGE [49] are two examples of tools facilitating multiple
measurements in the similarity reports.

10. For assessments expecting many large submissions, the employed similarity de-
tector should be efficient, preferably the one that works in linear time. Some in-
structors do not have much time to run the detector and wait for the similarity reports.
The issue is exacerbated on similarity detectors with non-linear time complexity as
the processing time becomes much longer.

7. Limitations

Our study has four limitations:

1. Although the SOCO dataset is common for evaluation, SSTRANGE was evaluated
only on a single dataset. Replicating the evaluation with different datasets can enrich
the findings.

2. SSTRANGE’s evaluation only considers f-score for effectiveness and processing time
for efficiency. While these metrics are relatively common, utilizing other performance
metrics might be useful for further observation.

3. While some recommendations for instructors interested in employing similarity de-
tectors appear to be more aligned in justifying the need to improve SSTRANGE’s
predecessors, we believe they are somewhat applicable for general use of similarity
detectors. Our 13 course offerings have various assessment designs, and they are
quite representative for programming.

4. Recommendations for instructors interested in employing similarity detectors are
based on instructors’ experience in a single institution in a particular country. Some
of them might be in need for stronger evidence. More comprehensive and well-
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supported findings might be obtained by reporting such experience from more insti-
tutions, especially those located in different countries.

8. Conclusions and Future Work

This paper presents two contributions: SSTRANGE and our recommendations for
employing similarity detectors. Unique to SSTRANGE, it is featured with locality-sensitive
hashing, intuitive reports for investigation, and a graphical user interface. The tool, the code,
and the documentation are publicly accessible. According to our evaluation, SSTRANGE’s
locality-sensitive hashing similarity measurements are more efficient than common sim-
ilarity measurements while having reasonable offset on effectiveness. Best effectiveness
performance can be obtained by tuning minimum matching length, number of clusters,
and number of stages. There is also a need to rely on overlapping adjacent token substrings
in building indexes.

Based on our 2.5 year experience employing SSTRANGE’s predecessors, we recom-
mend instructors to understand how a similarity detector works and its implications on
the assessment design. While gathering evidence, it is necessary to focus on irregular
patterns of similarity (e.g., similar comments and unexpected program flow), which can
be more evident on assessments incorporating students’ creativity and/or case studies.
Template code, common code, and automatically generated code should be ignored. We
also recommend instructors to merge short programs as a single submission and not to
detect similarity on assessments expecting a similar superficial look. Consideration of
multiple similarity measurements can lead to more objective investigation but if there are
many large submissions, it is preferred to employ a similarity detector with linear time
complexity for efficiency.

For future work, we plan to evaluate SSTRANGE on other datasets (preferably those
from our faculty) with more performance metrics. We are also interested to record in-
structors’ experience on employing the tool in their courses. Last but not least, we are
interested in conducting focus group discussions about our recommendations for employ-
ing similarity detectors with instructors who have employed similarity detectors from other
institutions. The discussions are expected to strengthen our recommendations.
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