The Impact of Integrated STEAM Education on Arts Education: A Systematic Review
Abstract
:1. Introduction
2. Arts Education in Integrated STEAM Education
3. Method
4. Results and Discussion
4.1. General Description of the Studies
4.2. In-Depth Review Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ortiz-Revilla, J.; Sanz-Camarero, R.; Greca, I.M. A critical look at theoretical models on integrated STEAM education. Rev. Iberoam. Educ. 2021, 87, 13–33. [Google Scholar] [CrossRef]
- García-Fuentes, O.; Raposo-Rivas, M.; Martínez-Figueira, M. STEAM education: Review of literature. Rev. Complut. Educ. 2023, 34, 191–202. [Google Scholar] [CrossRef]
- Kang, N.-H. A review of the effect of integrated STEM or STEAM (science, technology, engineering, arts, and mathematics) education in South Korea. Asia-Pac. Sci. Educ. 2019, 5, 1–22. [Google Scholar] [CrossRef]
- Commonwealth of Australia. Sculpting a National Cultural Plan. 2021. Available online: https://www.aph.gov.au/Parliamentary_Business/Committees/House/Communications/Arts/Report (accessed on 23 September 2023).
- Corfo & Fundación Chile. Preparando a Chile Para la Dociedad del Conocimiento: Hacia una Coalición Que Impulse la Educación STEAM. 2017. Available online: https://bit.ly/3zufT6v (accessed on 23 September 2023).
- Espinal, L.M.; Silveira, F. La generación de prácticas, proyectos o programas en educación STEM-STEAM en el marco de una diplomatura virtual para América Latina. In Enseñanza y Aprendizaje de Las Ciencias en Debate; Macedo, B., Silveira, S., Astete, M.G., Meziat, D., Eds.; Universidad de Alcalá: Alcalá de Henares, Spain, 2019; pp. 622–631. [Google Scholar]
- Gobierno de España. La Respuesta a las Nuevas Exigencias Sociales. 2021. Available online: https://educagob.educacionyfp.gob.es/lomloe/respuestas.html (accessed on 23 September 2023).
- Korea Foundation for the Advancement of Science and Creativity. Policy Directions of STEAM Education: Introductory Training of KOFAC STEAM; Foundation for the Advancement of Science and Creativity: Seoul, Republic of Korea, 2012. [Google Scholar]
- Morales, M.P.E.; Anito, J.C.; Avilla, R.A.; Sarmiento, C.P.; Palisoc, C.P.; Elipane, L.E.; Ayuste, T.O.D.; Butron, B.R.; Palomar, B.C. The Philippine STEAM Education Model; Philippine Normal University: Manila, Philippines, 2019. [Google Scholar]
- Ortiz-Revilla, J.; Adúriz-Bravo, A.; Greca, I.M. A framework for epistemological discussion around an integrated STEM education. Sci. Educ. 2020, 29, 857–880. [Google Scholar] [CrossRef]
- Madden, M.E.; Baxter, M.; Beauchamp, H.; Bouchard, K.; Habermas, D.; Huff, M.; Ladd, B.; Pearon, J.; Plague, G. Rethinking STEM education: An interdisciplinary STEAM curriculum. Procedia Comput. Sci. 2013, 20, 541–546. [Google Scholar] [CrossRef]
- Quigley, C.F.; Herro, D. Finding the joy in the unknown: Implementation of STEAM teaching practices in middle school science and math classrooms. J. Sci. Educ. Technol. 2016, 25, 410–426. [Google Scholar] [CrossRef]
- Bequette, J.W.; Bequette, M.B. A place for art and design education in the STEM conversation. Art Educ. 2012, 65, 40–47. [Google Scholar] [CrossRef]
- Hunter-Doniger, T. Art infusion: Ideas conditions for STEAM. Art Educ. 2018, 71, 22–27. [Google Scholar] [CrossRef]
- Land, M.H. Full STEAM ahead: The benefits of integrating the arts into STEM. Procedia Comput. Sci. 2013, 20, 547–552. [Google Scholar] [CrossRef]
- Ortiz-Revilla, J.; Greca, I.M.; Adúriz-Bravo, A. Conceptualization of competencies: Systematic review of research in primary education. Profesorado. Rev. Currículum Form. Profr. 2021, 25, 223–250. [Google Scholar] [CrossRef]
- Maeda, J. STEM + Arts = STEAM. STEAM J. 2013, 1, 34. [Google Scholar] [CrossRef]
- Chien, Y.-H.; Chu, P.-Y. The different learning outcomes of high school and college students on a 3D-printing STEAM engineering design curriculum. Int. J. Sci. Math. Educ. 2018, 16, 1047–1064. [Google Scholar] [CrossRef]
- Chu, H.-E.; Martin, S.N.; Park, J. A theoretical framework for developing an intercultural STEAM program for Australian and Korean students to enhance science teaching and learning. Int. J. Sci. Math. Educ. 2019, 17, 1251–1266. [Google Scholar] [CrossRef]
- Kim, B.-H.; Kim, J. Development and validation of evaluation indicators for teaching competency in STEAM education in Korea. Eurasia J. Math. Sci. Technol. Educ. 2016, 12, 1909–1924. [Google Scholar] [CrossRef]
- Acaso, M.; Megías, C. Art Thinking; Paidós Educación: Barcelona, Spain, 2017. [Google Scholar]
- Song, H.-S.; Kim, S.-H.; Song, Y.-J.; Yoo, P.-R.; Lee, J.-Y.; Yu, H. Effect of STEAM education program using flexible display. Int. J. Inf. Educ. Technol. 2019, 9, 559–563. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions; Cochrane Collaboration & Wiley: Hoboken, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Başaran, M.; Erol, M. Recognizing aesthetics in nature with STEM and STEAM education. Res. Sci. Technol. Educ. 2023, 41, 326–342. [Google Scholar] [CrossRef]
- Chen, C.C.; Huang, P.H. The effects of STEAM-based mobile learning on learning achievement and cognitive load. Interact. Learn. Environ. 2020, 31, 100–116. [Google Scholar] [CrossRef]
- Holguin-Alvarez, J.; Cruz-Montero, J.; Ruiz-Salazar, J.; Ledesma-Pérez, F. Robotic ecology from the coast: Results of a science skills strengthening program. Publicaciones 2023, 53, 31–47. [Google Scholar] [CrossRef]
- Salmi, H.S.; Thuneberg, H.; Bogner, F.X. Is there deep learning on Mars? STEAM education in an inquiry-based out-of-school setting. Interact. Learn. Environ. 2020, 31, 1173–1185. [Google Scholar] [CrossRef]
- Szabó, T.; Babály, B.; Pataiová, H.; Kárpáti, A. Development of spatial abilities of preadolescents: What works? Educ. Sci. 2023, 13, 312. [Google Scholar] [CrossRef]
- Chung, C.C.; Huang, S.L.; Cheng, Y.M.; Lou, S.J. Using an iSTEAM project-based learning model for technology senior high school students: Design, development, and evaluation. Int. J. Technol. Des. Educ. 2020, 32, 905941. [Google Scholar] [CrossRef]
- Huang, X.; Qiao, C. Enhancing computational thinking skills through artificial intelligence education at a STEAM high school. Sci. Educ. 2022, 1–21. [Google Scholar] [CrossRef]
- Hughes, B.S.; Corrigan, M.W.; Grove, D.; Andersen, S.B.; Wong, J.T. Integrating arts with STEM and leading with STEAM to increase science learning with equity for emerging bilingual learners in the United States. Int. J. STEM Educ. 2022, 9, 1–19. [Google Scholar] [CrossRef]
- Duo-Terron, P.; Hinojo-Lucena, F.J.; Moreno-Guerrero, A.J.; López-Núñez, J.A. STEAM in Primary Education. Impact on linguistic and mathematical competences in a disadvantaged context. Front. Educ. 2022, 7, 792656. [Google Scholar] [CrossRef]
- Liao, X.; Luo, H.; Xiao, Y.; Ma, L.; Li, J.; Zhu, M. Learning patterns in STEAM education: A comparison of three learner profiles. Educ. Sci. 2022, 12, 614. [Google Scholar] [CrossRef]
- Ozkan, Z.C. The effect of STEAM applications on lesson outcomes and attitudes in secondary school visual arts lesson. Int. J. Technol. Educ. 2022, 5, 621–636. [Google Scholar] [CrossRef]
- Çakır, N.A.; Çakır, M.P.; Lee, F.J. We game on skyscrapers: The effects of an equity-informed game design workshop on students’ computational thinking skills and perceptions of computer science. Educ. Technol. Res. Dev. 2021, 69, 2683–2703. [Google Scholar] [CrossRef]
- Choi, S.; Won, A.; Chu, H.; Cha, H.; Shin, H.; Kim, C. The impacts of a climate change SSI-STEAM program on junior high school students’ climate literacy. Asia-Pac. Sci. Educ. 2021, 7, 96–133. [Google Scholar] [CrossRef]
- Donia, D.T.; Scibetta, E.V.; Tagliatesta, P.; Carbone, M. Chemistry through tattoo inks: A multilevel approach to a practice on the rise for eliciting interest in chemical education. J. Chem. Educ. 2021, 98, 1309–1320. [Google Scholar] [CrossRef]
- Greca, I.M.; Ortiz-Revilla, J.; Arriassecq, I. Diseño y evaluación de una secuencia de enseñanza-aprendizaje STEAM para Educación Primaria. Rev. Eureka Sobre Enseñanza Divulg. Cienc. 2021, 18, 1802. [Google Scholar] [CrossRef]
- Khamhaengpol, A.; Sriprom, M.; Chuamchaitrakool, P. Development of STEAM activity on nanotechnology to determine basic science process skills and engineering design process for high school students. Think. Ski. Creat. 2021, 39, 100796. [Google Scholar] [CrossRef]
- Ozkan, G.; Topsakal, U.U. Investigating the effectiveness of STEAM education on students’ conceptual understanding of force and energy topics. Res. Sci. Technol. Educ. 2021, 39, 441–460. [Google Scholar] [CrossRef]
- Piila, E.; Salmi, H.; Thuneberg, H. STEAM-learning to Mars: Students’ ideas of space research. Educ. Sci. 2021, 11, 122. [Google Scholar] [CrossRef]
- Tran, N.H.; Huang, C.F.; Hsiao, K.H.; Lin, K.L.; Hung, J.F. Investigation on the influences of STEAM-based curriculum on scientific creativity of elementary school students. Front. Educ. 2021, 6, 694516. [Google Scholar] [CrossRef]
- Tran, N.H.; Huang, C.F.; Hung, J. Exploring the effectiveness of STEAM-Based courses on junior high school students’ scientific creativity. Front. Educ. 2021, 6, 666792. [Google Scholar] [CrossRef]
- Mierdel, J.; Bogner, F.X. Simply InGEN(E)ious! How creative DNA modeling can enrich classic hands-on experimentation. J. Microbiol. Biol. Educ. 2020, 21, 20. [Google Scholar] [CrossRef] [PubMed]
- Rudd, J.A.; Horry, R.; Skains, R.L. You and CO2: A public engagement study to engage secondary school students with the issue of climate change. J. Sci. Educ. Technol. 2020, 29, 230–241. [Google Scholar] [CrossRef]
- Tan, W.; Samsudin, M.; Ahmad, N. Gender differences in students’ achievements in learning concepts of electricity via steam integrated approach utilizing Scratch. Probl. Educ. 21st Century 2020, 78, 423–448. [Google Scholar] [CrossRef]
- Serrano Pérez, E.; Juárez López, F. An ultra-low cost line follower robot as educational tool for teaching programming and circuit’s foundations. Comput. Appl. Eng. Educ. 2018, 27, 288–302. [Google Scholar] [CrossRef]
- Bati, K.; Yetişir, M.I.; Çalişkan, I.; Güneş, G.; Gül Saçan, E. Teaching the concept of time: A STEAM-based program on computational thinking in science education. Cogent Educ. 2018, 5, 1507306. [Google Scholar] [CrossRef]
- Thuneberg, H.M.; Salmi, H.S.; Bogner, F.X. How creativity, autonomy and visual reasoning contribute to cognitive learning in a STEAM hands-on inquiry-based math module. Think. Ski. Creat. 2018, 29, 153–160. [Google Scholar] [CrossRef]
- Shih, J.; Huang, S.; Lin, C.; Tseng, C. STEAMing the ships for the great voyage: Design and evaluation of a technology integrated maker game. Interact. Des. Archit. J. 2017, 34, 61–87. [Google Scholar] [CrossRef]
- Constantino, T. STEAM by another name: Transdisciplinary practice in art and design education. Arts Educ. Policy Rev. 2018, 119, 100–106. [Google Scholar] [CrossRef]
- Sanz-Camarero, R.; Ortiz-Revilla, J.; Greca, I.M. The place of the arts within integrated education. Arts Educ. Policy Rev. 2023, 1–12. [Google Scholar] [CrossRef]
- Lin, C.-L.; Tsai, C.-Y. The effect of a pedagogical STEAM model on students’ project competence and learning motivation. J. Sci. Educ. Technol. 2021, 30, 112–124. [Google Scholar] [CrossRef]
- Kim, H.; Chae, D.-H. The development and application of a STEAM programbased on traditional Korean culture. Eurasia J. Math. Sci. Technol. Educ. 2016, 12, 1925–1936. [Google Scholar] [CrossRef]
- Kim, P.W. The wheel model of STEAM education based on traditional Korean scientific contents. Eurasia J. Math. Sci. Technol. Educ. 2016, 12, 2353–2371. [Google Scholar] [CrossRef]
- Wannapiroon, N.; Petsangsri, S. Effects of STEAMification model in flipped classroom learning environment on creative thinking and creative innovation. TEM J. 2020, 9, 1647–1655. [Google Scholar] [CrossRef]
- Kummanee, J.; Nilsook, P.; Wannapiroon, P. Digital learning ecosystem involving steam gamification for a vocational innovator. Int. J. Inf. Educ. Technol. 2020, 10, 533–539. [Google Scholar] [CrossRef]
- Quigley, C.; Herro, D.; Jamil, F.M. Developing a conceptual model of STEAM teaching practices. Sch. Sci. Math. 2017, 117, 1–12. [Google Scholar] [CrossRef]
- Trott, C.D.; Even, T.L.; Frame, S.M. Merging the arts and sciences for collaborative sustainability action: A methodological framework. Sustain. Sci. 2020, 15, 1067–1085. [Google Scholar] [CrossRef]
- Gresnigt, R.; Taconis, R.; van Keulen, H.; Gravemeijer, K.; Baartman, L. Promoting science and technology in primary education: A review of integrated curricula. Stud. Sci. Educ. 2014, 50, 47–84. [Google Scholar] [CrossRef]
- Yıldız-Yılmaz, N.; Mentiş-Taş, A. Primary School Environment Awareness Scale Validity and Reliability Study. Hitit Univ. J. Soc. Sci. Inst. 2017, 10, 1355–1372. [Google Scholar] [CrossRef]
- Korkmaz, Ö.; Bai, X. Adapting computational thinking scale (CTS) for Chinese high school students and their thinking scale skills level. Particip. Educ. Res. 2019, 6, 10–26. [Google Scholar] [CrossRef]
- Yanal, S. Türk ve Suriyeli Ortaokul Öğrencilerinin Görsel Sanatlar Dersi Kazanımları, Tutumları ve Akademik Benlik Kavramlarının Incelenmesi. Master’s Thesis, Necmettin Erbakan University, Konya, Türkiye, 2019. Available online: https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=U2wQZjwC5vTRQOPHCbJYsg&no=TAjJ-wgjnUvqUuBMIj9w8A (accessed on 23 September 2023).
- Demirel, İ.N. Köy ve Kent Okullarında Öğrenim Gören Ilköğretim ii. Kademe Öğrencilerinin Görsel Sanatlar Dersine Ilişkin Tutumlarının Karşılaştırılması. Master’s Thesis, Eğitim Bilimleri Enstitüsü, Denizli, Türkiye, 2011. Available online: https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=QnBCYu2ZcY46bkC4oIqHRg&no=wLkNjuGsujKDUGk14O2cpg (accessed on 23 September 2023).
- Loyd, B.H.; Gressard, C. The Reliab. and validity of an instrument for the assessment of computer attitudes. Educ. Psychol. Meas. 1985, 45, 903–908. [Google Scholar] [CrossRef]
- Ortiz-Revilla, J.; Greca, I.M. La evaluación del desarrollo competencial escolar: Propuesta de un instrumento. In Innovación Docente e Investigación en Educación; Pérez-Fuentes, M.C., Ed.; Dykinson: Madrid, Spain, 2019; pp. 365–374. [Google Scholar]
- Hu, W.; Adey, P. A Scientific Creativity Test for Secondary School Students. Int. J. Sci. Educ. 2002, 24, 389–403. [Google Scholar] [CrossRef]
- Connor, A.M.; Karmokar, S.; Whittington, C. From STEM to STEAM: Strategies for enhancing engineering & technology education. Int. J. Eng. Pedagog. 2015, 5, 37–47. [Google Scholar] [CrossRef]
- Diego-Mantecón, J.M.; Blanco, T.F.; Ortiz-Laso, Z.; Lavicza, Z. STEAM projects with KIKS format for developing key competences. Comunicar 2021, 29, 33–43. [Google Scholar] [CrossRef]
- Aguilera, D.; Lupiáñez, J.L.; Vílchez-González, J.M.; Perales-Palacios, F.J. In search of a long-awaited consensus on disciplinary integration in STEM education. Mathematics 2021, 9, 597. [Google Scholar] [CrossRef]
- Martín-Páez, T.; Aguilera, D.; Perales-Palacios, F.J.; Vílchez-González, J.M. What are we talking about when we talk about STEM education? A review of literature. Sci. Educ. 2019, 103, 799–822. [Google Scholar] [CrossRef]
- Burnaford, G.; Brown, S.; Doherty, J.; McLaughlin, H.J. Arts Integration Frameworks, Research & Practice: A Literature Review; Arts Education Partnership: Denver, CO, USA, 2007. [Google Scholar]
- Catterall, J.S. Does experience in the arts boost academic achievement? A response to Eisner. Art Educ. 1998, 51, 6–11. [Google Scholar] [CrossRef]
- Zeidler, D.L. STEM education: A deficit framework for the twenty first century? A sociocultural socioscientific response. Cult. Stud. Sci. Educ. 2016, 11, 11–26. [Google Scholar] [CrossRef]
- Bresler, L. The subservient, co-equal, affective, and social integration styles and their implications for the arts. Arts Educ. Policy Rev. 1995, 96, 31–37. [Google Scholar] [CrossRef]
- Eisner, E.W. Arts and the Creation of Mind; Yale University Press: New Haven, CO, USA, 2002. [Google Scholar]
- Alonso-Centeno, A.; Ortiz-Revilla, J.; Greca, I.M.; Sanz de la Cal, E. Perceptions of STEAM+CLIL integration: Results of a co-teaching proposal during initial teacher training. In Controversial Issues and Social Problems for an Integrated Disciplinary Teaching; Ortega-Sánchez, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 3–15. [Google Scholar] [CrossRef]
- Greca, I.M.; Ortiz-Revilla, J.; Alonso-Centeno, A.; Sanz de la Cal, E. Co-teaching for teacher training in integrated education: An experience with STEAM and CLIL. Ápice. Rev. de Educ. Científica 2022, in press. [Google Scholar]
Author/s | Year | Journal | Country | Educational Stage |
---|---|---|---|---|
Başaran and Erol [25] | 2023 | Research in Science & Technological Education | Turkey | Primary education |
Chen and Huang [26] | 2023 | Interactive Learning Environments | Taiwan | Primary education |
Holguin-Alvarez et al. [27] | 2023 | Publications | Peru | Primary education |
Salmi et al. [28] | 2023 | Interactive Learning Environments | Finland | Primary education |
Szabó et al. [29] | 2023 | Education Sciences | Slovakia | Primary education |
Chung et al. [30] | 2022 | International Journal of Technology and Design Education | Taiwan | Secondary education |
Huang and Qiao [31] | 2022 | Science & Education | China | Secondary education |
Hughes et al. [32] | 2022 | International Journal of STEM Education | United States | Primary education |
Duo-Terron et al. [33] | 2022 | Frontiers in Education | Spain | Primary education |
Liao et al. [34] | 2022 | Education Sciences | China | Primary education |
Ozkan [35] | 2022 | International Journal of Technology in Education | Turkey | Secondary education |
Çakır et al. [36] | 2021 | Education Technology Research and Development | United States | Secondary education |
Choi et al. [37] | 2021 | Asia-Pacific Science Education | South Korea | Secondary education |
Donia et al. [38] | 2021 | Journal of Chemical Education | Italy | Secondary education |
Greca et al. [39] | 2021 | Revista Eureka sobre Enseñanza y Divulgación de las Ciencias | Spain | Primary education |
Khamhaengpol et al. [40] | 2021 | Thinking Skills and Creativity | Thailand | Secondary education |
Ozkan and Topsakal [41] | 2021 | Research in Science & Technological Education | Turkey | Secondary education |
Piila et al. [42] | 2021 | Education Sciences | Finland | Primary education |
Tran, Huang, Hsiao et al. [43] | 2021 | Frontiers in Education | Taiwan | Primary education |
Tran, Huang and Hung [44] | 2021 | Frontiers in Education | Taiwan | Secondary education |
Mierdel and Bogner [45] | 2020 | Journal of Microbiology & Biology Education | Germany | Secondary education |
Rudd et al. [46] | 2020 | Journal of Science Education and Technology | United Kingdom | Secondary education |
Tan et al. [47] | 2020 | Problems of Education in the 21st Century | Malaysia | Secondary education |
Serrano Pérez and Juárez López [48] | 2019 | Computer Applications in Engineering Education | Mexico | Secondary education |
Bati et al. [49] | 2018 | Cogent Education | Turkey | Secondary education |
Thuneberg et al. [50] | 2018 | Thinking Skills and Creativity | Finland | Primary education |
Shih et al. [51] | 2017 | Interaction Design and Architecture(s) Journal | Taiwan | Primary education |
Study | Design | Educational Context | Methodology | Instrument | Evaluated Competence Development * | Impact on Artistic Competence Development |
---|---|---|---|---|---|---|
Başaran and Erol (2023) [25] | Quasi-experimental | Formal | Project-Based Learning (PBL) and Context-Based Learning (CBL) | Primary School Environmental Awareness Scale [62] and ad-hoc scale | Environmental awareness and aesthetic view | Positive |
Chen and Huang (2023) [26] | Quasi-experimental | Formal | Game-Based Learning (GBL) | Test | Science and Technology content knowledge | - |
Holguin- Alvarez et al. (2023) [27] | Experimental | Formal | Multiple Teaching Method | Test and scale | Science skills and environmental awareness | - |
Salmi et al. (2023) [28] | Pre-experimental | Formal | Inquiry | Test | STEAM content knowledge | Positive |
Szabó et al. (2023) [29] | Quasi-experimental | Formal | Inquiry | Test | Spatial skills | - |
Chung et al. (2022) [30] | Pre-experimental | Formal | Project-Based Learning (PBL) | Test | STEAM competences | Positive |
Huang and Qiao (2022) [31] | Experimental | Formal | a | CT Skills Scale [63] | Computational thinking skills | - |
Hughes et al. (2022) [32] | Experimental | Formal | Inquiry | Tests | Life and physical science knowledge | - |
Duo-Terron et al. (2022) [33] | Quasi-experimental | Formal | a | Standardized tests by National Institute of Educational Evaluation of Spain | Linguistic and mathematical competencies | - |
Liao et al. (2022) [34] | Quasi-experimental | Formal | Project-Based Learning (PBL) | Questionnaire | Computational thinking performance | - |
Ozkan (2022) [35] | Quasi-experimental | Formal | a | Secondary School Visual Arts Lesson Scale [64] and Visual Arts Lesson Attitude Scale [65] | Visual arts achievements and attitudes towards visual arts | Positive |
Çakır et al. (2021) [36] | Quasi-experimental | Informal | a | Test and Computer Attitude Scale (CAS) [66] | Computational thinking skills and attitudes towards computing | - |
Choi et al. (2021) [37] | Pre-experimental | Formal | Socio Scientific Issues (SSI) Education | Questionnaire | Climate literacy | - |
Donia et al. (2021) [38] | Pre-experimental | Informal | Multi-outcome experiments (MOEs) | Survey | Chemistry concepts | - |
Greca et al. (2021) [39] | Quasi-experimental | Formal | Inquiry and Engineering Design Process (EDP) | Competence development evaluation instrument [67] | Development of key competencies | Positive |
Khamha engpol et al. (2021) [40] | Pre-experimental | Formal | Engineering Design Process (EDP) | Worksheets | Basic science process skills and engineering design process on nanotechnology | - |
Ozkan and Topsakal (2021) [41] | Experimental | Formal | Hands-on | Test | Force and energy conceptual knowledge | - |
Piila et al. (2021) [42] | Experimental | Formal | a | Test | Natural Sciences knowledge | - |
Tran, Huang, Hsiao et al. (2021) [43] | Experimental | Formal | Project-Based Learning (PBL) | Scientific Creativity Test [68] | Scientific creativity | - |
Tran, Huang and Hung (2021) [44] | Quasi-experimental | Formal | Project-Based Learning (PBL) | Scientific Creativity Test [68] | Scientific creativity | - |
Mierdel and Bogner (2020) [45] | Quasi-experimental | Informal | Inquiry | Questionnaire | Science content knowledge | - |
Rudd et al. (2020) [46] | Quasi-experimental | Informal | Multiliteracies approach | Scale | Attitudes toward carbon footprint reduction | - |
Tan et al. (2020) [47] | Quasi-experimental | Formal | a | Test | Electricity content knowledge | - |
Serrano Pérez and Juárez López (2019) [48] | Pre-experimental | Informal | Theorical and hands-on | Test | Engineering Knowledge | - |
Bati et al. (2018) [49] | Quasi-experimental | Formal | a | Test | Computational thinking skills | - |
Thuneberg et al. (2018) [50] | Pre-experimental | Informal | Inquiry | Test | Mathematical knowledge | - |
Shih et al. (2017) [51] | Pre-experimental | Informal | Game-Based Learning (GBL) | Test | STEAM performance | Positive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanz-Camarero, R.; Ortiz-Revilla, J.; Greca, I.M. The Impact of Integrated STEAM Education on Arts Education: A Systematic Review. Educ. Sci. 2023, 13, 1139. https://doi.org/10.3390/educsci13111139
Sanz-Camarero R, Ortiz-Revilla J, Greca IM. The Impact of Integrated STEAM Education on Arts Education: A Systematic Review. Education Sciences. 2023; 13(11):1139. https://doi.org/10.3390/educsci13111139
Chicago/Turabian StyleSanz-Camarero, Raquel, Jairo Ortiz-Revilla, and Ileana M. Greca. 2023. "The Impact of Integrated STEAM Education on Arts Education: A Systematic Review" Education Sciences 13, no. 11: 1139. https://doi.org/10.3390/educsci13111139
APA StyleSanz-Camarero, R., Ortiz-Revilla, J., & Greca, I. M. (2023). The Impact of Integrated STEAM Education on Arts Education: A Systematic Review. Education Sciences, 13(11), 1139. https://doi.org/10.3390/educsci13111139