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Abstract: Robotics offers innovative possibilities at all levels of education, which should be considered
when planning the teaching process for certain engineering mathematics topics in higher education.
This paper introduces a new teaching–learning technique that utilizes STEAM-based methods to
explore cycloidal curves for Computer Science Engineering BSc students. Traditional frontal teaching
has been enhanced with methods addressing the generational needs of students, including problem-
based learning, STEAM integration, and project-based learning. We developed a methodological
model that merges traditional teaching advantages with practical modern approaches suitable
for Generation Z. The four-stage model for learning cycloidal curves employs various didactical
approaches, utilizing different learning techniques at each stage to create an engaging and effective
learning experience. A vital component of this model is the use of Desmos dynamic geometry software
to create animations alongside educational robotics to aid visualization. We conducted quantitative
studies with 98 first-year Computer Science Engineering students using a quasi-experimental research
design to evaluate the new teaching technique’s effectiveness. Results from the Mann–Whitney U test
indicated that the experimental group significantly outperformed the control group. Additionally,
the Kruskal–Wallis test confirmed that the four-stage model for learning cycloidal curves enhances
learning achievement for all students, regardless of their prior knowledge.

Keywords: engineering mathematics; cycloidal curves; dynamic geometry software; central trochoids;
project-based learning; LEGO 4C learning model; educational robotics

1. Introduction

Understanding scientific and mathematical knowledge and practices, as well as tech-
nological and engineering practices, has become a priority for national education programs
across the world [1]. STEAM (Science, Technology, Engineering, Art, Mathematics) has
recently become a standard part of higher education internationally, with many universities
adapting their curriculum to integrate it [2]. STEAM is the evolution of STEM (Science,
Technology, Engineering, Mathematics), which was first introduced by the US National
Science Foundation (NSF) in the 1990’s [3]. STEM was initially developed to address the
ongoing low performance of students from the Western world in mathematics and science
in international assessments and to encourage students to pursue careers in these fields [3].
In 2010, Bybee [4] called for quality science education that includes technology and engi-
neering: “A true STEM education should increase students’ understanding of how things work
and improve their use of technologies. . . . Engineering is directly involved in problem-solving and
innovation, two themes with high priorities on every nation’s agenda . . . the creation of high-quality,
integrated instruction and materials, as well as the placement of problems associated with grand
challenges of society at the centre of study”. The extension of STEM to STEAM was first
proposed in 2013 [5]. As the name STEAM suggests, there is a crucial focus on encouraging
students to think in a broader perspective than that of each individual subject [6]. STEAM
has been shown to improve conceptual and deep understanding of the subjects covered.
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Kang [7] in 2019 conducted a literature review of 6 studies, which included analyzing
256 papers from schools that provide STEAM education, and the results demonstrated that
there is a positive and immediate effect on the student’s conceptual understanding. The
methods of STEAM education are now widely used and applied at all levels of education,
including higher education.

1.1. What Is Engineering Mathematics?

Engineering mathematics has two distinct but interconnected facets. On one hand, it
serves as the foundation for engineering programs and is typically taught by mathemati-
cians. On the other hand, mathematics is an integral component of engineering science,
providing the tools and framework for understanding and solving complex problems [8].
Over the past decade, advancements in technology have significantly impacted the field.
New algorithms and methods have emerged to help engineers analyze large databases,
build predictive models, and solve optimization problems [9]. The increasing power of
computers has enabled the application of complex numerical methods and simulation tech-
niques, supporting engineers in modeling and understanding intricate physical phenomena
such as fluid dynamics, structural analysis, and electromagnetic design [10–12]. While still
in its early stages, quantum computing offers immense potential to further revolutionize
engineering mathematics [13,14]. We can expect breakthroughs in complex optimization
problems and simulations, potentially influencing engineering design and research [15].
These innovations and methods empower engineers to work more efficiently on technical
challenges and open new opportunities for developing and applying technology.

Engineering students’ training in mathematics is a top priority. The field relies heavily
on mathematical principles, with foundational subjects like calculus, differential equa-
tions, linear algebra, and statistics being crucial for understanding and solving engineering
problems. A robust mathematical background equips engineers with critical thinking and
problem-solving skills, enabling them to design systems, troubleshoot issues, and optimize
processes [15,16]. As modern engineering increasingly leverages sophisticated technology,
a deep understanding of advanced mathematical algorithms becomes essential [17]. Fields
like artificial intelligence (AI) and machine learning (ML) require extensive knowledge of
linear algebra, calculus, and probability [18]. Engineering innovation and research continu-
ally push the boundaries of mathematical knowledge, necessitating that engineers working
on cutting-edge technologies, such as quantum computing or advanced materials, pos-
sess a comprehensive understanding of both applied and theoretical mathematics [19,20].
Ultimately, mathematics is the foundation upon which engineering principles are built,
equipping students with the skills to solve complex problems, innovate, and excel in a
technologically advanced and interdisciplinary world. Teaching mathematics to engineers
in higher education requires a thoughtful and well-structured approach to meet the needs
of the profession and prepare students for the future challenges they will face [8,21].

Engineering mathematics education should provide a strong foundation in core
subjects, demonstrating theoretical concepts through practical examples that showcase
their real-world applications in engineering problem-solving. Rogovchenko and Ro-
govchenko [22] argued that mathematical modeling projects can effectively develop stu-
dents’ mathematical competency, enhance their understanding of engineering concepts,
and improve their communication and collaboration skills. They provide a specific project
example in their work, concluding that such projects are crucial for developing the nec-
essary skills for engineering success. Education should embrace modern software and
technologies [23], using computer simulations to reinforce theoretical knowledge and
provide students with practical experience. Integrating project-based learning (PjBL) is
essential, as it allows students to engage in significant projects and real-life case stud-
ies, enhancing their problem-solving and analytical skills. Interactive classrooms, where
students are actively encouraged to participate in solving problems and understanding
concepts [24], foster a more dynamic and engaging learning environment. The curriculum
must adapt to technological advancements, equipping students with the knowledge and
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skills to effectively utilize new educational technologies to maximize their learning and
prepare them for continuous professional development [25].

1.2. STEAM-Based Education and Educational Robotics

Technology and innovation play an increasingly important role in modern life, and
education must evolve based on innovation and technological progress to keep pace with a
changing world. Digital technologies have made a paradigm shift in the entire education
system [25]. STEAM-based education is gaining increasing prominence at universities [26],
which is particularly important for engineering higher education. Today’s university
students increasingly demand educational methods that they find engaging, relevant, and
interactive. STEAM education offers a dynamic and attractive learning experience [27].
Many contemporary challenges are complex and multidisciplinary. The STEAM approach
allows university students to combine knowledge from various scientific and artistic fields
to understand and address these challenges. The spread of problem-based learning is a
consequence of the realization that learners are left with minimal knowledge after learning
through traditional, frontal teaching methods and find it difficult to apply the knowledge
they acquire in other contexts. Problem-based learning provides a learning environment
where learners can use and reinforce prior knowledge, learn in real-life contexts, and
develop their knowledge in individual or small group work [28]. Developments over the
past decade have led to the availability of a wide range of robotic learning tools, all with
the common goal of innovation and motivating learners in the learning process.

Robotics and computational thinking are valuable tools for developing STEAM ped-
agogy and promoting the inclusion and integration of diverse groups of students. There
are many robotic teaching tools at our disposal intended to encourage innovation and
motivation of students during the learning process. As robots are increasingly common
in our world, it is essential to integrate them into education [29,30]. Robots have clearly
opened up new possibilities in teaching and learning. Educational robotics (ER), which
involves robotic techniques in education, is seen as a groundbreaking learning tool that
enhances the learning environment, transforms teaching and learning methods, and fosters
a new educational ecosystem [31]. Of course, most of the educational applications of ER
focus on robotics-related subjects such as robot programming, robot building, and artificial
intelligence [32–34].

LEGO Education focused on STEM-based learning from the beginning, even before
this acronym was standard [35,36]. The collaboration with MIT has played a crucial role in
developing LEGO’s robotics products. LOGO is a programming language developed in
the 1960s at MIT, designed to make coding accessible for children. Its most famous feature
is the turtle, a simple robot or on-screen graphic controlled with commands, teaching
basic programming concepts like sequencing and loops [37]. In the mid-1980s, the LOGO
research group began collaborating with the LEGO group because LEGO Group recognized
the potential of teaching and learning with robots [35]. The partnership between LOGO
and LEGO brought programming to life, starting with LEGO/LOGO, which combined
LEGO building with LOGO code. The history of LEGO robots dates back to the end of the
20th century when the LEGO Group started developing robotic kits. The first significant
step was introducing the LEGO Technic series in the late 1970s, which allowed users to
build more complex mechanical models. The programmable brick revolutionized the
process by allowing LEGO creations to be independent and mobile, paving the way for
LEGO Mindstorms [38]. Various generations of LEGO robotics kits have been released in
the last twenty years: Mindstorms NXT in 2006, NXT 2.0 in 2009, and Mindstorms EV3
in 2013. Souza et al. [33] conducted a systematic review of the literature analyzing the
use of LEGO robotics technology as an instrument for teaching, considering the robotics
kits and their programming environments as a combination of teaching methodologies
and practices. In 2018, it was reported that the most commonly used environment and
programming languages are LabVIEW and LEGO’s block-based programming language.
Additionally, Souza et al. [33] found that LEGO Robotics is utilized for teaching program-
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ming, interdisciplinary subjects, participating in tournaments, robotics, and computational
thinking. Furthermore, LEGO® Robotics has been successfully used by students across
various levels, including K-12, undergraduate, and graduate programs. The most recent
product in the evolution of LEGO robots, SPIKE Prime, was released in 2020 and is already
very popular [39]. One reason for this is probably that the robot can be programmed in
several ways, and one option is the Scratch programming language [35]. Ersozlu et al. [40]
used a scientometrics analysis to map data from the scientific literature based on different
kinds of published research and found that computational thinking (CT) in mathematics
education was mostly about teaching computational skills and computer programming
through practical and algorithmic thinking in engineering and STEM education, especially
at the higher education level. In addition, Scratch has been the dominant tool used to teach
programming skills at all levels of schooling, including higher education.

Educational robotics has been successfully used for many years as a tool to make
learning more experiential and effective [41]. Combining educational robotics with problem-
based learning is not a new idea, and educational software developed for LEGO Education
robot kits (WeDo 2.0, EV3, SPIKE Prime, SPIKE Essential) includes learning projects that
essentially implement problem-based learning as an integral part of the design of the
educational software [35]. However, these projects focus on basic physical, biological, and
social science knowledge and learning robot programming concepts [42]. In order to target
STEAM-based methodology in higher education, it is necessary to develop new robot
constructs and build student projects around them.

Despite the potential of integrating robotics into teaching and learning, this integration has
not yet been fully explored in university practice, especially in higher mathematics education.

1.3. Importance and Teaching of Cycloidal Curves

Roulette is a path traced by the point fixed on a curve that is rolling on another fixed
curve [43]. Cycloidal curves are a family of roulettes generated by the motion of a point
attached to a circle as the circle rolls along a fixed straight line or another circle. These
curves include trochoids, epitrochoids, and hypotrochoids, as shown in Table 1.

Table 1. Classification of cycloidal curves.

Cycloidal Curves
(A Circle Rolling on Another Circle or a Line)

Epitrochoids Trochoids Hypotrochoids
(A Circle Rolling

Outside Another Circle)
(A Circle Rolling on

a Line)
(A Circle Rolling Inside

Another Circle)

The tracing point is on the circumference of the
moving circle Epicycloid Cycloid Hypocycloid

The tracing point is inside the moving circle Curtate epitrochoid Curtate cycloid Curtate hypotrochoid

The tracing point is outside the moving circle Prolate epitrochoid Prolate cycloid Prolate hypotrochoid

The parametric equations and graphs of the cycloidal curves are given in Appendix A. We
note that the term central trochoid encompasses both epitrochoids and hypotrochoids [44].
The center of a central trochoid curve is defined as the center of the fixed circle.

In engineering mathematics, theory and application go hand in hand. Cycloidal
curves are very useful in practical life. In 1694, Philip de la Hire published a complete
mathematical analysis of epicycloids and recommended an involute curve for designing
gear teeth. However, in practice, it was not used for another 150 years. In 1733, Charles
Camus expanded la Hire’s work and developed theories of mechanisms. Twenty years
later, in 1754, Leonard Euler worked out design principles for involute gearing. Felix
Wankel developed the Wankel Rotary Engine in the 1920s. Initially developed as an air
compressor, the engine is now used in automobiles. The rotor is an equilateral triangle
with curved sides, and the bore is an epitrochoid curve. Nowadays, epitrochoids can
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be found in important mechanical parts such as gears with epitrochoid tooth profiles,
cams, and epitrochoid-shaped housings for rotary internal combustion engines and rotary
piston pumps. For the last case, the epitrochoid curve notes the path that the rotor tip of
the eccentric shaft traces out upon revolving [45]. Hypocycloid curves also have many
important applications in engineering. One of these is the use of the astroid shape in the
process of moving bus doors [46]. In addition, central epi- and hypotrochoids can be used,
for example, in surveillance or spatial coverage applications, as periodic motion primitives
for human dancers or for performing complex choreographic patterns in small autonomous
vehicles [47], as well as in the context of autonomous robot navigation with collision-free
and decoupled multi-robot path planning [48]. Cycloidal curves are used in roller coaster
design, architecture (Kimbell Art Museum, Hopkins Center for the Arts), and the creation
of geometric patterns for stained glass windows, mosaics, and textiles [49].

The wide range of applications above shows that cycloidal curves represent funda-
mental mathematical and geometric concepts indispensable in various engineering fields.
In his 1913 article, Epsteen [50] summarized the minimum content to be taught in engineer-
ing mathematics, emphasizing the importance of higher plane curves in the curriculum,
including cycloids, hypocycloids, and epicycloids. These curves are extremely important
for mathematical foundations because the knowledge associated with them becomes rel-
evant in the context of kinematic analysis and mechanical design. Cycloidal curves help
engineering students better understand motion and force transfer principles, especially
in mechanical systems [51]. By studying such curves, students learn the precise design
and efficient calculations that are essential for a variety of engineering applications. In
addition, the presentation of cycloidal curves is also important in modeling the behavior
of physical motions, such as the behavior of a pendulum [52]. In modern computer-aided
design programs, the accurate representation of cycloidal curves allows the efficient design
of complex mechanical components. Cycloidal curves are not only mathematical curiosities
but also fundamental tools for solving engineering problems.

In university engineering mathematics education, cycloidal curves were taught in the
18th and 19th centuries using geometric and analytical methods. Students usually learned
from hand-drawn diagrams and understood mathematical equations involved in on-the-
spot demonstrations and geometric proofs [53,54]. Kinematic models and mechanical
devices were used for illustration because the derivation of the equations of cycloidal
curves and the representation requires visualization [55]. Several of these constructions
are included in Schilling’s famous collection of kinematic models [56]. Kinematics, which
involves the study of motion, played an important role in understanding cycloidal curves,
especially in analyzing mechanical systems and motions. The emphasis was on geometric
insights and classical physical examples. Traditional teaching methods for students at
universities are outdated and not effective enough [52]. In today’s education, modern
technologies and computer simulations are now used to help understand the knowledge of
cycloidal curves. Several didactical articles deal with visualizing cycloidal curves using
dynamic geometric software or simulation embedded in a remote experiment [52,57,58].
These methods have many advantages in terms of visualization, but they do not provide
direct experimental experience. The recent research of Tessema et al. [59] highlights
the importance of a realistic, hands-on approach to learning in mathematics education,
particularly in the study of geometry. Traditionally, drawing cycloidal curves is a lengthy
process that requires engineering drawing knowledge. A simpler and faster way to produce
curves is to have a robot draw the curve during an ER activity. By building and then testing
the drawing robots, students gain first-hand experiences [60–64].

1.4. 4C Learning Approach

LEGO’s philosophy is that effective learning can only be achieved through a holistic
approach because learning has creative, cognitive, social and emotional aspects. The LEGO
4C principle is a pedagogical model developed by LEGO Education, focusing on four funda-
mental key competencies in learning [65]. The LEGO 4C learning approach is characterized
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by its hands-on, inquiry-based, and collaborative nature, which aligns with constructivist
and experiential learning theories. It engages students in active learning experiences where
they actively construct knowledge, explore concepts, and solve problems.

By integrating the four Cs into educational activities, the LEGO 4C learning approach
aims to foster creativity, critical thinking, collaboration, and communication skills in stu-
dents, preparing them for success in the 21st century [66]. These key competencies are
as follows:

• Connect: This first C stands for connection, meaning establishing a connection. Stu-
dents should be given the opportunity to connect with the subject matter and recognize
its relevant and interesting context. This allows learning to more closely align with
students’ everyday lives and experiences.

• Construct: The second C stands for construction, which means allowing students to
create or build something. This could be a physical model, a project work, or a digital
creation. The act of constructing enables students to deepen and apply their learning.

• Contemplate: The third C stands for contemplate, which encourages students to
reflect on the things they have created and what they have learned. This includes
reflection and self-reflection, as well as critical evaluation of the application of what
they have learned.

• Continue: The final C stands for continue, which means giving students the oppor-
tunity to further develop, apply, and share what they have learned and created with
others. This process can help sustain learning and apply what has been learned in
practical ways.

These four phases are steps in an iterative process that should often be seen as a
learning spiral (Figure 1); the four links are not a single linear structure but a process of
interlocking and dynamic circulation [66]. The LEGO 4C principle is a framework applied
to learning and teaching that helps students establish a closer connection with the subject
matter and apply experiential and hands-on learning methods. This allows for a deeper
understanding of learning and enriches the learning experience.

Figure 1. The LEGO 4C methodological spiral. (The figure was created using Microsoft PowerPoint).

The LEGO 4C methodology has mainly gained ground in primary and secondary
education [65]. The 4C principle can also be applied in higher education because of the
generational shift. We propose a methodological model based on the 4C principle to process
the curriculum on cycloidal curves. Engineering students naturally show a keen interest
in robotics and ICT tools, which aligns with their chosen specialization. To help them
discover the secrets of cycloidal curves, we have developed a methodology combining
frontal teaching with problem-based learning, educational robotics, and dynamic geometric
software in project-based learning.
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1.5. The Four-Stage Methodological Model for Learning Cycloidal Curves

The first element of the four-stage model for learning cycloidal curves is frontal teach-
ing (lecture and practice), where the theoretical material is presented, covering cycloidal
curves (Figure 2). In fact, many studies have been carried out over the last two decades on
the disadvantages of frontal teaching. However, it is still the dominant teaching method in
higher education [67]. Ganyaupfu [68] investigated that the teacher–student interactive
method was the most effective teaching method over the teacher-centered approach be-
cause direct teaching is efficient in transferring knowledge but is not sufficient for deeper
understanding, problem-solving, and creativity. Innovative teaching incorporates technol-
ogy into the teaching–learning process to create a rich and helpful learning experience for
students and a rewarding teaching experience for teachers [69,70]. It should not necessarily
be abandoned for large courses and frontal teaching, but it should be complemented by
techniques where students are not passive participants. There is evidence that lectures
can effectively and structurally communicate information, model reasoning, and motivate
students, particularly when adequately supported by other activities [71].

Figure 2. Scheme of the four-stage methodological model for learning cycloidal curves. (The figure
was created using Microsoft PowerPoint 2021).

After the theoretical grounding, the topic of plane curves can be continued in spe-
cialized seminars. The second stage is to start working according to the 4C principle.
The problem statement explores the possibility of producing a curve experimentally. We
note that seminars are extracurricular activities. In the second phase, the focus is on
attracting attention and motivation. Where possible, we choose demonstration exper-
iments that students can carry out in small groups, documenting them and allowing
them to gain direct experience. Problem-based learning (PBL) is achieved through the
formulation of real-life tasks. Given that Connect aims to revive knowledge related to
what has been learned previously, students are actively involved in solving the problems
formulated. It is worthwhile to revive the most important theoretical knowledge; for
this purpose, visualization solutions and animations can be used to illustrate cycloidal
plane curves.

The third stage uses STEAM-based methods, i.e., building and programming drawing
robots, and understanding how robots work. The educational robot kits allow students to
explore a curve under investigation in small group activities. Working with robots requires
providing building instructions for appropriate drawing robot designs and sharing condi-
tions for working with robots. For four years, the authors have been designing drawing
robots whose operating mechanisms can be mathematically deduced with precision. Using
the LEGO Education SPIKE Prime robot set, educational robots have been designed to
produce a wide range of representatives of the cycloidal curve family.
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In Spirograph-like robot models, gears are used to model the circles that generate
the cycloidal curves. The aim of [60] was to introduce the hypotrochoid family of curves
and to give ideas and tools for teaching the topic. The general parametric equations of
hypotrochoids were given, and several special curves that can be derived from these
equations were shown. In addition, a drawing robot called Spikograph 1.0 (see Figure 3),
modeled on a Spirograph toy, was presented, which can draw different hypotrochoids,
giving students a physical experience. This robot uses LEGO gears to model the slip-free
rolling of the circles, and knowing the gears’ sizes, the parametric equations of the drawn
curves can be easily written.

Figure 3. Spikograph 1.0 drawing robot. (The figure was created using Studio 2.0 software).

Spikograph 1.0 gave the idea to design Spikograph 2.0 (Figure 4) for drawing epitro-
choid curves; this drawing robot was presented in [61]. The factor that most determines
which epitrochoids can be drawn with the robot is the size of the suitable gears in the
LEGO Education SPIKE Prime set. The diameters of the circles that define the epitrochoid
correspond to the rolling diameters of the gears that model them. The rolling diameter of a
gear is the diameter of an idealized disc that allows it to roll on the equivalent idealized
disc of another gear that is usually meshing with it. This dimension is easy to determine
since the rolling diameter of any LEGO gear, expressed in mm, is equal to the number of
teeth on it.

Figure 4. Spikograph 2.0 drawing robot. (The figure was created using Studio 2.0 software).

Students can work not only with these two gearing robots in the seminars. Although
Spirograph-like robots are an excellent way to illustrate the production of many notable
plane curves, the principle of operation of robots in the industry follows a different path. It
is important that students can work through real-life tasks on various projects; therefore,
the use of a SCARA-style robot design is also possible in the seminar series (see Figure 5).
The SCARA robot is one of the common types of industrial robots [72]. The SCARA
name stands for Selective Compliance Articulated Robot Arm. The main feature of the
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SCARA robot is that it has a jointed 2-link arm driven by two independent motors [73].
It is well-known that the plots generated by a Spirograph toy can also be drawn using a
2-link planar or SCARA robot after computing the inverse kinematics to get the joint angles
needed to perform the correct movements. It is also a known fact that the Spirograph toy
is not able to draw all types of trochoidal curves; only the curtate types can be created.
However, Spirograph-like and SCARA-style robots can draw all three types of central
trochoids [63,64].

Figure 5. SCARA-style LEGO robot. (The figure was created using Studio 2.0 software).

Thanks to their construction, robots can draw an infinite number of cycloidal curves.
However, the number of curves that can be drawn in the Spirograph toy is finite. Table 2
summarizes the central trochoids that can be drawn with the Spirograph, only LEGO gears
and racks [74], and the various educational LEGO drawing robots. The SCARA-style robot
can be used to draw all types of central trochoids, but its principle of operation does not
follow the usual definition of curve generation. A big advantage of the robot versions using
gears is that the generation of curves is based on the definition. Exploring the potential
of drawing robots and how to integrate them into the educational process is an ongoing
process of active research.

Table 2. Drawing central trochoids with didactic tools.

Central Trochoid Curves
(A Circle Rolling on Another Circle)

Epitrochoids Hypotrochoids

Curtate Epicycloid Prolate Curtate Hypocycloid Prolate

Spirograph toy Yes No No Yes No No

LEGO gears, racks Yes No No Yes No No

Spikograph 1.0 robot No No No Yes Yes Yes

Spikograph 2.0 robot Yes Yes Yes No No No

SCARA-style robot Yes Yes Yes Yes Yes Yes

The construction phase of the 4C principle is where the robot is built and programmed.
Writing the program is also considered design because the robot can only operate with the
right program. With Spirograph-like robots, this refers to the operation of a single motor,
whereas with a SCARA-style robot, it refers to the coordinated operation of two motors.

The LEGO SPIKE Prime robot hub can be programmed in three ways, one of which
includes the Scratch programming language. Developed by Mitchel Resnick at the MIT
Media Lab, Scratch is an evolution of the LOGO language. This visual, block-based
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coding language features a drag-and-drop interface, making programming accessible and
enjoyable for users [35]. Programs for drawing robots are created in Scratch using the
original software designed for the LEGO SPIKE Prime robot.

In the contemplate phase, the synthesis is given through the solution of a project
task, where the task is to create an animation modeling the robot’s working principle.
Students can work on the project independently or in groups, allowing for exchange and
knowledge sharing. Project-based learning (PjBL) can be a very effective way to learn
mathematics. PjBL involves students working on complex, real-life problems that require
them to apply mathematical knowledge and skills. This approach helps students link
theoretical knowledge with practical applications and develops their problem-solving and
collaboration skills [75]. In project-based learning, it is important that the projects are
genuinely interesting and relevant to the students and that they solve real problems [76].
The teacher has a key role to play in guiding and supporting students through the projects
and helping them to understand the relationships and mathematical principles. Projects
can also help students to see how mathematics relates to their everyday lives and to solve
real-world problems. Relevant literature suggests that the link between PjBL and dynamic
geometric software (DGS) is extremely useful in mathematics education [77,78]. DGS
refers to computer software that allows the visualization and manipulation of functions,
curves, and geometric shapes. This software can help students understand and visualize
mathematical concepts that they can apply in PjBL projects. With DGS, students can see
geometric constructions and shapes in real time, resulting in a visual understanding that
supports students in handling abstract mathematical concepts better. The DGS provides
an interactive platform through which students can experiment and modify geometric
constructions on their own, significantly contributing to the development of active learning
and an experimental approach. The link between theoretical and practical aspects is
greatly facilitated by using DGS, as students can immediately see how functions, geometric
shapes, and relationships change when they change parameters or manipulate constructs.
Experiences have shown that the combined use of PjBL and DGS helps make mathematics
teaching more interactive and understandable [78–80]. Students will be able to apply the
mathematical knowledge they have acquired through DGS in real projects and will be able
to combine theoretical and practical aspects more easily.

In the fourth stage of 4C, additional project tasks are connected to the studied curve.
It is recommended that homework be solved using DGS. There are different types and
versions of DGS. One of the most commonly used DGS is GeoGebra [79]. The application
can be used for geometric and algebraic analysis. It offers several tools for visualizing
functions, drawing and manipulating geometric shapes, and understanding mathematical
concepts [80]. Desmos was originally a graphing calculator application but has since
been extended to include DGS functionality. Desmos is a compelling application for
visualizing functions and curves and helping to understand mathematical expressions [81],
so it is worth using this DGS for engineering mathematics courses. Another advantage
is that Desmos is also an excellent tool for project-based learning. Real-time graphs, data
visualization, and interactive shape generation help students present their projects clearly
and interestingly and provide opportunities for collaboration and interaction between
students. For example, several students can collaborate on a project and see each other’s
work in real-time. In Desmos, students can animate graphs, which can help them better
understand mathematical relationships and changes [82].

A well-designed methodology helps to structure and manage the learning process.
It sets out the expected goals and outcomes for learners and the steps to be followed to
achieve them. Based on the 4C principle, the four-stage methodological model for learning
cycloidal curves considers learners’ individual needs, interests, and abilities. It provides a
flexible structure for differentiated learning experiences to ensure all students succeed. This
method creates a motivating and engaging learning environment. Students enjoy learning
through exciting and challenging tasks, contributing to long-term engagement and success.
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Using the four-stage model for learning cycloidal curves, ellipses, cycloids, cardioids,
astroids, and roses were discussed. The application of the four-stage model for learning
cycloidal curves is illustrated in Appendix B with the example of teaching cardioid.

2. Materials and Methods
2.1. General Background

Many good practices are related to teaching 2-dimensional plane curves, including
cycloidal curves, where the teaching model supports knowledge development through
different visualization techniques. However, no methodological model was found on
cycloidal curves, where STEAM-based education is integrated consistently into university
practice. The need for this development and research was motivated by the fact that central
trochoids are the most crucial two-dimensional plane geometric patterns widely used in
real-life practice (see Section 1.3); however, alternative methods for teaching them in higher
education were not available to provide students with first-hand experiences.

A new learning structure was created after a thorough study of the literature in the
framework of Lithuanian–Hungarian cooperation. The new methodological model, the
four-stage methodology for learning cycloidal curves (see Section 1.5), considers genera-
tional needs while making optimal use of the University of Miskolc’s available infrastruc-
ture because the University of Miskolc training center has 24 LEGO Education SPIKE Prime
educational robotics kits. The development started in May 2023. Researchers from the
Šiauliai State Institute of Higher Education and the University of Miskolc jointly worked.
Based on the previous experience [62], the researcher team compiled the additional teaching
material needed to apply the new methodological model according to the 4C principle
(Section 1.4). We have rethought the drawing robots’ construction and created building
guides with the seminar material. We sorted the problems related to cycloidal curves and
selected them thematically for the seminars. The complete development of the four-stage
methodological model for teaching cycloidal curves took half a year.

A methodology model is well-designed if it is based on scientific research and ped-
agogical principles. The four-stage methodology model for learning cycloidal curves is
based on the 4C principle, which is the result of research conducted by LEGO Education
and is, therefore, scientifically sound. In order to make the same claim about the overall
structure, measurements have been carried out in the spring semester of the academic
year 2023/24 to provide empirical evidence of the effectiveness of the four-stage model
for learning cycloidal curves. The experiment was carried out in Miskolc, Northern Hun-
gary. The research presented in this article continues the Lithuanian–Hungarian research
conducted between June 2021 and June 2023 with 27 students at the University of Miskolc.
The previous research focused only on a new, innovative approach to teaching the cardioid
curve [62].

2.2. Research Design

This study used exploratory research, a quasi-experimental research design, and
quantitative observation to assess the impact of the four-stage model for learning cycloidal
curves. The quasi-experimental approach was necessary because it was impossible to
randomly assign computer science engineering students to the experimental and control
groups. The experiment was carried out in connection with the Calculus II course.

In the first part of this study, we used a post-test-only design. In the spring semester,
the cycloidal curve topic is the first part of the Calculus II syllabus. All students who
took the Calculus II course were absolved of the Calculus I course in the autumn semester,
so all participants had a basic knowledge of the topic of engineering mathematics. A
control group study was conducted, in which the experimental group learned using the
four-stage model for learning cycloidal curves, while the control group was taught in a
traditional format. The control group participated solely in traditional frontal lectures and
practical lessons, whereas the experimental group benefited moreover from additional
activities based on the four-stage model for learning cycloidal curves. The post-test-only



Educ. Sci. 2024, 14, 1087 12 of 34

design allows for a clear comparison between the intervention and control groups, helping
to isolate the effect of the treatment. Table 3 summarizes activities during the Calculus
II course.

Table 3. Activities during the Calculus II course.

Cycloidal Curves

Frontal Teaching Other Activities
(Stage 1) (Stage 2 and Stage 3) (Stage 4)

Topic Lectures Practical
Sessions

R-STEAM
Seminars

In-Class DGS
Tasks

Homework
Projects

(Academic Hours) (Exercises)

Circles, ellipses 3 2 2 2 4
Trochoids 3 2 2 2 3

Epitrochoids 2 1 2 3 2
Cardioid 1 1 2 2 2

Hypotrochoids 2 1 2 3 2
Astroid 1 1 2 2 2

In the second part of this study, a between-groups design was used. This framework
allows the effectiveness of the intervention to be assessed across different groups of partic-
ipants. Based on their prior knowledge, the experimental group was divided into three
sub-groups (below-average, average, and above-average performers). The average score
of the question papers in Calculus I was used to form the groups. The post-test results
were examined group-by-group to explore whether the method could be used effectively
regardless of prior knowledge.

2.3. Sample and Ethics

The effectiveness of the four-stage methodology model for learning cycloidal curves
was tested with Hungarian Computer Science Engineering BSc students at the University
of Miskolc.

The experimental group comprised 36 students (86.11% male, 13.89% female). The
control group comprised 62 students (93.55% male, 6.45% female). The total sample
compared 98 students, consisting of 89 men (90.82%) and 9 women (9.18%), as shown in
Figure 6. All participants are full-time BSc students and aged between 19 and 22. The
experimental group and the control group were of different sizes, but the statistical method
chosen to analyze the data was not sensitive to differences in group size.

Figure 6. Sankey diagram of the full sample to visualize gender and groups. (The figure was created
using DATAtab https://datatab.net/ (accessed on 2 October 2024)).

https://datatab.net/
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At the beginning of the semester, students were informed that up to 40 students could
participate in six extra Robotic-STEAM (R-STEAM) seminars during the semester. Students
could register voluntarily. Participants agreed to attend all six seminar sessions and to
prepare solutions for the homework assignments. Four of the applicants failed to meet this
condition, resulting in an experimental group of 36. The groups in the practical sessions
were mixed, i.e., the control and experimental groups were not separated during the frontal
teaching. Cycloidal curves are usually covered in the first 4 weeks of the semester. The
lectures and practical sessions were held as usual during the experiment in the first four
weeks. However, six extra seminars were held so that the experiment took place in the first
six weeks of the semester. Only members of the experimental group attended the R-STEAM
seminars. Due to the limited number of robots and the training center’s limited capacity,
the seminars were divided into groups of 20 students.

At the beginning of the semester, students were informed of the research’s aims, and
all agreed to participate. This study followed the ethical standards set out in the University
of Miskolc’s Code of Ethics.

2.4. Intervention and Instruments

The Calculus II course lasted 13 weeks and consisted of three 45-min lectures and
two 45-min practical problem sessions weekly. Students learned the same material and
solved the same exercises during practice sessions. The participants attended the same
lectures, while their practice sessions were taught in groups of 20 students on average.
There were five practice groups. The teachers of the practice groups consulted each week
on the main issues related to the course in order to avoid teacher influence, so the structure
of the practice sessions was similar in each group.

The learning processes of the experimental and control groups were synchronized
during frontal teaching. Both groups heard the same theoretical material in the lectures, and
in the exercises, they took the same types of tasks, working from the same exercise book.
The first stage in the four-stage methodological model for learning cycloidal curves is frontal
teaching, which was implemented under the same conditions for both the experimental
and control groups. The control group did not receive any other intervention.

The experimental group members (36 students) participated in six extra R-STEAM
seminars, one weekly for six weeks, where STEAM-based supplementary training was
implemented to support the frontal teaching of the theoretical material. A full description
of one of the six seminars can be found in Appendix B. The second and third stages of the
teaching–learning process were implemented in the seminars according to the 4C principle.
The last stage involved extracurricular activities in the form of project work. In these
out-class activities, the experimental group students solved homework projects using DGS,
as shown in the last column in Table 3.

The post-test, the question paper of Calculus II, was written in the seventh week of the
semester. The scores obtained on the question paper were used for the statistical analysis.
The task set used for the question paper was the same for the experimental and control
groups. Experienced teachers marked the question papers. The question paper exercises
were marked using a detailed scoring guide prepared by the lecturer, which included the
sub-scores and scoring information. All post-test tasks, along with their corresponding
score values, can be found in Appendix C.

2.5. Research Questions

When introducing a new educational model, it is crucial to address several key research
questions to ensure its effectiveness, impact, and sustainability. This research aimed
to demonstrate the positive effects of the four-stage methodological model for learning
cycloidal curves, so the research questions were the following:

• RQ1: Can a positive effect of the four-step model on the learning of cycloidal curves be
demonstrated after its introduction in an undergraduate engineering mathematics course?
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• RQ2: Which group of students use the new learning model most effectively regarding
academic performance?

The results of the participants’ question papers were analyzed using statistical methods
to address the two research questions regarding the effectiveness and learning outcomes.

3. Data Analysis and Results

In the experiment, the control group was larger (62 participants) than the experimental
group (36 participants). The DATAtab statistical calculator was used to analyze the data.
Table 4 shows the two groups’ statistical key figures. The maximum possible score on the
question paper was 50. The experimental group has a higher mean score (42.17) compared
to the control group (27.15). Similarly, the median score for the experimental group (45)
is higher than that of the control group (27). The standard deviations and variances are
similar, indicating a comparable level of spread or variability in scores within both groups.
However, the experimental group has a slightly higher standard deviation (8.56) compared
to the control group (8.18). The range for the control group (7 to 46) is wider compared to the
experimental group (24 to 50). The 95% confidence interval for the mean score of the control
group (25.07–29.22) does not overlap with that of the experimental group (39.27–45.07),
reinforcing the conclusion that the experimental group scores significantly higher. The
data show that the experimental group shows significantly higher performance in scores
compared to the control group, with higher mean, median, and mode. The confidence
intervals for the means do not overlap, suggesting a statistically significant difference
between the groups. The variability within each group is similar, but the experimental
group has a slightly higher spread around the median.

Table 4. Descriptive statistics for both groups.

Experimental Group Control Group

N 36 62
Mean 42.17 27.15

Median 45 27
Mode 50 25

Std. Deviation 8.56 8.18
Variance 73.34 66.88

Minimum 24 7
Maximum 50 46

The violin plot of the sample combined with the box plot includes all the essential
data: a marker for the median, a box indicating the interquartile range, and all points of
the sample, so it shows the entire distribution of the data (see Figure 7). The violin plot
is a powerful visual tool that vividly illustrates the distribution of scores for the control
and experimental groups. The distribution in the control group is centered around a score
of 27, which aligns with the group’s median and mean scores. The distribution in the
experimental group is centered around a score of 45, corresponding to the group’s median
and mean scores. The plot clearly shows that the experimental group achieved higher
scores than the control group. Additionally, the width of the violin plot at any given
score indicates the density of scores at that level, highlighting the distribution’s shape and
spread. The kernel density estimation (KDE) method generates the violin plot to smooth
the distribution. This method estimates the density of the data, and during the smoothing
process, the estimated density may overlap the actual minimum and maximum of the data
at some points. Therefore, we can see the “stretches” of the violin plot beyond the actual
boundaries of the data.
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Figure 7. Violin plot combined with box plot. (The figure was created using DATAtab).

3.1. Response to Research Question RQ1

The statistical results showed that the experimental group had a higher average score
than the control group. However, a statistical hypothesis test is needed to conclude that
the experimental group did indeed score better than the control group. The following
hypotheses were formulated to answer research question RQ1:

• Null hypothesis: There is no difference between the experimental and control groups
concerning the dependent variable.

• Alternative hypothesis: There is a difference regarding the dependent variable between
the experimental group and the control group.

Table 5 shows the results of three different statistical tests used to assess whether the
data follow a normal distribution.

Table 5. Different statistical tests to check the normality.

Experimental Group Control Group

Statistics p Statistics p

Kolmogorov–Smirnov 0.21 0.075 0.12 0.287
Shapiro–Wilk 0.84 <0.01 0.97 0.172

Anderson–Darling 2.17 <0.01 0.78 0.042

A high p-value (greater than 0.05) suggests that the data do not significantly deviate
from normality. In our case, the results of the different tests are contradictory; the results
are mixed. The Kolmogorov–Smirnov test shows no significant difference between the two
samples, while other tests (Shapiro–Wilk and Anderson–Darling) do. The Shapiro–Wilk
and Anderson–Darling tests suggest the data do not follow a normal distribution. To
compare the two samples, we used a non-parametric test, the Mann–Whitney U test, which
does not assume a normal data distribution. This test helped to determine whether the
medians of the two samples were significantly different. Table 6 shows the results of a
Mann–Whitney U-test, which is used to analyze whether there is a difference between the
two groups.

Table 6. Mann–Whitney U-test values.

U z Asymptotic p Exact p r

Mann–Whitney
U-test 247 −6.42 <0.001 <0.001 0.65
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The Mann–Whitney U statistic value (U) is 247. The U value represents the number of
times a score from one group precedes a score from the other group in the ranked list of all
scores. A smaller U value indicates that the ranks of one group are generally lower than
the ranks of the other group, suggesting a difference in the distributions of the two groups.
The value of 247 is indeed low compared to the maximum possible value, which means
that the scores of the experimental group are generally higher than those of the control
group. The maximum value of the U statistic is the product of two sample sizes:

Umax = 36 × 62 = 2232.

The z-value (standardized test statistic) is −6.42. This is the standardized deviation
from the mean value in a normal distribution, which is used to determine the significance
of the U-statistic. The negative z value indicates that the experimental group scores signifi-
cantly higher. The asymptotic p-value is <0.001. This value represents the probability of
observing a test statistic as extreme as, or more extreme than, the observed value under the
null hypothesis (which posits no difference between the groups). A p-value of <0.001 is
below the common significance threshold of 0.05, suggesting that the result is significant at
the 5% level. Another way of calculating the p-value is the exact p-value, which is often
used for small sample sizes. It’s slightly smaller than the asymptotic p-value and also
indicates a significant result at the 5% significance level. The r value is 0.65. This is a
measure of effect size and indicates the magnitude of the difference between groups. The
r-value, a measure of effect size, is calculated for the Mann–Whitney U test as follows:

r =
|z|√

Ntotal
,

where z is the standardized z-value from the test, and N is the total sample size, i.e., the sum
of the sizes of the two groups. The interpretation of effect size values was established by the
statistician Jacob Cohen in 1988 [83]. A value of 0.65 indicates a high effect size, which shows
that the difference is not only statistically significant but also of practical significance.

In summary, the Mann–Whitney U-test showed that the difference between the control
group and the experimental group with respect to the dependent variable was statistically
significant. The results of the Mann–Whitney U test indicate that the experimental group
achieved significantly better results than the control group. The low U-value (247) indicates
that the experimental group ranks higher, and this conclusion is reinforced by the very low
p-values and the significant effect size. This suggests that the experimental intervention
was more effective than the control. Thus, the null hypothesis was rejected, which answers
research question RQ1.

3.2. Response to Research Question RQ2

In the experimental group, we tested whether we could find a correlation between
the results of the question paper on cycloidal curves and past performance. Given the
differences in prior knowledge, we wanted to see what relationship could be identified in
the sample. For this study, we used participants’ Calculus I average scores. The Calculus II
course is in the spring semester; of course, it can only be taken if the Calculus I course was
absolved in the previous semester. Similar to Calculus II requirements, Calculus I requires
students to write two 50-point question papers during the semester. Three subgroups
were formed based on the average of the scores on these two papers. Subgroups of below-
average (G1), average (G2), and above-average performers (G3) were created using the
usual technique in psychological experiments. The sample mean and standard deviation
were used to calculate the lower and upper bounds of the middle interval. Students who
performed in the mean ± 0.5 × standard deviation range were assigned to group G2. The
intervals for the selection are as follows:

G1 = [25, 28.445), G2 = [28.445, 33.755], G3 = (33.755, 44].
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With this selection method |G1| = 13, |G2| = 12 és |G3| = 11, as can be seen in
Figure 8.

Figure 8. Multi-vari chart of the experimental group according to average scores related to the
Calculus I course. (The figure was created using DATAtab).

Once the three subgroups were formed, the results of the question papers on cycloidal
curves were examined group by group. Table 7 shows the data of descriptive statistics. The
mean and median values are similar across the three groups, indicating that the means of
the data are not significantly different (see Figure 9). However, the median for G1 is slightly
lower (43) compared to the median for G2 (46.5) and G3 (47). The standard deviation and
variance are similar in magnitude across all three groups. Still, the variance and standard
deviation for the G1 group are slightly higher, suggesting greater variability among the G1
data. The minimum and maximum values are in a similar range.

Figure 9. Bar chart of the subgroups of the experimental group showing mean scores and standard
deviations. (The figure was created using DATAtab).
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Table 7. Descriptive statistics for Groups G1, G2, and G3.

G1 G2 G3

N 13 12 11
Mean 40.31 43.25 43.18

Median 43 46.5 47
Mode 50 50 50

Std. Deviation 9.13 8.09 8.81
Variance 83.4 65.48 77.56

Minimum 24 29 25
Maximum 50 50 50

The following two hypotheses were formulated and tested to answer research
question RQ2:

• Null hypothesis: There is no difference between the three categories of the experi-
mental group in terms of the dependent variable (scores of the question paper on
cycloidal curves).

• Alternative hypothesis: There is a difference between the three categories of the
experimental group in terms of the dependent variable (scores of the question paper
on cycloidal curves).

The Kruskal–Wallis non-parametric test was used to determine whether there was a
significant difference between the groups because the normality condition was not met
in the sample. Table 8 shows the results. χ2 is the test statistic for the Kruskal–Wallis
test. A value of 0.99 suggests there is not much difference between the groups. The larger
the χ2 value, the more evidence there is for differences between the groups. A lower χ2

value usually suggests that the differences between the groups are not as pronounced.
The degrees of freedom in this case are 2. The degrees of freedom for the Kruskal–Wallis
test is one less than the number of groups being compared. We have three subgroups,
so the degrees of freedom are 2. The resulting p-value was 0.611, meaning that there
was no statistically significant difference between the medians of the three groups. This
is consistent with the statistical characteristics where means and medians were similar.
Typically, a p-value less than 0.05 is considered statistically significant.

Table 8. Kruskal–Wallis test values.

χ2 df p

Kruskal–Wallis test 0.99 2 0.611

Based on the data and the Kruskal–Wallis test results, there is no statistically significant
difference among the three subgroups (G1, G2, and G3). The means and medians of the
subgroups are very similar, and the variability is also comparable across the subgroups. The
p-value of 0.611 indicates that any observed differences are likely due to random chance
rather than a true effect. In summary, based on the results of the Kruskal–Wallis test, a
p-value of 0.611 indicates that there is no statistically significant difference between the
subgroups tested. We retain the null hypothesis, which means that the four-stage model for
learning cycloidal curves helped students achieve better academic results regardless of their
individual mathematical competencies. Thus, we can answer the RQ2 research question:
the four-stage methodology for learning cycloidal curves supports learning achievement
regardless of individual differences in prior knowledge; it is not only effective for a certain
group of students.

4. Discussion and Conclusions

This research delved into the potential of a novel four-stage methodology for teaching
cycloidal curves in university engineering mathematics education, aiming to determine
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its effectiveness and suitability for diverse student populations. The new learning model
implements STEAM-based education in engineering mathematics using ER and DGS.

In the experiment, we conducted a control group study involving 98 first-year com-
puter engineering BSc students. In the first part of this study, we employed a post-test-only
design, which means we collected data only after the intervention without administering a
pre-test beforehand. By skipping the pre-test, we reduced the risk of biases arising from
participants being aware of this study’s purpose or goals, which might otherwise affect
how they respond or behave during the post-test. As a result, this design helped provide a
more precise and more accurate evaluation of the intervention’s impact based solely on the
post-test results. In the second part of this study, we used a between-groups design. This
approach enabled us to compare the effects of the intervention among different subgroups
of participants.

Two research questions were formulated and answered by analyzing the scores of the
question paper written in a classroom setting. Both the descriptive statistics data and the
result of the hypothesis test support the answers to research questions RQ1 and RQ2, so
the treatment used is an effective tool for learning cycloidal curves.

In hypothesis testing to answer research question RQ1, we employed a non-parametric
test, specifically the Mann–Whitney U test, due to the non-normal distribution of the data.
The Mann–Whitney U test demonstrated a statistically significant difference concerning the
dependent variable between the control and experimental groups. Expressly, the results
indicated that the experimental group achieved significantly better outcomes than the
control group. The low U-value (247) suggested higher rankings for the experimental
group, which was further supported by very low p-values and a significant effect size.
These findings imply that the experimental intervention was more effective than the control.
We compared the results with the study conducted by Coufal [84], which utilized the
LEGO Mindstorms EV3 kit. Both experiments demonstrated similarly strong results. In
the research by Coufal [84], a comparable main research design was employed, featuring a
pedagogical experiment that included both experimental and control groups, alongside
skill and knowledge assessment through testing. A significant contribution of their study
was its verification of the positive impact of educational robotics and project-based learning
on developing student competencies, a finding that our experiment corroborates. Addi-
tionally, a content analysis technique used in one of the other experiments with the LEGO
Mindstorms EV3 robot indicated that project-based learning, when combined with robotics
activities within a STEM curriculum framework, significantly benefits students [85]. We
also concur with the findings of Goh and Ali [86], who reported positive outcomes in
their educational experiment with the LEGO NXT robot. They emphasized the necessity
for improved teaching methods to inspire courses, provide more comprehensive support
for students facing mathematical challenges, and foster a community atmosphere among
STEM learners.

In the experimental group, three subgroups were formed based on students’ previous
results in Calculus I to answer research question RQ2. The Kruskal–Wallis test yielded a
p-value of 0.611, indicating no statistically significant difference between the subgroups.
This suggests that the four-stage model for learning cycloidal curves contributed to im-
proved academic outcomes regardless of students’ individual mathematical competencies,
demonstrating its effectiveness across diverse student groups. In our research, we found
that the four-stage methodological model for learning cycloidal curves is an effective ap-
proach to the learning process. Our results show that the method can be applied positively
to students with below-average, average, and above-average mathematical knowledge.

The experiment indirectly validated Pritchard’s claim in [71] that the frontal teaching
method can effectively teach mathematics, and thus engineering mathematics, if it is com-
plemented with activities that motivate students. Our research also supports Hassidov’s
findings in [87] that the teaching method employed in mathematics classrooms is a key
and highly influential factor in students’ mathematical development. Additionally, it em-
phasizes the importance of integrating frontal teaching with computer-based mathematical
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activities. Recent technological innovations have accelerated the integration of digital tech-
nologies into mathematics education [88]. The systematic analysis of Cevikbas et al. [88]
showed that the most popular technologies in the category of digital resources for math-
ematical modeling were DGSs. While the four-stage model for learning about cycloidal
curves relies heavily on DGS, it also introduces students to an alternative modeling tech-
nique by integrating ER, providing them with tangible physical experiences. Additionally,
the experiment suggested that, aligning with the findings of Tessema et al. [59], realistic
hands-on experiences are essential to the mathematics learning process. This approach
ensures that students are actively engaged in learning, fostering a deeper understanding of
the subject matter.

The findings of our study on the effectiveness of the novel four-stage model for teach-
ing cycloidal curves are consistent with recent advancements in educational practices that
emphasize active learning and technological integration. Current research highlights the im-
portance of hands-on experiences and the use of educational robotics in enhancing student
engagement and understanding in mathematics education [41,85,89]. Our results corrobo-
rate existing literature that supports the positive impact of innovative teaching methods
and PjBL approaches on diverse learner populations, demonstrating improved outcomes
across different mathematical competencies [75,76]. Additionally, this study contributes
to the growing body of evidence suggesting that integrating digital technologies, like
ER and DGS, fosters deeper conceptual understanding and developing problem-solving
skills [77,78,80,88] Overall, our findings suggest that adopting modern pedagogical ap-
proaches can significantly enhance engineering mathematics education in higher education
settings, aligning with contemporary trends in STEM education.

Limitations

Introducing educational robotics into higher education presents several challenges
that must be addressed while planning and implementing robotic activities. Adequate
laboratories and technical infrastructure are essential for robotics programs. Robotic tools
and software often have technical problems and bugs that require time and expertise,
hindering the smooth running of classes and reducing the overall learning experience.

The narrowest cross-section is LEGO robot kits. There are good examples of LEGO
robots being used in higher education; for example, Avanzato [90] and Udvardy and
Beszédes [91] show educational applications of the LEGO Mindstorms EV3 system. How-
ever, the LEGO EV3 robotics kit was released in 2013, and since then, many newer technolo-
gies and robotic tools have entered the market. Newer kits like the LEGO Education SPIKE
Prime feature more advanced sensors, motors, and programming capabilities. Technology
evolves rapidly, the EV3’s programming environment is nowadays less user-friendly and
modern compared to newer systems that are more intuitive and support multiple pro-
gramming languages, such as Scratch and Python; moreover, the LEGO education SPIKE
Prime is more modular and flexible, better suited to the needs of various educational levels
and projects. These kits are more accessible to assemble and modify, which is particularly
important in education.

The research was conducted at one university and only involved students in computer
science engineering. Further research is needed to test the methodology in different
universities and with various groups of students. The lack of demographic diversity
may be a limitation of our methodological experiment, as the results of experiments in
homogeneous groups are difficult to generalize. If the participants are not representative
of the different demographic characteristics of the society, the results may be biased and
may not reflect the real situation or the different reactions of different groups. The lack
of demographic diversity in the experiment meant that important factors such as cultural
differences, the impact of social background, or the different experiences of different age
groups could not be taken into account when interpreting the results. This study’s small
sample size (98 participants) is a major limitation. This small sample size may limit the
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generalizability of the findings to the larger population. A larger sample would provide
more robust and reliable results.

Nowadays, the gender distribution in engineering higher education remains un-
equal. The proportion of females is much lower than males in engineering and computer
science [92,93]. The sample in this article was predominantly male (90.82%). This may
have affected the study’s results. Future research may wish to use a more gender-balanced
sample. However, it may also be interesting to repeat the experiment in a course with
a higher proportion of females to explore whether the results remain consistent across
diverse populations. Unfortunately, we could not conduct such experiments either at the
University of Miskolc or at the Šiauliai State Higher Education Institution because the sex
ratios of the students did not allow it.

One of the main limitations of the quasi-experimental research design used in the ex-
periment is that it does not allow randomly allocating participants into groups. This means
that the experimental and control group members may not be equally representative of the
whole population. Because of the lack of random grouping, it is impossible to determine
whether the substantial differences observed are due to the experimental intervention or
the result of pre-existing differences. Quasi-experimental research design is often used in
educational experiments [94], as random assignment is usually not feasible for ethical or
practical reasons; it was the case in our experiment too.

The research focused on only one subject: teaching cycloid curves. Further develop-
ment and research are needed to test the four-step methodological model in other subjects,
as the ER activity requires the creation of appropriate robot constructs and projects.

5. Considerations for Future Research

It is crucial to recognize that while the research design and sample size may raise some
questions regarding the overall robustness of the research findings, they do not inherently
undermine the validity of the results. Nonetheless, these limitations must be carefully
considered when interpreting this study’s outcomes. To enhance the reliability of future
inquiries, it is essential to evaluate the effectiveness of the four-stage methodology for
learning cycloidal curves using a larger and more diverse sample size. Specifically, ensuring
a more balanced gender representation and incorporating a wider demographic of subjects
will provide a more comprehensive understanding of the methodology’s impact.

The findings from this experiment suggest that the four-stage approach for learning
cycloidal curves holds promise in facilitating the learning process of cycloidal curves. This
potential of the four-stage approach for learning cycloidal curves to significantly enhance
the learning process is a reason for hope. However, to establish more definitive conclusions,
it is imperative to conduct additional studies in this area. Exploring the application of
this methodology across various educational institutions and among different student
demographics would provide valuable insights and strengthen the generalizability of
the results.

In the current study, we relied solely on quantitative measures to assess the outcomes,
which limited the understanding of the participants’ experiences and attitudes. For future
iterations of this experiment, it will be vital to integrate qualitative tools, including soliciting
student feedback through questionnaires. By gathering participants’ perspectives on the
four-stage methodology for learning cycloidal curves, we will not only enrich the data
but also better understand the subjective experiences of students, thus providing a more
holistic view of the methodology’s effectiveness and areas for improvement.
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Appendix A. Equations and Graphs of Cycloidal Curves

The curve is a cycloid when the curve is generated by a point on the circumference of a
circle that rolls along a straight line. The name of the curve, cycloid, originates from Galileo
Galilei, who studied the curve in detail [95]. If the fixed curve is a circle and the generating
point lies on the circumference of the rolling circle, then the cycloidal curve is called an
epicycloid or a hypocycloid, depending on whether the rolling circle is situated outside or
inside the fixed circle [96]. All main types of cycloidal curve families are summarized in
Table 1. We note that epi- and hypotrochoid curves were first described by Albrecht Dürer
in his work “Instruction in measurement with compasses and straight edge” in 1525. Dürer
called these curves spider lines because the lines he used to construct the curves looked
like a spider [45]. Cycloidal curves were named by Ole Rømer in 1674 while studying the
best form for gear teeth. The claim that Ole Rømer was the first to propose using cycloidal
curves for gear tooth profiles can be found in the works of Gottfried Wilhelm von Leibniz
and Christian Huygens. Unfortunately, this cannot be directly proven because Rømer’s
published work was destroyed in the great fire of 1728 in Copenhagen [97].

The parametric equations of a plane curve are usually given by two different functions
depending on the same variable, in the form (x(t), y(t)) for some real parameter t, where
x and y are continuous functions of t. If a circle of radius r rolls around the outside of a
fixed circle of radius R, and the generating point (pole) P is attached to the moving circle
a distance d from its center, the parametric equations of the epitrochoid traced by P are
as follows:

x(t) = (R + r) cos t − d cos
(

R + r
r

t
)

,

y(t) = (R + r) sin t − d sin
(

R + r
r

t
)

,
(A1)

where the independent variable t ∈ R denotes the angle between a line through the center
of both circles and the x-axis [98]. In the sequel, the quantities R, r and d in (A1) will be
referred to as parametric constants and d will be called the pole distance. Considering the
geometric interpretation of cycloidal curves, we assume that the parametric constants R
and r are positive real numbers and d is a non-negative real number. Three cases can be
distinguished based on the relationship between d and r. If d = r, then the curve is an
epicycloid (Figure A1a), if d < r, then it is a curtate epitrochoid (Figure A1b), and if d > r,
then the curve is a prolate epitrochoid (Figure A1c). An epicycloid always touches the fixed
circle (d = r); a curtate epitrochoid does not touch the fixed circle (d < r), while a prolate
epitrochoid crosses it (d > r).
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If a circle of radius r rolls around the inside of a fixed circle of radius R, and the pole P
is attached to the moving circle a distance d from its center, the parametric equations of the
hypotrochoid traced by P are as follows:

x(t) = (R − r) cos t + d cos
(

R − r
r

t
)

,

y(t) = (R − r) sin t − d sin
(

R − r
r

t
)

,
(A2)

where t ∈ R [98]. Three cases can be distinguished based on the relative values of d and r. If
the distance from the fixed point on the moving circle to the center is equal to the radius of
the moving circle (d = r), then the curve is a hypocycloid. If the point is within the radius
of the inner circle (d < r), the curve is a curtate hypotrochoid. With d > r, it is a prolate
hypotrochoid. A hypocycloid touches the fixed circle (d = r); a curtate hypotrochoid does
never touch the fixed circle (d < r), and a prolate hypotrochoid crosses it (d > r).

(a) (b) (c)
Figure A1. Epitrochoids (R = 4r). (a) Epicycloid. (b) Curtate epitrochoid. (c) Prolate epitro-
choid. (Figures were created using Desmos https://www.desmos.com/geometry (accessed on 2
October 2024)).

In addition to this grouping, further important curves can be obtained by a partic-
ular choice of parametric constants. For example, if d = 0, it can be easily seen from
Equations (A1) and (A2) that the curves are circles with radius R + r and R − r (r < R). A
hypotrochoid with R = 2r, r ̸= d is an ellipse. The cardioid is an epicycloid with parametric
constants d = r = R, and the hypocycloid with d = r = R

4 is an astroid (Figure A2a).

(a) (b) (c)
Figure A2. Hypotrochoids (R = 4r). (a) Hypocycloid. (b) Curtate hypotrochoid. (c) Prolate
hypotrochoid. (Figures were created using Desmos).

For hypocycloids and epicycloids, consider the fraction r/R = p/q, where p and q are
relatively prime natural numbers. Then, the denominator q of the reduced fraction has an
important meaning since q gives the number of cusps, where a cusp is defined as a point in
which the curve meets the fixed circle. For example, the cardioid is a 1-cusped epicycloid,
the nephroid is a 2-cusped epicycloid (Figure A3a), and an epicycloid with five cusps is

https://www.desmos.com/geometry
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called a ‘ranunculoid’ (Figure A3b). A 2-cusped hypocycloid (Tusi couple) is a line segment,
a 3-cusped hypocycloid is a deltoid (Figure A3c), and the astroid is a 4-cusped hypocycloid
(Figure A2a). A trochoid can have infinitely many cusps if the r/R ratio is not rational; in
this case, the generating circle will never return to its initial position, and the curve will
keep having new cusps as the circle keeps rolling around the base circle [43,54,98].

(a) (b) (c)
Figure A3. Multi-cusped epi- and hypocycloids. (a) Nephroid. (b) Ranunculoid. (c) Deltoid. (Figures
were created using Desmos).

Appendix B. Teaching Cardioid Using the Four-Stage Model for Learning
Cycloidal Curves

One of the most interesting shapes in the varied world of two-dimensional curves is
the cardioid, which belongs to the family of epicycloids. Its practical applications have
kept it in the spotlight today. The methodology developed to teach the cardioid curve is
presented below, starting from the second stage, using the elements of the 4C principle.

Appendix B.1. Connect

In the seminar that follows the theoretical presentation, it is worthwhile to make the
connection from at least three different angles. First, a brief overview of the history of
the cardioid is provided, along with a discussion on its practical applications. Next, the
cardioid is presented as a caustic curve, followed by an exploration and demonstration
of its double-generation property. The animations produced by the Desmos graphing
calculator effectively support the visual representation of the two methods of generating
the cardioid curve.

Appendix B.1.1. History and Practical Applications of Cardioids

There is no certainty about who discovered the cardioid. There is written evidence that
in 1637, the amateur mathematician Étienne Pascal—father of Blaise Pascal—investigated
the more general case of the cardioid, the limaçon, but not the cardioid specifically. In
1674, the Danish astronomer Ole Rømer considered the cardioid when he was searching
for the optimal gear tooth shape, and several sources credit him with the discovery [96,99].
The cardioid as an epicycloid was investigated in 1691 by Jacob Ozaniaill, and afterward,
it appeared in the works of several prominent mathematicians. Bernoulli, L’ Hospital,
Maclaurin, Cramer, and many others also worked with the cardioid [100]. In 1708, Philippe
de la Hire was the first to calculate the arc length of the cardioid [99]. Its name comes from
the Greek word for heart. Interestingly, it was not until 1741 when Johann Castillon gave
the curve its name in a paper in the Royal Society’s Philosophical Transactions.

The cardioid curve has intrigued mathematicians for centuries because of its proper-
ties, its graph’s beauty, and practical applications [98,99]. The cardioid appears in many
seemingly diverse areas of mathematics, playing an essential role in fractal geometry; for
example, the central figure of the famous Mandelbrot set is a cardioid curve [99]. Cardioid
shapes appear on rolls and bobbins to ensure the uniform layering of yarn in the textile
industry and the signal strength pattern of a type of radio antenna [101]. The cardioid
antenna takes its name from the shape of the radiating beam. Typically, a single-band
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antenna is most commonly used in terrestrial communications. The use of cardioid-shaped
fractals in antennas allows coverage of all commercial frequency bands in the 1.8–30 GHz
frequency range while maintaining the small size of the antenna due to the space-filling
capability of the fractals; therefore, fractal antennas can be used in energy harvesting
systems as well as IoT, WLAN, mobile MIMO and satellite communication systems and
radars [102]. In parallel, the cardioid also plays a significant role in audio engineering
because a cardioid directional pattern in a microphone provides a relatively wide pick-up
zone [103]. When audio engineers need a unidirectional microphone—one highly sensitive
to sounds generated directly in front of the microphone and less sensitive to those generated
next to or behind it—they use a microphone with cardioid directionality [104]. Cardioid
finds various applications in complex analysis, plant physiology, and engineering [103].
From a didactical point of view, the wide and illustrative practical use of cardioid antennas
and microphones offers an excellent opportunity to motivate engineering students and
raise their awareness of the interesting properties of cardioid.

Appendix B.1.2. A Popular Experiment: Cardioid in a Cup

In studies on the cardioid, the cupping experiment to demonstrate its caustic property
is frequently mentioned. This experiment is popular because it requires minimal equipment
and is easy to perform [103,105].

It can be performed using not just an empty cup, but also with a liquid, for example,
coffee or tea, upon which the heart-shaped curve can be displayed. Using the flashlight
function on mobile phones, it is easy to form the cardioid by illuminating it from the rim
of the cup, and the photo can be taken with another phone so that, in a few minutes, one
can have a good-quality photo of the cardioid curve (Figure A4a). With this experiment,
we prove that the caustic curve for the circle is a cardioid if the light rays are emitted from
a fixed point on the circle and reflected from the circle according to the laws of physics
(Figure A4b).

(a) (b) (c)
Figure A4. Cardioid, as a caustic curve of the circle. (a) At the bottom of the cup. (b) Reflected rays.
(c) Flower string art. The Flower string art with six cardioids made by Kaydeekat [106].

The cardioid is then obtained as an envelope of lines, but only the caustic curve is
visible in the cup, not the lines (the light rays). In string art, the principle of producing a
caustic curve is often used, where the straight lines are modeled with a thread [107,108],
so that not only the envelope curve is visible, but also the straight lines (segments), as can
be seen in Figure A4c. Because of its simplicity, the cup experiment is a good choice to
stimulate interest, but the exploration and solution of the related phenomenon should be
placed at the end of the seminar, which will establish the framework and, thus, provide a
sense of completeness for the participants.

Appendix B.1.3. Double Generation Theorem

The cardioid can be derived in a surprisingly wide variety of ways. It is most often
defined as an epicycloid: a cardioid is a plane curve followed by a fixed point on the
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circumference of a circle of radius r as the circle rolls without sliding along a fixed circle of
radius r [43]. The parametric equations for the cardioid curve are as follows:

x(t) = r(2 cos t − cos 2t)

y(t) = r(2 sin t − sin 2t),
(A3)

where t ∈ [0, 2π]. The derivation of (A3) can be found in [96].
Figure A5 shows three steps from the production by animation for the cardioid in

Equation (A3) when r = 1. The period is equal to the circumference of the moving circle, so
it is 2π in this case.

(a) (b) (c)
Figure A5. Generating the cardioid as an epicycloid for r = 1. (a) t = 3π

5 . (b) t = 6π
5 . (c) t = 2π.

Animation of the generation: https://www.desmos.com/calculator/dlz1jubuzy (accessed on 6 July
2024). (Figures and the animation were created using Desmos).

Usually, the cardioid is discussed primarily from the perspective of an epicycloid in
lectures, with other possibilities often overlooked. However, due to its dual generating
property, the cardioid can also be described as a hypocycloid(see Figure A6). The cardioid
is the path traced by a point on the circumference of a circle with radius R = 2r, where the
circle rolls “inside” a fixed circle of radius r without sliding [96]. The dual generation is
easily illustrated by making spectacular animations using Desmos.

(a) (b) (c)
Figure A6. Generating the cardioid as a hypocycloid for r = 1 and R = 2r = 2. (a) t = π. (b)

t = 2π. (c) t =
7π

2
. Animation of the generation: https://www.desmos.com/calculator/vgts1kwl1k

(accessed on 6 July 2024). (Figures and the animation were created using Desmos).

Appendix B.2. Construct

Based on the cup experiment, the question naturally arises: How can we plot the
cardioid curve with high accuracy? Another way to gain direct experience is to take
advantage of STEAM-based education by using educational robotics to draw the cardioid
curve. The Spikograph 2.0 robot (see Figure 4) is operated using a simple program: a single
turn of the motor produces the cardioid curve. We created a detailed construction manual
for the robot using Studio 2.0 software. The robot can be quickly built in a short time.
Small groups of up to 3–4 students are recommended for building and testing. To build

https://www.desmos.com/calculator/dlz1jubuzy
https://www.desmos.com/calculator/vgts1kwl1k
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the basic robot, we used double gears (46,372) with a diameter of 28 mm and teeth on both
sides to represent the moving circles, and a LEGO Turntable (LEGO Turntable, 4,652,236)
of the same size to model the fixed circle (Figure A7a). The rolling gears are powered by
a motor, and a continuously adjustable shaft has been employed to facilitate easy gear
changes during reconstruction. The felt-tip pen is mounted at a circumferential point on
the moving gear. The rolling gears were doubled to solve the precise positioning and stable
mounting of the drawing head. With this construction version, the pen holder head can
be fixed at several points using a LEGO Technic lever. Cardioids of different sizes can be
drawn by rebuilding the robot after replacing the gears. In Figure A7b, LEGO Technic gears
with 40 teeth (364,902) were used for the construction. In this case, the positioning of the
axis for rotation is different from when using the turntable. The application of the 40th
gear is advantageous because the length of the strings passing through the cusp from the
perimeter points of the drawn curve is 8 cm, so the area and length of the arc can be easily
calculated using integral calculus. Building and drawing takes about 20 min, including
rebuilding, if properly prepared. In [63], we discussed the process of drawing cardioid
curves using LEGO robots, alongside the theoretical background. In addition, we presented
guided projects that utilize these cardioid-drawing robots.

(a) (b) (c)
Figure A7. Cardioid drawing Spikograph 2.0 robot. (a) Drawing head. (b) After rebuilding.
(c) Robot-drawn cardioid. (The first subfigure was made with Studio 2.0 software, the second
two are self-made photos).

Appendix B.3. Contemplate

The word fractal was coined in 1975 by mathematician Benoit Mandelbrot to describe
a set of shapes whose infinitely complex, self-similar forms reveal repetitive patterns. The
dazzling computer-generated images of fractals have captured the attention and motivated
the interest of students in mathematics more so than any other mathematical discovery in
the last century [99]. The Mandelbrot set is defined as the set of complex numbers c ∈ C
such that the sequence {zn} defined by the recursion zn = z2

n−1 + c with initial value z0 = 0
remains bounded for all n ≥ 0 [109]. The Mandelbrot set features a fundamental cardioid
shape adorned with numerous bulbs directly attached to it [110]. The main cardioid is the
big heart-shaped region of the Mandelbrot fractal.

The project task in the contemplate phase was connected to the main cardioid in
the Mandelbrot fractal. The aim was to animate the generation of the cardioid in the
fractal, where the rolling of the circles over each other results in the points of the cardioid
curve. Two solutions were proposed to visualize the Mandelbrot set. In the first, the
Mandelbrot set can be loaded into Desmos as an image; in this case, the image can be
positioned arbitrarily. In the second one, the fractal is generated in Desmos, and the
path to the iteration is provided to the students. The project aimed to generate a central
cardioid shape using circles. Considering that the groups working on the project started
with their own ideas, the initial cardioids had different sizes and orientations, resulting in
different solutions.

The earlier stage of the methodology provided significant support for the task because,
essentially, the robot’s operation had to be modeled with animation; all the knowledge
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was provided, and the students were also shown the animation of cardioid production
as both epi- and hypocycloids when the double generation theorem was presented. The
effectiveness of the work with robots was demonstrated by the fact that among the solutions,
there were animations where the gears appeared, as seen in Figure A8.

(a) (b) (c)
Figure A8. Mandelbrot fractal and student solutions for the project. (a) Mandelbrot fractal.
(b) A student solution. (c) Another student solution with gears. (The first subfigure was generated
using the free Mandelbrot Set Explorer generator, the last two subfigures were created using Desmos).

Appendix B.4. Continue

The last stage of the methodology was implemented by setting interesting project tasks
that could be solved with the Desmos dynamic geometry software https://www.desmos.
com/geometry (accessed on 2 October 2024), focusing mainly on cardioid visualization.
The cardioid can be constructed as an envelope of curves in several different ways. When
generating a cardioid, various animation options are available, with the most common
approach being to display members of the curve family sequentially. A common feature
of all animations is the use of lists. In creating attractive solutions, students are also
introduced to properties of the cardioid that extend beyond the basic knowledge required
by the curriculum.

Appendix B.4.1. Cardioid as the Envelope of a Pencil of Circles

Consider a given circle (the generator circle) and a distinguished point P on the
generator circle. The set of all circles that pass through P and have their centers on the
generator circle form a pencil of circles. The envelope of this pencil is a cardioid [43]. The
diameter of the resulting cardioid is twice the diameter of the fixed circle, and its cusp is
at point P. The cardioid was generated in 34-step iterations using the Desmos graphing
calculator to create Figure A9.

(a) (b) (c)
Figure A9. Cardioid as the envelope of a pencil of circles. (a) Step 11. (b) Step 20. (c) Last step.
Animation of the generation: https://www.desmos.com/calculator/nvkxenx7ek (accessed on 6 July
2024). (Figures and the animation were created using Desmos).

https://www.desmos.com/geometry
https://www.desmos.com/geometry
https://www.desmos.com/calculator/nvkxenx7ek
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Appendix B.4.2. Evolute and Involute

Several simple student projects can be formulated to investigate the tangent lines.
A spectacular figure can be drawn by plotting the cardioid tangents (Figure A10a). The
evolute of a curve is defined as the locus of the center of curvature or the envelope of the
normals of a curve. Like all cycloidal curves, the evolute of the cardioid is a mirror-image
cardioid, though not of the same size (Figure A10b). The parametric equations of the
evolute are as follows:

x(t) =
1
3

r(2 cos t + cos 2t)

y(t) =
1
3

r(2 sin t + sin 2t),
(A4)

where t ∈ [0, 2π], when we have the cardioid defined by (A3).

(a) (b) (c)
Figure A10. Cardioids drawn with tangent and normal lines. (a) Tangent lines. (b) Evolute.
(c) Evolute and involute. Animation of the generation of the evolute: https://www.desmos.
com/calculator/vsdi02x51i (accessed on 6 July 2024). (Figures and the animation were created
using Desmos).

If the plane curves g1 and g2 are given, and the curve g2 is the evolute of g1, then g1
is the involute of g2. We can make the previous problem more complex by sketching the
involute of the given cardioid (A3). The involute of the cardioid is a mirror-image cardioid
in a bigger size. The parametric equations of the involute:

x(t) = 3r(2 cos t + cos 2t)

y(t) = 3r(2 sin t + sin 2t),
(A5)

t ∈ [0, 2π]. The number of iterations is 61 for the first two subfigures and 51 for the
third in Figure A10. To solve these exercises, one needs to understand the parametric
equations of the cardioid in vector form, the derivative of a parametrically defined curve,
and the equations for the tangent and normal lines of a curve.

Appendix C. The Post-Test

1. How is a cardioid curve generated? (5 points)
2. How many points of intersection do the following two parametric curves have?

(3 points){
x(t) = 3 cos t
y(t) = 3 sin t

, 0 ≤ t ≤ π

{
x(t) = 4 cos t
y(t) = 2 sin t

, 0 ≤ t ≤ 2π

3. Identify the curves shown in the following figures and write down the parametric
equations for all three curves. (9 points)

https://www.desmos.com/calculator/vsdi02x51i
https://www.desmos.com/calculator/vsdi02x51i
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4. Find
dy
dx

and determine an equation of the tangent line to the given curve at t0 =
π

4
.

Sketch the curve and the tangent line in the Cartesian coordinate system. (9 points){
x(t) = cos3 t
y(t) = sin3 t, t ∈ [0, 2π]

5. Calculate the area and circumference of the sector bounded by the curve r(φ) = 6 sin φ,
φ ∈ [0, π] using integral calculus. Make a sketch! Give the Cartesian coordinate
equation of the curve. (10 points)

6. Sketch the curve below and determine its arc length. (5 points){
x(t) = t − sin t
y(t) = 1 − cos t, t ∈ [0, 2π]

7. Find the area inside the cardioid r(θ) = 1 + cos θ and outside the circle r = 1.
(9 points)
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