
Citation: Zhou, C.; Zhang, W.

Computational Thinking (CT)

towards Creative Action: Developing

a Project-Based Instructional

Taxonomy (PBIT) in AI Education.

Educ. Sci. 2024, 14, 134. https://

doi.org/10.3390/educsci14020134

Academic Editor: João Piedade

Received: 7 December 2023

Revised: 10 January 2024

Accepted: 25 January 2024

Published: 29 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

education
sciences

Article

Computational Thinking (CT) towards Creative Action:
Developing a Project-Based Instructional Taxonomy (PBIT)
in AI Education
Chunfang Zhou 1,* and Wei Zhang 2

1 Center for Research in Science Education and Communication, Department of Mathematics
and Computer Science, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark

2 Software College, Northeastern University, Shenyang 110819, China; zhangwei@swc.neu.edu.cn
* Correspondence: chzh@sdu.dk

Abstract: This paper aims to develop a new model of Project-Based Instructional Taxonomy (PBIT)
that provides a tool of course design that facilitates Computational Thinking (CT) development as
creative action in solving real-life problems. Theoretically, PBIT is built on an integrative framework
bringing together with studies on CT education, creativity, Bloom’s Taxonomy, and Project-Based
Instruction (PBI). This guides the course design to make alignment between diverse elements includ-
ing education objectives, categories of CT, levels of learning ability, process of project facilitation,
and methods of grading. A case will be discussed that focuses on a course Deep Learning and
Technologies in AI bachelor program at Northeastern University (NEU) in China. It also shows
how PBIT is applied in teaching practice that benefits students’ CT development. As the conclusion
indicates, this paper has contributions to future research on creativity, PBI, CT, and AI education.

Keywords: creativity; Computational Thinking (CT); Project-Based Instruction (PBI); Bloom’s
Taxonomy; course design; AI education

1. Introduction

We are living in a digital age that is powerfully shaped by computing, algorithmic, big
data, and Artificial Intelligence (AI). To be successful in future professional practice, stu-
dents must learn how to creatively use digital technologies to solve diverse problems [1,2].
This leads us to increasingly recognize Computational Thinking (CT) as one of fundamental
skills that the next generation should master in diverse education programs, especially in
AI education [3,4].

The literature has shown growing interests in understanding CT development as a
creative process [5–7]. CT has been regarded used to design and develop new strategies
to link theories and practice [3], which help to analyze, identify, and organize relatively
complex and ill-defined tasks [8]. This brings studies on CT education development from a
creativity perspective [9,10]. Yadav and Cooper [11] described how platforms like Alice
or Scratch provide opportunities for students to extend their creative expression to solve
problems and create computational artifacts. The ‘creative artifacts’ can be understood as
the products of CT development [12]. Therefore, CT is more about thinking and doing than
only computing [13–15].

This means the focus of understanding CT has been shifted from what CT is to
how CT can be taught as a literacy [16] and how evidence of its acquisition might be
observed in practice of teaching and learning [17–19]. Then, strategies have been explored
in educational contexts [20], such as facilitating students in creative programming [9],
setting students in problem-solving contexts, and encouraging students to work with
meaningful projects [21]. Pedagogical models are also calling for students’ authentic

Educ. Sci. 2024, 14, 134. https://doi.org/10.3390/educsci14020134 https://www.mdpi.com/journal/education

https://doi.org/10.3390/educsci14020134
https://doi.org/10.3390/educsci14020134
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/education
https://www.mdpi.com
https://doi.org/10.3390/educsci14020134
https://www.mdpi.com/journal/education
https://www.mdpi.com/article/10.3390/educsci14020134?type=check_update&version=2

Educ. Sci. 2024, 14, 134 2 of 14

learning experience [22]; attention has been paid to Problem-Based Learning [23,24], Project-
Based Learning [25,26], and Project-Based Instruction [27]. With these efforts, the goal of
computing education is moving beyond CT to a perspective of ‘computational action’; in
other words, ‘computational action’ becomes a new framework of developing CT towards
‘creative action’ [13].

However, the ability to foster authentic learning experience represents a fundamen-
tal shift that will open new avenues for young people to see their worlds as ‘possibility
spaces’ [28,29]. Students should have as many opportunities as possible to ask questions
and build new solutions or new designs that address personally identified needs [30]. This
also brings new challenges [31]: teachers need to be comfortable in complex, real world situ-
ations that do not have a predefined solution; students need to learn in depth to understand
how to decompose their apps into manageable and buildable parts [32,33]. This indicates
the necessity to design new instructional methods that can manage these challenges.

Following the above lines, this paper focuses on developing a new model of Project-
Based Instructional Taxonomy (PBIT) that contributes to developing CT towards an educa-
tional objective of creative action. The model is rooted in an interdisciplinary theoretical
framework that brings together theories of CT, creativity, Bloom’s Taxonomy, and Project-
Based Instruction. A case will be discussed on a course in Deep Learning Technologies in
the AI Bachelor program at Northeastern University, China. The case shows how PBIT is
applied in teaching practice that improves students’ learning abilities. This further implies
how to develop PBIT in creativity, CT, and AI education in the future.

2. Creativity, CT, and Education
2.1. Creativity as an Inherent Component of CT

The literature shows that since the 1990s, CT has been studied in diverse topics such
as teaching methods, learning environments, and evaluation strategies [34–37]. According
to Wing [38], we should call to make thinking like a computer scientist a fundamental skill
for everyone. Even though Wing [38] did not state exactly what CT is, there are growing
interests in defining CT as one of the terms in relation to problem solving [39]. CT involves
solving problems, designing systems, and understanding human behavior. It is the thought
process involved in solving problems; the solutions are represented in forms of being
carried out by information-processing agents [39]; where the agent can be a computer, a
machine, or a human being [40]. In this sense, CT is one of the daily life skills that everyone
needs [41,42], just like reading or writing, that should be added to every learner’s analytical
ability, rather than just being a programming skill [43]. Accordingly, CT is no longer just
essential for learners in computer science, but also indispensable to the learners in other
domains [44–46].

Creativity is related to CT [47]. According to the literature, creativity is the ability
to generate novel ideas, raise new questions, and come up with solutions to ill-defined
problems [48]; it helps to gain new knowledge in crossing disciplinary boundaries [49];
it is not only ‘know-what’ but also ‘know-how’ that are skills involved in maneuvering
and operating concepts, ideas, and behaviors in the physical and social world—including
the skills of social interaction and engagement [50]. As Romero, Lepage, and Lille [51]
described, when students engage in programming activities, they are working in creative
processes. The students solve problems or meet users’ needs; they engage in activities
to design, write, test, debug, and maintain a set of information and instructions using a
particular programming language. This is not a linear predefined process, but rather a
prototype-oriented approach; students need to always test and improve their ideas before
releasing a final solution [52]. Therefore, creativity is one of inherent components in CT
education that motivates students to propose ideas, engage in action, reflect from practice,
and finish satisfying products [5].

Educ. Sci. 2024, 14, 134 3 of 14

2.2. ‘Creating’ as an Education Objective

Teachers classify objectives because the type of objectives attempted dictate the selec-
tion of instructional methods, media, and evaluation used in the lessons [53]. By a review
of the literature, different taxonomies have been developed for this purpose [54]. One
of the most widely used ways of organizing levels of expertise is the model of Bloom’s
Taxonomy of Educational Objectives [55]. It is well known that Bloom’s Taxonomy includes
three hierarchical levels to classify educational learning objectives. It was developed to
promote higher forms of thinking in education, such as analyzing and evaluating concepts,
processes, procedures, and principles, rather than simply memorizing facts. In 2001, a
newer version of Blooms’ Taxonomy was published [56] that defined a more dynamic
conception of classification (Figure 1).

Educ. Sci. 2024, 14, x FOR PEER REVIEW 3 of 15

2.2. ‘Creating’ as an Education Objective
Teachers classify objectives because the type of objectives attempted dictate the selec-

tion of instructional methods, media, and evaluation used in the lessons [53]. By a review
of the literature, different taxonomies have been developed for this purpose [54]. One of
the most widely used ways of organizing levels of expertise is the model of Bloom’s Tax-
onomy of Educational Objectives [55]. It is well known that Bloom’s Taxonomy includes
three hierarchical levels to classify educational learning objectives. It was developed to
promote higher forms of thinking in education, such as analyzing and evaluating con-
cepts, processes, procedures, and principles, rather than simply memorizing facts. In 2001,
a newer version of Blooms’ Taxonomy was published [56] that defined a more dynamic
conception of classification (Figure 1).

Figure 1. The Revised Blooms’ Taxonomy.

From Figure 1, we can see ‘Creating’ is on the top of the revised taxonomy, which
means the abilities to design, formulate, build, invent, compose, generate, derive, modify,
or develop something new. It also involves the abilities to take two or more scientific
processes or ideas and put them together or take a process and place it in new contexts.
These abilities of ‘Creating’, lead to ‘creative action’, which is what CT development
requires in education. In the taxonomy, ‘Creating’ involves abilities based on
Remembering, Understanding, Applying, Analysing, and Evaluating. As Almerico [57]
suggested, to underscore this dynamism, we use verbs and gerunds to label the categories
and subcategories (rather than use the nouns in the original taxonomy). Accordingly,
Figure 1 also shows some examples of ‘action words’ describing the cognitive processes
by which thinkers encounter and work with knowledge.

Besides the above, a knowledge dimension is also enriched with different types of
knowledge. According to Zhu and Zhou [58], it consists of (a) factual knowledge, (b)
conceptual knowledge, (c) procedural knowledge, and (d) metacognitive knowledge. By
using this categorization, courses can be designed with appropriate content and
instruction that may lead students to learn in depth. It also provides the standardization
of the teaching–learning process as the instruction provided to help students to meet the
education objectives. So, a clear, unambiguous education objective improves the
interaction between the instructors and the students; this further helps students to learn
the detailed requirements and expectations needed to complete the course [59]. In other
words, the specification of education objectives is aimed at achieving the desired teaching
and learning outcomes [60].

Remembering

Understanding

Applying

Analyzing

Evaluating

Creating

Low

High

Remembering: Retrieving relevant knowledge from long-term
memory
Action Words: Repeating, Recognizing, Recalling

Understanding: Determining the meaning of instructional messages,
including oral, written, and graphic communication
Action Words: Interpreting, Exemplifying, Classifying, Summarizing,
Inferring, Comparing, Explaining

Applying: Carrying out or using a procedure in a given situation
Action Words: Predicting, Executing, Implementing

Analyzing:: Breaking material into its constituent parts and detecting how the
parts relate to one another and to an overall structure or purpose
Action Words: Differentiating, Organizing, Attributing

Evaluating: Making judgments based on criteria and standards
Action Words: Checking, Critiquing, Justifying, Arguing, Convincing

Creating: Taking two or more scientific processes or ideas and putting them together or
applying knowlege across situations.
Action Words: Designing, Formulating, Building, Inventing, Composing, Generating,
Deriving, Modifying, Developing

Figure 1. The Revised Blooms’ Taxonomy.

From Figure 1, we can see ‘Creating’ is on the top of the revised taxonomy, which
means the abilities to design, formulate, build, invent, compose, generate, derive, modify, or
develop something new. It also involves the abilities to take two or more scientific processes
or ideas and put them together or take a process and place it in new contexts. These abilities
of ‘Creating’, lead to ‘creative action’, which is what CT development requires in education.
In the taxonomy, ‘Creating’ involves abilities based on Remembering, Understanding,
Applying, Analysing, and Evaluating. As Almerico [57] suggested, to underscore this
dynamism, we use verbs and gerunds to label the categories and subcategories (rather than
use the nouns in the original taxonomy). Accordingly, Figure 1 also shows some examples
of ‘action words’ describing the cognitive processes by which thinkers encounter and work
with knowledge.

Besides the above, a knowledge dimension is also enriched with different types
of knowledge. According to Zhu and Zhou [58], it consists of (a) factual knowledge,
(b) conceptual knowledge, (c) procedural knowledge, and (d) metacognitive knowledge.
By using this categorization, courses can be designed with appropriate content and in-
struction that may lead students to learn in depth. It also provides the standardization
of the teaching–learning process as the instruction provided to help students to meet the
education objectives. So, a clear, unambiguous education objective improves the interaction
between the instructors and the students; this further helps students to learn the detailed
requirements and expectations needed to complete the course [59]. In other words, the
specification of education objectives is aimed at achieving the desired teaching and learning
outcomes [60].

Educ. Sci. 2024, 14, 134 4 of 14

3. A Model of Project-Based Instructional Taxonomy (PBIT)

Recently, CT development has been much-studied in contexts such as Problem-Based
Learning [49] and Project-Based Learning [61]. These pedagogies allow students to par-
ticipate in learning activities by investigation of problems, organization of projects, and
formulation of solutions [62]. According to Railsback [63] and Martinez [64], Project-Based
Instruction (PBI) should be promoted that is an authentic instructional model or strategy in
which students plan, implement, and evaluate projects that have real-world applications
beyond the classroom.

Historically, PBI was developed in 1960s in McMaster University in Canada [65],
where the pedagogy of Problem-Based Learning originally started, which helped students
to apply their basic scientific knowledge to clinical situations [49]. Since then, many medical
schools in the USA, Canada, and Europe have implemented PBL and adopted PBI as part
of their curricula. Until the mid-1990s, PBI was spread and widely implemented in diverse
contexts beyond medical education. This further helped it gain acceptance in more and
more fields and across the globe [49]. Accordingly, the authentic projects have become
increasingly popular in curriculum design that show the following principles [66]:

(a) Student-centered or student-directed;
(b) A definite beginning, middle, and end;
(c) Content meaningful to students; directly observable in their environment;
(d) Real-world problems;
(e) First-hand investigation;
(f) Sensitivity to local culture and culturally appropriate;
(g) Specific goals related to curriculum and school, district, or state standards;
(h) A tangible product that can be shared with the intended sources;
(i) Opportunity for reflective thinking and student self-assessment;
(j) Authentic assessments (portfolios, journals, etc.).

In learning environments like PBI, students are facilitated to develop CT and creative
action [49]. As Papert [34] argued, in the process of personally meaningful projects, students
would be able to forge ideas and learn the necessary coding elements by addressing
challenges as they naturally arise. This learning context is similar to how computational
solutions work in professional practice [13]. As Zhou [67] described, all students’ learning
activities center on project work; projects lead students to achieve both individual and
group learning goals. Projects increase motivation, stimulate interplay between individual
creativity and group creativity, and construct a creative learning community.

The development of learner-driven and action-focused education requires providing
students with clear guidelines. We need to identify learning objectives that are statements
of what students are expected to know, understand, and/or be able to demonstrate after
completion of a course [53]. It is also necessary to rethink how to classify educational objec-
tives that show what teachers expect or intend students to learn through instruction. All
these ideas drive us to develop PBI further by taking creativity, CT education, and Bloom’s
Taxonomy into account. Accordingly, an integrative model is designed, as Figure 2 shows.

As shown in Figure 2, we classify CT into two categories: Binary CT and Decimal
CT. Binary CT is the fundamental understanding of the computer system, which is also
the basis of operating system, programming language, compiler, and data structure. This
also includes other algorithms such as the data compression algorithm, source coding
algorithms, encryption algorithms, and the transmission algorithm. For example, the
C programming language is widely used in all aspects in software engineering, which
can directly manipulate the main memory working in binary. Using the C programming
language, all the modern operating systems have been created, like Windows, Unix, iOS,
Mac OS, Linux, and Android; the C programming language also plays an important part
in understanding the source code of deep learning architecture. A student could not
properly program or debug to simulate the designed algorithm if he/she did not have a
deep understanding of binary architecture.

Educ. Sci. 2024, 14, 134 5 of 14
Educ. Sci. 2024, 14, x FOR PEER REVIEW 5 of 15

Figure 2. The Model of Project-Based Instructional Taxonomy (PBIT).

As shown in Figure 2, we classify CT into two categories: Binary CT and Decimal CT.
Binary CT is the fundamental understanding of the computer system, which is also the
basis of operating system, programming language, compiler, and data structure. This also
includes other algorithms such as the data compression algorithm, source coding algo-
rithms, encryption algorithms, and the transmission algorithm. For example, the C pro-
gramming language is widely used in all aspects in software engineering, which can di-
rectly manipulate the main memory working in binary. Using the C programming lan-
guage, all the modern operating systems have been created, like Windows, Unix, iOS, Mac
OS, Linux, and Android; the C programming language also plays an important part in
understanding the source code of deep learning architecture. A student could not
properly program or debug to simulate the designed algorithm if he/she did not have a
deep understanding of binary architecture.

Understanding binary arithmetic is also crucial for students to master how a com-
puter works and how to design new algorithms to solve new problems. Since binary CT
relates to programming, debugging, and considering the solution in a machine way, it is
the basis to develop decimal CT which aims to define a new problem and look for a math-
ematical solution. Teaching knowledge in binary CT is difficult. Decimal mathematics can
solve higher level problems; it is relatively easier to employ exiting mathematic theories
when finding solutions to a specific problem. In AI education, both categories are im-
portant, and, meanwhile, they relate to three levels of learning abilities of CT:
(a) Basic Learning Ability of CT (remembering and understanding the basic knowledge

in both decimal CT and binary CT), which means students should master the basic
mathematical theories and basic programming skills while still lacking experience of
and deep understanding of the real-world problems. They gain the basic knowledge
in both decimal CT and binary CT but are not able to properly divide a big problem
into several smaller problems. On this level, students can hardly provide a feasible
solution to solve a problem; they tend to be very idealistic about the solution in ne-
glecting issues such as the hardware limitations, algorithm efficient, programming
language limitations, or platform problems.

(b) Comprehensive Learning Ability of CT (applying decimal CT and binary CT in a sci-
entific way and analyzing real-world problems), which means students have a deeper
understanding of the knowledge of mathematics and computer science and they can
apply decimal CT and binary CT in scientific ways to analyze real-life problems. They
also have good understanding of the limitations of computational systems. They
master the ability to connect a specific small problem to a mathematical theory and
to implement a proper programming language. These abilities help them to formu-
late feasible solutions in solving real-life problems.

(c) Creative Learning Ability of CT (evaluating the existing solutions and creating new
solutions), which means students have mastered a full body of knowledge about how

Calculus, Linear
Algebra, Probability
Theory, Mathematical
statistics, Complex
variables

Basic calculation
using the theories

Modelling the real-world
problem in diverse
perspectives

Judging new problems in
real world and rethinking
solutions by field and
contextual knowledge

New algorithm to solve
the specific problem

Different programming language
features

Source coding mechanism

Data representation,
Data Structure

Binary representation,
Binary arithmetic

Programming
language, Compiler,
Assembler, Debug,
Operating system

Decimal CT

Remembering

Understanding

Applying

Analyzing

Evaluating

Creating

Binary CT

New algorithm to solve the
specific problem

Basic Learning
Ability: remembering
and understanding
the basic knowledge
in both decimal CT
and binary CT

Comprehensive
Learning Ability: applying
decimal CT and binary
CT in a more scientific
way and analysing the
real world problems

Creative Learning Ability:
evaluating the existing
solutions and creating
new solutions

High

Low

Learning Abilities

Facilitation by
Project-Based
Instruction

Figure 2. The Model of Project-Based Instructional Taxonomy (PBIT).

Understanding binary arithmetic is also crucial for students to master how a computer
works and how to design new algorithms to solve new problems. Since binary CT relates
to programming, debugging, and considering the solution in a machine way, it is the basis
to develop decimal CT which aims to define a new problem and look for a mathematical
solution. Teaching knowledge in binary CT is difficult. Decimal mathematics can solve
higher level problems; it is relatively easier to employ exiting mathematic theories when
finding solutions to a specific problem. In AI education, both categories are important, and,
meanwhile, they relate to three levels of learning abilities of CT:

(a) Basic Learning Ability of CT (remembering and understanding the basic knowledge
in both decimal CT and binary CT), which means students should master the basic
mathematical theories and basic programming skills while still lacking experience of
and deep understanding of the real-world problems. They gain the basic knowledge
in both decimal CT and binary CT but are not able to properly divide a big problem
into several smaller problems. On this level, students can hardly provide a feasible
solution to solve a problem; they tend to be very idealistic about the solution in
neglecting issues such as the hardware limitations, algorithm efficient, programming
language limitations, or platform problems.

(b) Comprehensive Learning Ability of CT (applying decimal CT and binary CT in a
scientific way and analyzing real-world problems), which means students have a
deeper understanding of the knowledge of mathematics and computer science and
they can apply decimal CT and binary CT in scientific ways to analyze real-life
problems. They also have good understanding of the limitations of computational
systems. They master the ability to connect a specific small problem to a mathematical
theory and to implement a proper programming language. These abilities help them
to formulate feasible solutions in solving real-life problems.

(c) Creative Learning Ability of CT (evaluating the existing solutions and creating new
solutions), which means students have mastered a full body of knowledge about
how a computer works and how related mathematical theories help to solve different
problems in various contexts. They also master methods of evaluation of existing
solutions and creating new ones. When facing a problem, they have strong abilities
to figure out several solutions with different technical and mathematical paths. With
understanding of the domain knowledge in various industrial fields, they can select
one proper technical path among several potential solutions. They have also good
understanding of project budget, time plan, company size, and legacy system in the
company, etc.

Additionally, it always takes time to deliver knowledge and facilitate students to gain
new learning experience in depth. This indicates when PBIT is applied in teaching practice,
the course design should take a reasonable time plan into account to plan lectures and

Educ. Sci. 2024, 14, 134 6 of 14

hands-on learning activities. This should also be aligned with education objectives and
evaluation requirements. These points lead us to discuss a case on a course Deep Learning
Technologies in AI bachelor education in a Chinese university.

4. A Case: Applying PBIT in Education Practice
4.1. Method: A Case as an Example

In teaching practice, how can we use PBIT as a tool to develop teaching practice? This
section shows a detailed case as an example on a new course design. We show a case as an
example that indicates a way of conducting and disseminating research to impact upon
practice, and to refine the ways in which practice is theorized [68].

In this paper, the example links the theoretical framework with practice in the par-
ticular setting of a bachelor AI education program in one of Chinese universities. As
Freebody [68] described, in the cases, teachers are always teaching some subject matter,
with some particular learners, in particular places, and under conditions that signifi-
cantly shape and temper teaching and learning practices. These conditions are not taken
to be ‘background’ variables, but rather lived dimensions that are indigenous to each
teaching-learning event. One of the authors’ own teaching experience is the resource in
the description of the case that visualizes the process of a course’s development. Based on
showing students’ learning outcomes, the case is described by transferring the author’s
participatory experience to research resources in this paper. So, the researcher himself also
plays multiple roles, such as of being a course designer, an AI educator, and a participant
in a PBI environment.

As mentioned, the main purpose of this paper is to develop a new model of Project-
Based Instructional Taxonomy (PBIT) that provides a tool of course design that facilitates
CT development as a creative action in solving real-life problems. Accordingly, the case
reflects how we can deepen theoretical understanding through a course process with details
of ‘how’ the teaching practice is developed. As Dowling and Cooney [69] suggested, in
designing and developing a research project, the researchers must choose the method that
is most appropriate to answer the research question while also considering the approach
that will make the best of their own knowledge and experience in the phenomenon un-
der consideration to achieve credibility. In educational contexts, people’s practices and
experiences have been described as displaying uncertain, complex, messy, and fleeting
properties, which together call distinct research approaches to description, understanding,
and explanation [68].

4.2. Background of a Course Design

As mentioned, the case focuses on how PBIT is applied in the course Deep Learning
and Technologies, which is one of elective courses in a bachelor education in the Faculty
of Software Engineering, Northeastern University (NEU), China. At NEU, a reform from
traditional teaching to Problem and Project-Based Learning (PBL) carried out in bachelors’
and masters’ education since 2018. PBI has been one of the new methods used to redesign
courses that are involved in the reform. Meanwhile, NEU has close collaboration with
local and national high-tech AI industries such as Kuangshi Technology, iFLYTEK, Huawei
Technology, and Alibaba. This provides conditions and resources to design innovative
pedagogies such as PBL in AI education.

Since 2019, the course Deep Learning and Technologies has been open to all students
in third-year bachelor education within NEU. The course has been focused on the im-
provement of CT development. Usually, there are around 100 students who come from
13 different majors in the course every year. Even though students have diverse educational
backgrounds and knowledge foundations, a basic level of mathematical and programming
skills are required to enroll in this course. The students are required to work 56 h in this
course. The new PBIT model has been employed in this course since 2021.

Educ. Sci. 2024, 14, 134 7 of 14

4.3. Course Design

The principles of the course design include (a) all principles of PBI as discussed in
Section 3, and (b) inclusive education aiming to encourage every student to develop CT. By
an overview of the course structure, there are three main parts:

(a) Lectures on Computer and Programming (8 h);
(b) Lectures on Deep Learning and Technologies (24 h);
(c) Student Project Work (24 h).

The alignment is made between the course structure and different education objectives,
as shown in Figure 3.

Educ. Sci. 2024, 14, x FOR PEER REVIEW 7 of 15

local and national high-tech AI industries such as Kuangshi Technology, iFLYTEK,
Huawei Technology, and Alibaba. This provides conditions and resources to design inno-
vative pedagogies such as PBL in AI education.

Since 2019, the course Deep Learning and Technologies has been open to all students
in third-year bachelor education within NEU. The course has been focused on the im-
provement of CT development. Usually, there are around 100 students who come from 13
different majors in the course every year. Even though students have diverse educational
backgrounds and knowledge foundations, a basic level of mathematical and program-
ming skills are required to enroll in this course. The students are required to work 56 h in
this course. The new PBIT model has been employed in this course since 2021.

4.3. Course Design
The principles of the course design include (a) all principles of PBI as discussed in

Section 3, and (b) inclusive education aiming to encourage every student to develop CT.
By an overview of the course structure, there are three main parts:
(a) Lectures on Computer and Programming (8 h);
(b) Lectures on Deep Learning and Technologies (24 h);
(c) Student Project Work (24 h).

The alignment is made between the course structure and different education objec-
tives, as shown in Figure 3.

Figure 3. Course Design in PBIT.

As shown Figure 3, there are two parts of the lectures that support students’ project
work. In the first 8 teaching hours, knowledge on computers and programming is intro-
duced, which includes basic programming knowledge, basic calculus and linear algebra,
and Python platform. The first stage of teaching aims to cultivate the students to learn
basic abilities in both binary and decimal CT. Students are required to remember and un-
derstand basic knowledge to be able to apply and analyze a given algorithm in the course.

The second stage involves lectures to teach knowledge of deep learning and technol-
ogies that facilitates students to gain comprehensive learning ability. Students should not
only be able to remember and understand the basic concepts in Deep Learning, like neu-
ron network, loss function, forward propagation, backward propagation, and data set, but
also be able to apply and analyze models of deep learning, such as VGG, U-net, and Mo-
bile-Net. They are also expected to evaluate different models that they develop by them-
selves or their peers.

In the third stage, students participate in group work and develop their projects. Each
student group (4–5 members) will first identify a problem related to the course and then
work on a problem-solving process until the solution is achieved. The students are

Figure 3. Course Design in PBIT.

As shown Figure 3, there are two parts of the lectures that support students’ project
work. In the first 8 teaching hours, knowledge on computers and programming is intro-
duced, which includes basic programming knowledge, basic calculus and linear algebra,
and Python platform. The first stage of teaching aims to cultivate the students to learn basic
abilities in both binary and decimal CT. Students are required to remember and understand
basic knowledge to be able to apply and analyze a given algorithm in the course.

The second stage involves lectures to teach knowledge of deep learning and technolo-
gies that facilitates students to gain comprehensive learning ability. Students should not
only be able to remember and understand the basic concepts in Deep Learning, like neuron
network, loss function, forward propagation, backward propagation, and data set, but also
be able to apply and analyze models of deep learning, such as VGG, U-net, and Mobile-Net.
They are also expected to evaluate different models that they develop by themselves or
their peers.

In the third stage, students participate in group work and develop their projects. Each
student group (4–5 members) will first identify a problem related to the course and then
work on a problem-solving process until the solution is achieved. The students are expected
to apply theoretical knowledge learned from the lectures in the practice of their projects. To
support CT development, a project workflow is designed, as discussed in Section 4.3.

4.4. A Project Workflow

A project workflow is designed to facilitate students’ learning experience (Figure 4).
Overall, there are six recursive stages: (1) Problem Definition and Understanding, (2) Macro-
scopic Problem Analysis, (3) Microscopic Problem Analysis and Division, (4) Selecting
Technical Platform, (5) Simulating the Solution, and (6) Testing the Program. During the
test stage, bugs always exist. If there is a logic bug, the students may go to stage (1) for
recursive operations; while if there is a coding bug or integrated bug, students need to
check again from stage (3) to (6).

Educ. Sci. 2024, 14, 134 8 of 14

Educ. Sci. 2024, 14, x FOR PEER REVIEW 8 of 15

expected to apply theoretical knowledge learned from the lectures in the practice of their
projects. To support CT development, a project workflow is designed, as discussed in Sec-
tion 4.3.

4.4. A Project Workflow
A project workflow is designed to facilitate students’ learning experience (Figure 4).

Overall, there are six recursive stages: (1) Problem Definition and Understanding, (2) Mac-
roscopic Problem Analysis, (3) Microscopic Problem Analysis and Division, (4) Selecting
Technical Platform, (5) Simulating the Solution, and (6) Testing the Program. During the
test stage, bugs always exist. If there is a logic bug, the students may go to stage (1) for
recursive operations; while if there is a coding bug or integrated bug, students need to
check again from stage (3) to (6).

Figure 4. Workflow in Student Project Work.

In the first stage, Problem Definition and Understanding, student groups need to
identify the real-world problems based on collaboration with local software enterprises.
They choose the company partners themselves or under a teacher’s recommendations.
They will visit the companies and consult the engineers and collect information in relation
to different problems. With the help of teachers and enterprise engineers, student groups
should identify specific problems.

In the second stage, Macroscopic Problem Analysis, the group members try to seek
solutions for the problems. Usually, there are several potential directions to explore solu-
tions from both mathematical and technical perspectives. Some of the potential solutions
are feasible while some are not. In this situation, computational thinking plays a signifi-
cant role to determine the most feasible solution. This also requires students to apply
knowledge they learn from the lectures on Deep Learning and Technologies in practice.
For example, if students do not master knowledge on derivative, matrix vector, probabil-
ities, mean, or standard deviation, they will be unable to find good solutions to move on
their project work.

In the third stage, Microscopic Problem Analysis and Division, the predefined prob-
lem is divided into several smaller tasks; each task corresponds to one or two mathemat-
ical or technical problems. In the project, the algorithm part includes data collection and
preprocessing, designing the deep network structure, selecting the loss function, training
strategies, and hyper-parameter selection. These tasks require knowledge of sparse repre-
sentation, partial derivative, matrix operation, and probability, etc. The students are en-
couraged to find and understand the mathematical theories behind the tasks, and further
to use the theories to solve the problems.

1. Problem Definition and
Understanding

2. Macroscopic Problem
Analysis

3. Microscopic Problem
Analysis and Division

4. Selecting Technical
Platform

5. Simulating the Solution

6. Testing the Program

Coding Bug

Integrated Bug

Logic Bug

Figure 4. Workflow in Student Project Work.

In the first stage, Problem Definition and Understanding, student groups need to
identify the real-world problems based on collaboration with local software enterprises.
They choose the company partners themselves or under a teacher’s recommendations.
They will visit the companies and consult the engineers and collect information in relation
to different problems. With the help of teachers and enterprise engineers, student groups
should identify specific problems.

In the second stage, Macroscopic Problem Analysis, the group members try to seek
solutions for the problems. Usually, there are several potential directions to explore solu-
tions from both mathematical and technical perspectives. Some of the potential solutions
are feasible while some are not. In this situation, computational thinking plays a signif-
icant role to determine the most feasible solution. This also requires students to apply
knowledge they learn from the lectures on Deep Learning and Technologies in practice. For
example, if students do not master knowledge on derivative, matrix vector, probabilities,
mean, or standard deviation, they will be unable to find good solutions to move on their
project work.

In the third stage, Microscopic Problem Analysis and Division, the predefined problem
is divided into several smaller tasks; each task corresponds to one or two mathematical
or technical problems. In the project, the algorithm part includes data collection and
preprocessing, designing the deep network structure, selecting the loss function, training
strategies, and hyper-parameter selection. These tasks require knowledge of sparse rep-
resentation, partial derivative, matrix operation, and probability, etc. The students are
encouraged to find and understand the mathematical theories behind the tasks, and further
to use the theories to solve the problems.

In the fourth stage, Selecting Technical Platform, the students are expected to imple-
ment the solutions on machines based on their selection of technical platforms. In software
engineering, different technical platforms aim to solve different problems. For example,
in developing a server-end system, a Linux operating system with JVM is suitable; while
in developing a front-end software artifact, JavaScript and other related libraries are good
choices. The students should fully consider the mathematical solutions designed in the first
three stages and distinct features of different technical platforms that help them to make
correct selections. Teachers and enterprise engineers also provide suggestions to students.

In the fifth stage, Simulating the Solution, learning activities are more software-
engineering related. Students should simulate solutions on the technical platforms. During
this stage, some students may feel frustrated, as writing a program is not as easy as they
expect. They maybe meet some challenges such as Installing Integrated Environment (IDE),
configuration of the development, importing the libraries, or dealing with different kinds

Educ. Sci. 2024, 14, 134 9 of 14

of bug. In this situation, students are encouraged to help each other, and teachers are also
expected to facilitate students to manage diverse challenges.

The last stage is Testing the Program. In general, debugging is a thorny problem
for most software developers. In this stage, a comprehensive understanding of binary
computational thinking is required. Bugs can be classified into three categories, including
coding bug, integrated but, and logic bug. Regarding the first category, the students need
to firstly check the source code of the program and read the API (Application Programming
Interface) that is provided by the platform supplier. They then go back to the fifth stage,
fix the bugs, and test the program again and again until the program can run successfully.
Regarding the second category, there may be an integrated bug, for two reasons: One
reason is the integration of different modules related to software engineering. In such
situations, the students are required to go back to the third stage to check the interfaces
among different modules. The second is that the defined problem is not divided into
microscopic tasks correctly. Regarding the third category, if there is a logic bug, it means the
inconsistency exists between the problem defined and its proposed solution. The students
need to go back to the beginning stage to redefine the problem or rethink the direction
of solutions.

The collaboration between NEU and local enterprises provides resources for students’
projects. The above stages in the Project Workflow motivate students to achieve CT abilities
deeper and deeper through working with problem-oriented projects. This also provides
opportunities for students to learn other skills such as project management, communication,
and collaboration.

4.5. Teaching and Facilitation

There are three teachers in the teaching group. One teacher is from an enterprise and
the other two are from Software College at NEU. The teaching responsibilities include
delivering lectures in the first and second stages and supervision of student projects in the
last stage in the course. Usually, the teachers meet student project groups every two weeks.

When students develop their project groups, diversity of members’ backgrounds is
encouraged. Including students from different majors work in a group (with four to five
members) helps students to learn from each other and collect different perspectives to
solve a specific problem. Each group selects one group leader who helps to negotiate with
supervisors, organize group meetings, and book supervision meetings. In these meetings,
teachers and students are equally to engage in discussions that facilitates the process of
solving problems in projects. Student groups should also collaborate with local enterprises.
The group leaders help to coordinate the groups to work together with enterprise engineers.

The identification of problems and plans of implementation of student projects should
be approved by teachers that will ensure students to meet learning objectives of the course.
During the implementation of projects, there is no restriction in selecting the technical
platforms. Students can choose the platforms that they are familiar with, such as Keras,
Tensorflow, or Pytorch. Before the end of the projects, student groups are required to submit
project reports which is a part of their examination.

4.6. Methods of Grading

According to the course structure, there are three parts in examination. The final score
will be given individually by the sum of the scores from different parts. The proportion of
score in part a, b, and c is, respectively, 20%, 30%, and 50%. Table 1 shows detailed exam
requirements and grading methods. In examinations of (a) and (b), students are required to
submit individual reports. In Student Project Work, students should submit group reports
and attend group oral examination; when individual score is given, peer evaluation is
also considered.

Educ. Sci. 2024, 14, 134 10 of 14

Table 1. Grading in the Course.

Course Structure Education Objective Exam Requirements Proportion

(a) Lectures in Computer
and Programming Skills

Basic Learning Ability:
remembering and understanding
the basic knowledge in both
decimal CT and binary CT

Score is given individually.
An individual study report

should be submitted after
the lectures.

20%

(b) Lectures in Deep
Learning Technologies

Comprehensive Learning Ability:
applying decimal CT and binary CT
in a more scientific way and
analyzing the real-world problems

Score is given individually.
An individual study report

should be submitted after
the lectures.

30%

(c) Student Project Work
Creative Learning Ability:
evaluating the existing solutions
and creating new solutions

Score is given individually.
A group project report (and its

source code) should be submitted
when the project is finished.

Group presentation.
Individual reflection and peer

evaluation is considered.

50%

In group exams, students’ learning experience is checked according to different edu-
cational objectives as designed in the course. Besides project reports, students’ CT devel-
opment, methods of creation action, and abilities of applying theories in practice are also
evaluated in Student Project Work. This also includes reflection of individual student and
peer evaluation that helps to avoid freeloaders in student groups.

5. Discussion

As the course design shows, the links between theories and practice, problem-oriented
projects, and student group work are key dimensions to apply PBIT in education practice. To
help students to achieve education objectives, we should be aware of these key dimensions.
Overall, education systems in Chinese schools and universities are exam-oriented. Chinese
students have been used to paying attention to their memory, article recitation, numeracy,
reading, writing, and other basic skills that are assessed in examinations. Such background
provides opportunities for reform to integrate PBIT into the current education system,
change methods of teaching and learning, and improve students’ learning abilities.

As mentioned, the PBIT model has been applied in the course since autumn semester
in 2021; before 2021, the course was organized by lecture-based teaching. To meet the
requirements of the examination policy, an individual grade is given in the implementation
of PBIT; meanwhile, peer evaluation and group reports are also considered for individual
grade. Moreover, students are motivated to learn both individually and collaboratively. In
comparison with the same course in the autumn semester in 2020, it shows PBIT gains very
positive effects. The total average grade among students was 90.4 in 2021 and 93.92 in 2022,
which were higher than 87.1 in 2020. Since 2023, the course examination has followed the
overall changes in examination policies at NEU. As a new point scale should be adapted,
the condition of comparing students’ average grade with previous years has been missing;
however, the method of grading in this course has not been changed.

Along with the learning process in the course, every student should submit two
individual reports and contribute to one group report. All the requirements and evaluation
criteria of reports are made based on the model of PBIT. The work on different project
reports provides students opportunities to engage to identify new research questions,
communicate and collaboration with others, learn how to apply theories in practice, and
seek solutions. As students come from different backgrounds, PBIT also helps students
to link knowledge they learn from the course to their own subject majors. This further

Educ. Sci. 2024, 14, 134 11 of 14

improves their skills in solving problems across disciplinary contexts as well as their
abilities of ‘creative action’ in CT development.

The design of students’ examination was in line with the framework of three-level
learning abilities: Basic Learning Ability (in part A), Comprehensive Learning Ability
(in part B), and Creative Learning Ability (in part C). From the submitted reports in
2021, how students improve their learning abilities can also be seen. For example, when
students finished Part A, they were required to submit reports under a topic of ‘Using
Python or C Programming Language to Solve a Specific Problem’. Then the students
showed their diverse interests, proposed different problems, and formulated solutions. For
example, students provided solutions to solve problems like ‘Simulating AND, OR, and
NAND Gates with Perceptron’ or ‘Simulating Loss Function in High-Level Programming
Language’. In 2022 and 2023, it was suggested that the student reports focus on the theme of
‘Application of Deeping Learning in Industrial Contexts’. Students showed their interests
in their reports such as ‘Methods of Material Surface Defect Detection Based on Deep
Learning’, ‘Application of Deep Learning in Image Processing’, and ‘Solving Problems
of Tourism Management by Deep Learning’. As mentioned, all student projects were
proposed and developed in collaboration with local companies, which means through
the projects, students gained abilities to formulate feasible solutions in solving real-life
problems. This indicated that students mastered comprehensive understanding of binary
CT, decimal CT, and programming skills. In Part B, the submission of reports required
students to investigate ‘How Artificial Intelligence Technologies Improve Productivity
and Effectivity in Certain Field’. Most of the students responded to this assignment by
rethinking the application of AI technologies in the field that they majored. Accordingly, the
submitted reports showed students’ work in diverse fields such as Mechanical Engineering,
Materials Science, Environment Science, Health Care, and Business Service. In Part C,
students should experience deeper learning and show their abilities to solve the problems
by ‘Using Artificial Intelligence Technology and Deep Learning in Practice’. The students
worked in groups, defined appropriate problems, provided feasible solutions, and finished
the program with high-level programming language. This has been evidenced by titles of
student reports such as ‘Classification of Metallographic Images of Fe-C Alloys Based on
Keras Neural Network Framework’ and ‘Image Recognition of Metal Microstructure’.

All teachers in the course finished their participation of Teacher Education Program
(TEP) at NEU. From TEP, teachers mastered knowledge, skills, and competencies to design
and apply PBIT in the course. As PBIT is a new model, some techniques have been also
employed to facilitate students to learn ‘how to learn’ step by step. For example, at the
beginning of the course, teachers firstly addressed some examples of research problems,
then students gradually learned how to identify problems by themselves under the support
of teachers. During the course, teachers also reflected themselves as learner experts, who
shared learning experience with students and who were equal with students in problem-
solving processes and in collaboration with enterprises. Thus, their roles were more
facilitators of the learning process than providers of problems’ solutions. This also laid
basis to motivate students to work on open and real-life problems in the period of the
Student Project Work.

6. Conclusions

Fostering students’ authentic learning experience is very important in CT development
in AI education. Students should be encouraged to develop computational products that
have an authentic impact on their lives from the moment they begin to code; all they need
is to be situated in contexts that allow them to do so. AI educators should design and apply
new pedagogical models that are more inclusive to motivate and empower students to
learn through creative action. This paper highlights creativity as an inherent element of CT
development; this means ‘creative action’ stands at the top of the agenda in AI education.
The new model of PBIT proposed in this paper is accordingly developed, and provides a
useful tool of course design; it makes alignment between education objectives, knowledge

Educ. Sci. 2024, 14, 134 12 of 14

categories of CT, levels of learning ability, process of project facilitation, and methods of
grading. As the case on the course ‘Deep Learning and Technologies’ reveals, PBIT provides
students opportunities to learn CT in-depth and master skills for solving practical problems
under the support of teachers. The university, NEU, also paid attention to policy support,
management of changes, and development of teacher education. These measures help
to overcome barriers to education reforms and shape a friendly environment to develop
PBIT in AI education. Since PBIT has been developed since 2021, a strategy should be
considered for its long-term development. This paper also shows its limitation in providing
more evidence to support a broader scope of study related to more research questions,
for example, how can PBIT stimulate students’ reflective learning experience and critical
thinking in their practice of creative problem solving? Additionally, the implementation of
PBIT involves diverse participant groups including teachers, students, university leaders,
and enterprise engineers; it is necessary to explore how different participants perceive
their collaboration in PBIT. Accordingly, future research will focus on more evidence-based
education improvement and a holistic view to develop CT in AI education.

Author Contributions: Conceptualization, C.Z.; methodology, C.Z. and W.Z.; formal analysis, C.Z.
and W.Z.; investigation, W.Z. resources, W.Z.; writing—original draft preparation, C.Z. and W.Z.;
writing—review and editing, C.Z. and W.Z.; visualization, C.Z. and W.Z.; supervision, C.Z.; project
administration, C.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Ethical review and approval were waived for this study due
to a study focusing on a model of pedagogical design and its implementation.

Informed Consent Statement: Informed consent was obtained from all subjects involved in
the study.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lye, S.Y.; Koh, J.H.L. Review on teaching and learning of computational thinking through programming: What is next for K-12?

Comput. Hum. Behav. 2014, 41, 51–61. [CrossRef]
2. Agbo, F.J.; Oyelere, S.S.; Suhonen, J.; Laine, T.H. Co-design of mini games for learning computational thinking in an online

environment. Educ. Inf. Technol. 2021, 26, 5815–5849. [CrossRef]
3. Angeli, C.; Giannakos, M. Computational thinking education: Issues and challenges. Comput. Hum. Behav. 2020, 105, 106185.

[CrossRef]
4. Dolgopolovas, V.; Dagienė, V. Computational thinking: Enhancing STEAM and engineering education, from theory to practice.

Comput. Appl. Eng. Educ. 2021, 29, 5–11. [CrossRef]
5. Brennan, K.; Balch, C.; Chung, M. Creative Computing; Harvard University Press: Cambridge, UK, 2014.
6. Kim, Y. The Effects of PBL-based Data Science Education classes using App Inventor on elementary student Computational

Thinking and Creativity improvement. J. Korean Assoc. Inf. Educ. 2020, 24, 551–562.
7. Israel-Fishelson, R.; Hershkovitz, A.; Eguíluz, A.; Garaizar, P.; Guenaga, M. The associations between computational thinking and

creativity: The role of personal characteristics. J. Educ. Comput. Res. 2021, 58, 1415–1447. [CrossRef]
8. Brennan, K.; Resnick, M. Imagining, creating, playing, sharing, reflecting: How online community supports young people as

designers of interactive media. In Emerging Technologies for the Classroom; Springer: New York, NY, USA, 2013; pp. 253–268.
9. Dagienė, V.; Futschek, G.; Stupurienė, G. Creativity in solving short tasks for learning computational thinking. Constr. Found.

2019, 14, 382–396.
10. Glezou, K.V. Fostering computational thinking and creativity in early childhood education: Play-learn-construct-program-

collaborate. In Research Anthology on Computational Thinking, Programming, and Robotics in the Classroom; IGI Global: Hershey PA,
USA, 2022; pp. 21–45.

11. Yadav, A.; Cooper, S. Fostering creativity through computing. Commun. ACM 2017, 60, 31–33. [CrossRef]
12. Hershkovitz, A.; Sitman, R.; Israel-Fishelson, R.; Eguíluz, A.; Garaizar, P.; Guenaga, M. Creativity in the acquisition of computa-

tional thinking. Interact. Learn. Environ. 2019, 27, 628–644. [CrossRef]
13. Tissenbau, M.; Sheldon, J. Abelson. From computational thinking to computational action. Commun. ACM 2019, 62, 34–36.

[CrossRef]

https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.1007/s10639-021-10515-1
https://doi.org/10.1016/j.chb.2019.106185
https://doi.org/10.1002/cae.22382
https://doi.org/10.1177/0735633120940954
https://doi.org/10.1145/3029595
https://doi.org/10.1080/10494820.2019.1610451
https://doi.org/10.1145/3265747

Educ. Sci. 2024, 14, 134 13 of 14

14. Li, Y.; Schoenfeld, A.H.; DiSessa, A.A.; Graesser, A.C.; Benson, L.C.; English, L.D.; Duschl, R.A. Computational thinking is more
about thinking than computing. J. STEM Educ. Res. 2020, 3, 1–18. [CrossRef]

15. Kuo, W.C.; Hsu, T.C. Learning computational thinking without a computer: How computational participation happens in a
computational thinking board game. Asia-Pac. Educ. Res. 2020, 29, 67–83. [CrossRef]

16. Tsai, M.J.; Liang, J.C.; Hsu, C.Y. The computational thinking scale for computer literacy education. J. Educ. Comput. Res. 2021, 59,
579–602. [CrossRef]

17. Guzdial, M. A Definition of Computational Thinking from Jeannette Wing; Computing Education Blog: Atlanta, GA, USA, 2011.
18. Tang, X.; Yin, Y.; Lin, Q.; Hadad, R.; Zhai, X. Assessing computational thinking: A systematic review of empirical studies. Comput.

Educ. 2020, 148, 103798. [CrossRef]
19. Ezeamuzie, N.O.; Leung, J.S. Computational thinking through an empirical lens: A systematic review of literature. J. Educ.

Comput. Res. 2022, 60, 481–511. [CrossRef]
20. Lyon, J.A.; Magana, A.J. Computational thinking in higher education: A review of the literature. Comput. Appl. Eng. Educ. 2020,

28, 1174–1189. [CrossRef]
21. Barr, D.; Harrison, J.; Conery, L. Computational thinking: A digital age skill for everyone. Learn. Lead. Technol. 2011, 38, 20–23.
22. Zhou, C.; Krogh, L. Developing Successful Group Processes in Interdisciplinary Projects. Interdisciplinarity and Problem-Based Learning

in Higher Education: Research and Perspectives from Aalborg University; Innovation and Change in Professional Education; Jensen,
A.A., Stentoft, D., Ravn, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 18, pp. 103–116.

23. Zhou, C. In between Ha-Ha and Aha!: Technology Designers’ Humor as a Way of Creativity in Group Innovation Experience.
Kindai Manag. Rev. 2019, 7, 9–19.

24. Salam, S. A systemic review of Problem-Based Learning (PBL) and Computational Thinking (CT) in teaching and learning. Int. J.
Humanit. Innov. (IJHI) 2022, 5, 46–52. [CrossRef]

25. Saad, A.; Zainudin, S. A review of Project-Based Learning (PBL) and Computational Thinking (CT) in teaching and learning.
Learn. Motiv. 2022, 78, 101802. [CrossRef]

26. Valls Pou, A.; Canaleta, X.; Fonseca, D. Computational Thinking and Educational Robotics Integrated into Project-Based Learning.
Sensors 2022, 22, 3746. [CrossRef]

27. Yang, Y.; Lang, H. Project based instruction for computer aided design and mechatronics courses. In Proceedings of the 2020
15th International Conference on Computer Science & Education (ICCSE), Delft, The Netherlands, 18–22 August 2020; IEEE:
Piscataway, NJ, USA, 2020; pp. 406–410.

28. Machado, C.T.; Carvalho, A.A. Concept mapping: Benefits and challenges in higher education. J. Contin. High. Educ. 2020, 68,
38–53. [CrossRef]

29. Henriksen, D.; Richardson, C.; Shack, K. Mindfulness and creativity: Implications for thinking and learning. Think. Ski. Creat.
2020, 37, 100689. [CrossRef]

30. Apiola, M.; Sutinen, E. Design science research for learning software engineering and computational thinking: Four cases. Comput.
Appl. Eng. Educ. 2021, 29, 83–101. [CrossRef]

31. Navy, S.L.; Kaya, F. PBL as a pedagogical approach for integrated STEM: Evidence from prospective teachers. Sch. Sci. Math.
2020, 120, 285–296. [CrossRef]

32. Hardjanto, M.F.N.; Budiyanto, C.; Hafid, Y. Exploring the impact of design thinking on the development of computational
thinking skill: Review of the literature. In Proceedings of the International Conference on Industrial Engineering and Operations
Management, Istanbul, Turkey, 7–10 March 2022.

33. Zhou, C. A Study on Creative Climate in Project-Organized Groups (POGs) in China and Implications for Sustainable Pedagogy.
Sustainability 2018, 10, 114. [CrossRef]

34. Papert, S. Mindstorms: Children, computers, and Powerful Ideas; Basi Books Inc: New York, NY, USA, 1996.
35. Grover, S.; Pea, R. Computational thinking in K-12: A review of the state of the field. Educ. Res. 2013, 42, 38–43. [CrossRef]
36. Tikva, C.; Tambouris, E. Mapping computational thinking through programming in K-12 education: A conceptual model based

on a systematic literature Review. Comput. Educ. 2021, 162, 104083. [CrossRef]
37. Knie, L.; Standl, B.; Schwarzer, S. First experiences of integrating computational thinking into a blended learning in-service

training program for STEM teachers. Comput. Appl. Eng. Educ. 2022, 30, 1423–1439. [CrossRef]
38. Wing, J.M. Computational Thinking. Commun. ACM 2006, 49, 33–35. [CrossRef]
39. Cuny, J.; Snyder, L.; Wing, J.M. Demystifying Computational Thinking for Non-Computer Scientists. Unpublished Manuscript in

Progress. 2010. Available online: http://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf (accessed on 1 December
2023).

40. Palts, T.; Pedaste, M. A model for developing computational thinking skills. Inform. Educ. 2020, 19, 113–128. [CrossRef]
41. Wang, C.; Shen, J.; Chao, J. Integrating computational thinking in stem education: A literature review. Int. J. Sci. Math. Educ. 2021,

20, 1949–1972. [CrossRef]
42. Papert, S. A critique of techno centrism in thinking about the school of the future. In Epistemology and Learning Memo #2;

MIT: Cambridge, MA, USA, 1990.
43. Parsazadeh, N.; Cheng, P.Y.; Wu, T.T.; Huang, Y.M. Integrating computational thinking concept into digital storytelling to improve

learners’ motivation and performance. J. Educ. Comput. Res. 2021, 59, 470–495. [CrossRef]

https://doi.org/10.1007/s41979-020-00030-2
https://doi.org/10.1007/s40299-019-00479-9
https://doi.org/10.1177/0735633120972356
https://doi.org/10.1016/j.compedu.2019.103798
https://doi.org/10.1177/07356331211033158
https://doi.org/10.1002/cae.22295
https://doi.org/10.33750/ijhi.v5i2.145
https://doi.org/10.1016/j.lmot.2022.101802
https://doi.org/10.3390/s22103746
https://doi.org/10.1080/07377363.2020.1712579
https://doi.org/10.1016/j.tsc.2020.100689
https://doi.org/10.1002/cae.22291
https://doi.org/10.1111/ssm.12408
https://doi.org/10.3390/su10010114
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.1016/j.compedu.2020.104083
https://doi.org/10.1002/cae.22529
https://doi.org/10.1145/1118178.1118215
http://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf
https://doi.org/10.15388/infedu.2020.06
https://doi.org/10.1007/s10763-021-10227-5
https://doi.org/10.1177/0735633120967315

Educ. Sci. 2024, 14, 134 14 of 14

44. McGuinness, C.; O’Hare, L. Introduction to the special issue: New perspectives on developing and accessing thinking: Selected
papers from the 15th international conference on thinking (ICOT2011). Think. Ski. Creat. 2012, 7, 75–77. [CrossRef]

45. Sen, C.; Ay, Z.S.; Kiray, S.A. Computational thinking skills of gifted and talented students in integrated STEM activities based on
the engineering design process: The case of robotics and 3D robot modelling. Think. Ski. Creat. 2021, 42, 100931. [CrossRef]

46. Denning, P.J.; Tedre, M. Computational thinking: A disciplinary perspective. Inform. Educ. 2022, 20, 361–390. [CrossRef]
47. Israel-Fishelson, R.; Hershkovitz, A. Studying interrelations of computational thinking and creativity: A scoping review (2011–

2020). Comput. Educ. 2022, 176, 104353. [CrossRef]
48. Sternberg, R.J. Handbook of Creativity; Cambridge University Press: New York, NY, USA, 1999.
49. Zhou, C. Introducing Problem-Based Learning (PBL) for Creativity and Innovation in Chinese Universities: Emerging Research and

Opportunities; IGI Global: Hershey, PA, USA, 2020.
50. Craft, A. Creativity in schools. In Developing Creativity in Higher Education: An Imaginative Curriculum; Jackson, N., Oliver, M.,

Shaw, M., Wisdom, J., Eds.; Routledge: London, UK, 2006; pp. 19–28.
51. Romero, M.; Lepage, A.; Lille, B. Computational thinking development through creative programming in higher education. Int. J.

Educ. Technol. High. Educ. 2017, 14, 42. [CrossRef]
52. Bjögvinsson, E.; Ehn, P.; Hillgren, P.A. Design things and design thinking: Contemporary participatory design challenges. Des.

Issues 2012, 28, 101–116. [CrossRef]
53. Nayef, E.G.; Yaacob, N.R.N.; Ismail, H.N. Taxonomies of educational objective domain. Int. J. Acad. Res. Bus. Soc. Sci. 2013, 3,

166–175. [CrossRef]
54. Clark, D. Bloom’s Taxonomy of Learning Domains. Big Dog & Little Dog’s Performance Juxtaposition, 2013. Available online:

http://www.nwlink.com/~donclark/hrd/bloom.html (accessed on 1 December 2023).
55. Bloom, B.; Englehart, M.; Furst, E.; Hill, W.; Krathwohl, D. Taxonomy of Educational Objectives: The Classification of Educational

Goals. In Handbook I: Cognitive Domain; Longmans, Green: New York, NY, USA; Toronto, ON, USA, 1956.
56. Anderson, L.W.; Krathwohl, D.R. A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s Taxonomy of Educational

Objectives; Addison Wesley Longman, Inc.: New York, NY, USA, 2001.
57. Almerico, G.M. Bloom’s Taxonomy Illustrative Verbs: Developing a Comprehensive List for Educator Use. Fla. Assoc. Teach. Educ.

J. 2004, 1, 1–10.
58. Zhu, Z.; Zhou, C. Global Perspectives on Fostering Problem-Based Learning in Chinese Universities; IGI Global: Hershey, PA, USA, 2019.
59. Krathwohl, D.R. A revision of Bloom’s taxonomy: An overview. Theory Pract. 2002, 41, 212–261. [CrossRef]
60. Zhang, L.; Zhou, C.; Sun, X. Big Data plus Business Administration: Applying Problem-Based Learning to Enrich the Design of

Interdisciplinary Education. Int. J. Eng. Educ. 2022, 38, 786–798.
61. Shin, N.; Bowers, J.; Krajcik, J.; Damelin, D. Promoting computational thinking through project-based learning. Discip. Interdiscip.

Sci. Educ. Res. 2021, 3, 7. [CrossRef]
62. Juškevičienė, A.; Dagienė, V. Computational thinking relationship with digital competence. Inform. Educ. 2018, 17, 265–284.

[CrossRef]
63. Railsback, J. Project-Based Instruction: Creating Excitement for Learning; U.S. Department of Education, Office of Educational

Research and Improvement: Washington, DC, USA, 2002.
64. Martinez, C. Developing 21st century teaching skills: A case study of teaching and learning through project-based curriculum.

Cogent Educ. 2022, 9, 2024936. [CrossRef]
65. Neufeld, V.R.; Barrows, H.S. The ‘McMaster Philosophy’: An approach to medical education. J. Med. Educ. 1974, 49, 1040–1050.

[CrossRef]
66. Zhou, C. Supporting Creative Learning by Information Communication Technology (ICT) in Project Teams. In Information

Technology as a Facilitator of Social Processes in Project Management and Collaborative Work; Bagwell, T.C., Cropf, R.A., Foster-Gadkari,
S.L., Eds.; IGI Global: Hershey, PA, USA, 2018; pp. 1–20.

67. Zhou, C. A Student Project as an ‘Extra Group Member’: A Metaphor for the Development of Creativity in Problem-Based
Learning (PBL). Akad. Kvarter 2014, 9, 223–235.

68. Freebody, P. Qualitative Research in Education: Interaction and Practice; SAGE Publications: London, UK, 2003.
69. Dowling, M.; Cooney, A. Research approaches related to phenomenology: Negotiating a complex landscape. Nurse Res. 2012, 20,

21–27. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.tsc.2012.04.004
https://doi.org/10.1016/j.tsc.2021.100931
https://doi.org/10.15388/infedu.2021.21
https://doi.org/10.1016/j.compedu.2021.104353
https://doi.org/10.1186/s41239-017-0080-z
https://doi.org/10.1162/DESI_a_00165
https://doi.org/10.6007/IJARBSS/v3-i9/199
http://www.nwlink.com/~donclark/hrd/bloom.html
https://doi.org/10.1207/s15430421tip4104_2
https://doi.org/10.1186/s43031-021-00033-y
https://doi.org/10.15388/infedu.2018.14
https://doi.org/10.1080/2331186X.2021.2024936
https://doi.org/10.1097/00001888-197411000-00004
https://doi.org/10.7748/nr2012.11.20.2.21.c9440

	Introduction
	Creativity, CT, and Education
	Creativity as an Inherent Component of CT
	‘Creating’ as an Education Objective

	A Model of Project-Based Instructional Taxonomy (PBIT)
	A Case: Applying PBIT in Education Practice
	Method: A Case as an Example
	Background of a Course Design
	Course Design
	A Project Workflow
	Teaching and Facilitation
	Methods of Grading

	Discussion
	Conclusions
	References

