Quantum Science and Technologies in K-12: Supporting Teachers to Integrate Quantum in STEM Classrooms
Abstract
:1. Introduction
2. Literature Review
2.1. Integrating Quantum into K-12 STEM
2.2. K-12 Students’ Cognitive Readiness for Quantum
3. Research Methods
- What are K-12 teachers’ perceptions of incorporating quantum in their teaching?
- How do K-12 teachers make connections between their K12 curriculum and quantum concepts?
3.1. Context of the Study
3.2. Participants
3.3. Data Collection
3.4. Data Analysis
4. Findings
4.1. Teachers’ Perceptions of Quantum
4.2. Curricular Connections
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Institute for Quantum Computing. Quantum Applications Today. Available online: https://uwaterloo.ca/institute-for-quantum-computing/quantum-101/quantum-applications-today (accessed on 25 September 2022).
- Solenov, D.; Brieler, J.; Scherrer, J.F. The potential of quantum computing and machine learning to advance clinical research and change the practice of medicine. Mo. Med. 2018, 115, 463. [Google Scholar]
- Foti, C.; Anttila, D.; Maniscalco, S.; Chiofalo, M.L. Quantum physics literacy aimed at K12 and the general public. Universe 2021, 7, 86. [Google Scholar] [CrossRef]
- Griffiths, D.J.; Schroeter, D.F. Introduction to Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Heisenberg, W. The Development of Quantum Mechanics. Nobel Lecture. 1933. Available online: https://www.nobelprize.org/uploads/2018/06/heisenberg-lecture.pdf (accessed on 30 January 2024).
- Schrödinger, E. The present status of quantum mechanics. Die Naturwissenschaften 1935, 23, 1–26. [Google Scholar]
- Heisenberg, W. Physics and Philosophy: The Revolution in Modern Science, 1st ed.; Harper: New York, NY, USA, 1958. [Google Scholar]
- Singh, C.; Asfaw, A.; Levy, J. Preparing students to be leaders of the quantum information revolution. arXiv 2021, arXiv:2111.06438. [Google Scholar] [CrossRef]
- Fox, M.F.; Zwickl, B.M.; Lewandowski, H.J. Preparing for the quantum revolution: What is the role of higher education? Phys. Rev. Phys. Educ. Res. 2020, 16, 20131. [Google Scholar] [CrossRef]
- Bahar, A.K.; Kaya, E.; Zhang, X. Gender disparities in AP Computer Science exams: Analysis of trends in participation and top achievement. J. Adv. Acad. 2022, 33, 574–603. [Google Scholar] [CrossRef]
- Chen, C.Y.; Kahanamoku, S.S.; Tripati, A.; Alegado, R.A.; Morris, V.R.; Andrade, K.; Hosbey, J. Systemic racial disparities in funding rates at the National Science Foundation. Elife 2022, 11, e83071. [Google Scholar] [CrossRef] [PubMed]
- Riegle-Crumb, C.; King, B. Questioning a white male advantage in STEM: Examining disparities in college major by gender and race/ethnicity. Educ. Res. 2010, 39, 656–664. [Google Scholar] [CrossRef]
- Raymer, M.G.; Monroe, C. The U.S. National Quantum Initiative. Quantum Sci. Technol. 2019, 4, 20504. [Google Scholar] [CrossRef]
- Stimers, P. The U.S. National Quantum Initiative. Computer 2019, 52, 24–29. [Google Scholar] [CrossRef]
- National Q-12 Education Partnership. Key Concepts for Future Quantum Information Science Learners. 2020. Available online: https://qis-learners.research.illinois.edu/about/ (accessed on 20 September 2022).
- National Q-12 Education Partnership. QIS Key Concepts for Early Learners: K-12 Framework. 2020. Available online: https://q12education.org/learning-materials/framework (accessed on 20 September 2022).
- Dreyfus, B.W.; Sohr, E.R.; Gupta, A.; Elby, A. “Classical-ish”: Negotiating the boundary between classical and quantum particles. arXiv 2015. [Google Scholar] [CrossRef]
- He, Y.; Zha, S.; He, W. A literature review of quantum education in K-12 level. In Innovate Learning Summit; AACE: Morgantown, WV, USA, 2021; pp. 418–422. Available online: https://digitalcommons.odu.edu/cgi/viewcontent.cgi?article=1065&context=itds_facpubs (accessed on 10 October 2023).
- Krijtenburg-Lewerissa, K.; Pol, H.J.; Brinkman, A.; Van Joolingen, W.R. Insights into teaching quantum mechanics in secondary and lower undergraduate education. Phys. Rev. Phys. Educ. Res. 2017, 13, 10109. [Google Scholar] [CrossRef]
- McKagan, S.B.; Perkins, K.K.; Wieman, C.E. Design and validation of the quantum mechanics conceptual survey. Phys. Rev. Spec. Top. Phys. Educ. Res. 2010, 6, 20121. [Google Scholar] [CrossRef]
- Singh, C. Student understanding of quantum mechanics. Am. J. Phys. 2001, 69, 885–895. [Google Scholar] [CrossRef]
- Satanassi, S.; Ercolessi, E.; Levrini, O. Designing and implementing materials on quantum computing for secondary school students: The case of teleportation. Phys. Rev. Phys. Educ. Res. 2022, 18, 10122. [Google Scholar] [CrossRef]
- Dreyfus, B.W.; Elby, A.; Gupta, A.; Sohr, E.R. Mathematical sense-making in quantum mechanics: An initial peek. Phys. Rev. Phys. Educ. Res. 2017, 13, 020141. [Google Scholar] [CrossRef]
- Nita, L.; Mazzoli Smith, L.; Chancellor, N.; Cramman, H. The challenge and opportunities of quantum literacy for future education and transdisciplinary problem-solving. Res. Sci. Technol. Educ. 2023, 41, 564–580. [Google Scholar] [CrossRef]
- NGSS Lead States. Next Generation Science Standards: For States, by States; The National Academies Press: Washington, DC, USA, 2013; Available online: https://www.nextgenscience.org/ (accessed on 15 October 2023).
- National Governors Association Center for Best Practices & Council of Chief State School Officers. Common Core Standards for Mathematics. Author. 2010. Available online: https://www.thecorestandards.org/Math/ (accessed on 15 October 2023).
- Hjalmarson, M.; Holincheck, N.; Baker, C.K.; Galanti, T.M. Learning models and modeling across the STEM disciplines. Handbook of Research on STEM Education; Johnson, C.C., Mohr-Schroeder, M., Moore, T., English, L., Eds.; Routledge: New York, NY, USA, 2020; pp. 223–233. [Google Scholar] [CrossRef]
- Ubben, M.S.; Bitzenbauer, P. Two cognitive dimensions of students’ mental models in science: Fidelity of gestalt and functional fidelity. Educ. Sci. 2022, 12, 163. [Google Scholar] [CrossRef]
- Aiello, C.D.; Awschalom, D.D.; Bernien, H.; Brower, T.; Brown, K.R.; Brun, T.A.; Zwickl, B.M. Achieving a quantum smart workforce. Quantum Sci. Technol. 2021, 6, 30501. [Google Scholar] [CrossRef]
- Hughes, C.; Finke, D.; German, D.A.; Merzbacher, C.; Vora, P.M.; Lewandowski, H.J. Assessing the needs of the quantum industry. IEEE Trans. Educ. 2022, 65, 592–601. [Google Scholar] [CrossRef]
- Kaur, M.; Venegas-Gomez, A. Defining the quantum workforce landscape: A review of global quantum education initiatives. Opt. Eng. 2022, 61, 081806. [Google Scholar] [CrossRef]
- Colletti, L. An inclusive approach to teaching quantum mechanics in secondary school. Educ. Sci. 2023, 13, 168. [Google Scholar] [CrossRef]
- Silberman, D.M. Teaching quantum to high school students. In Education and Training in Optics and Photonics; Optica Publishing Group: Washington, DC, USA, 2023; p. 127232R. [Google Scholar] [CrossRef]
- Matsler, K.J.; Lopez, R.; Singh, C. Applying classroom practices learned from virtual professional development during a pandemic. Phys. Teach. 2024, 62, 41–46. [Google Scholar] [CrossRef]
- Dündar-Coecke, S.; Yeh, L.; Puca, C.; Pfaendler, S.M.-L.; Waseem, M.H.; Cervoni, T.; Kissinger, A.; Gogioso, S.; Coecke, B. Quantum Picturalism: Learning Quantum Theory in High School. In Proceedings of the 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), Bellevue, WA, USA, 17–22 September 2023; Volume 3, pp. 21–32. [Google Scholar] [CrossRef]
- Hasanovic, M. Quantum education: How to teach a subject that nobody fully understands. In Education and Training in Optics and Photonics; Optica Publishing Group: Washington, DC, USA, 2023; p. 1272331. [Google Scholar] [CrossRef]
- Choudhary, R.K.; Foppoli, A.; Kaur, T.; Blair, D.G.; Zadnik, M.; Meagher, R. Can a short intervention focused on gravitational waves and quantum physics improve students’ understanding and attitude? Phys. Educ. 2018, 53, 65020. [Google Scholar] [CrossRef]
- Farris, A.V.; Eunji, A. Quantum computing at the intersection of engineering, technology, science, and societal need: Design of NGSS-aligned quantum drug discovery lessons for middle school students. In Proceedings of the Middle Atlantic ASEE Section Spring 2021 Conference, Villanova, PA, USA, 9–10 April 2021. [Google Scholar]
- Franklin, D.; Palmer, J.; Landsberg, R.; Marckwordt, J.; Muller, A.; Singhal, K.; Salac, J.; Harlow, D. Initial learning trajectories for K-12 quantum computing. In Proceedings of the 51st ACM Technical Symposium on Computer Science Education, Portland, OR, USA, 11–14 March 2020; p. 1331. [Google Scholar] [CrossRef]
- Franklin, D.; Palmer, J.; Jang, W.; Lehman, E.M.; Marckwordt, J.; Landsberg, R.H.; Muller, A.; Harlow, D. Exploring quantum reversibility with young learners. In Proceedings of the 2020 ACM Conference on International Computing Education Research, Online, 8–13 August 2020; pp. 147–157. [Google Scholar] [CrossRef]
- Nita, L.; Chancellor, N.; Smith, L.M.; Cramman, H.; Dost, G. Inclusive learning for quantum computing: Supporting the aims of quantum literacy using the puzzle game Quantum Odyssey. arXiv 2021, arXiv:2106.07077. [Google Scholar]
- Seskir, Z.C.; Migdał, P.; Weidner, C.; Anupam, A.; Case, N.; Davis, N.; Decaroli, C.; Ercan, I.; Foti, C.; Gora, P.; et al. Quantum games and interactive tools for quantum technologies outreach and education. Opt. Eng. 2022, 61, 81809. [Google Scholar] [CrossRef]
- Bloomfield, L.A. How Things Work: The Physics of Everyday Life, 6th ed.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Bardapurkar, A. The canvas of science education. Contemp. Educ. Dialogue 2023, 20, 9731849231166267. [Google Scholar] [CrossRef]
- Metz, K.E. Reassessment of developmental constraints on children’s science instruction. Rev. Educ. Res. 1995, 65, 93–127. [Google Scholar] [CrossRef]
- Ocasio, A.; Waltzer, T.; Caudy, C.; Kloos, H. Are preschoolers expected to learn difficult science constructs? A content analysis of US standards. J. Child. Educ. Soc. 2021, 2, 365–391. [Google Scholar] [CrossRef]
- Dumontheil, I. Development of abstract thinking during childhood and adolescence: The role of rostrolateral prefrontal cortex. Dev. Cogn. Neurosci. 2014, 10, 57–76. [Google Scholar] [CrossRef]
- McKagan, S.B.; Perkins, K.K.; Wieman, C.E. Deeper look at student learning of quantum mechanics: The case of tunneling. Phys. Rev. Spec. Top. Phys. Educ. Res. 2008, 4, 20103. [Google Scholar] [CrossRef]
- Passante, G.; Kohnle, A. Enhancing student visual understanding of the time evolution of quantum systems. Phys. Rev. Phys. Educ. Res. 2019, 15, 10110. [Google Scholar] [CrossRef]
- Maxwell, J.A. The validity reliability of research: A realist perspective. In The BERA/SAGE Handbook of Educational Research; Wyse, D., Suter, L.E., Smith, E., Selwyn, N., Eds.; SAGE Publications: Thousand Oaks, CA, USA, 2017; pp. 116–140. [Google Scholar] [CrossRef]
- Merriam, S.B.; Tisdell, E.J. Qualitative Research: A Guide to Design and Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Dillman, D.A.; Smyth, J.D.; Christian, L.M. Internet, Phone, Mail, and Mixed-Mode Surveys: The Tailored Design Method; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Ritchhart, R.; Church, M.; Morrison, K. Making Thinking Visible: How to Promote Engagement, Understanding, and Independence for All Learners; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Braun, V.; Clarke, V. Using thematic analysis in psychology. Qual. Res. Psychol. 2006, 3, 77–101. [Google Scholar] [CrossRef]
- Glaser, B.G. The constant comparative method of qualitative analysis. Soc. Probl. 1965, 12, 436445. [Google Scholar] [CrossRef]
- Kolb, S.M. Grounded theory and the constant comparative method: Valid research strategies for educators. J. Emerg. Trends Educ. Res. Policy Stud. 2012, 3, 83–86. [Google Scholar]
- Saldaña, J. The Coding Manual for Qualitative Researchers; SAGE: Thousand Oaks, CA, USA, 2021. [Google Scholar]
- Braun, V.; Clarke, V. Reflecting on reflexive thematic analysis. Qual. Res. Sport Exerc. Health 2019, 11, 589–597. [Google Scholar] [CrossRef]
- Wiltshire, G.; Ronkainen, N. A realist approach to thematic analysis: Making sense of qualitative data through experiential, inferential and dispositional themes. J. Crit. Realism 2021, 20, 159–180. [Google Scholar] [CrossRef]
- Margot, K.C.; Kettler, T. Teachers’ perception of STEM integration and education: A systematic literature review. Int. J. STEM Educ. 2019, 6, 2. [Google Scholar] [CrossRef]
- Abbate, J. Recoding Gender: Women’s Changing Participation in Computing; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar] [CrossRef]
- Mendick, H. Gender and physics: A sociological approach. Phys. Educ. 2016, 51, 55014. [Google Scholar] [CrossRef]
- Galanti, T.M.; Holincheck, N. Developing integrated STEM teacher identity using guided curation of K-12 engineering activities. In Proceedings of the 2023 American Educational Research Association (AERA) Annual Meeting, Chicago, IL, USA, 13–16 April 2023. [Google Scholar]
- So, W.M.W.; He, Q.; Chen, Y.; Chow, C.F. School-STEM professionals’ collaboration: A case study on teachers’ conceptions. Asia-Pac. J. Teach. Educ. 2021, 49, 300–318. [Google Scholar] [CrossRef]
- Holincheck, N.; Rosenberg, J.; Dreyfus, B.; Cheeran, E.S.; Butler, T.; Colandene, M. “I used to think quantum is too complex”: Elementary teachers curation of quantum curriculum [paper presentation]. In Proceedings of the American Educational Research Association (AERA) Annual Conference, Chicago, IL, USA, 13–16 April 2023. [Google Scholar]
- Rosenberg, J.; Holincheck, N.; Vora, P. Building a Quantum Pipeline. Bulletin of the American Physical Society. In Proceedings of the APS March Meeting, Chicago, IL, USA, 14–18 March 2022. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holincheck, N.; Rosenberg, J.L.; Zhang, X.; Butler, T.N.; Colandene, M.; Dreyfus, B.W. Quantum Science and Technologies in K-12: Supporting Teachers to Integrate Quantum in STEM Classrooms. Educ. Sci. 2024, 14, 219. https://doi.org/10.3390/educsci14030219
Holincheck N, Rosenberg JL, Zhang X, Butler TN, Colandene M, Dreyfus BW. Quantum Science and Technologies in K-12: Supporting Teachers to Integrate Quantum in STEM Classrooms. Education Sciences. 2024; 14(3):219. https://doi.org/10.3390/educsci14030219
Chicago/Turabian StyleHolincheck, Nancy, Jessica L. Rosenberg, Xiaolu Zhang, Tiffany N. Butler, Michele Colandene, and Benjamin W. Dreyfus. 2024. "Quantum Science and Technologies in K-12: Supporting Teachers to Integrate Quantum in STEM Classrooms" Education Sciences 14, no. 3: 219. https://doi.org/10.3390/educsci14030219
APA StyleHolincheck, N., Rosenberg, J. L., Zhang, X., Butler, T. N., Colandene, M., & Dreyfus, B. W. (2024). Quantum Science and Technologies in K-12: Supporting Teachers to Integrate Quantum in STEM Classrooms. Education Sciences, 14(3), 219. https://doi.org/10.3390/educsci14030219