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Abstract: Examining the composition of the typical urinary peptidome and identifying the enzymes
responsible for its formation holds significant importance, as it mirrors the normal physiological state
of the human body. Any deviation from this normal profile could serve as an indicator of pathological
processes occurring in vivo. Consequently, this study focuses on characterizing the normal urinary
peptidome and investigating the various catalytic enzymes that are involved in generating these
native peptides in urine. Our findings reveal that 1503 endogenous peptides, corresponding to
436 precursor proteins, were consistently identified robustly in at least 10 samples out of a total
of 19 samples. Notably, the liver and kidneys exhibited the highest number of tissue-enriched or
enhanced genes in the analyzed urinary peptidome. Furthermore, among the catalytic types, CTSD
(cathepsin D) and MMP2 (matrix metalloproteinase-2) emerged as the most prominent peptidases in
the aspartic and metallopeptidases categories, respectively. A comparison of our dataset with two of
the most comprehensive urine peptidome datasets to date indicates a consistent relative abundance
of core endogenous peptides for different proteins across all three datasets. These findings can serve
as a foundational reference for the discovery of biomarkers in various human diseases.

Keywords: peptidomics; peptidases; biomarker discovery; urine

1. Introduction

Peptidomics is a part of modern proteomics, by which all endogenous peptides present
in biological samples of interest can be identified and characterized [1–3]. Although there
is not a precise distinction between endogenous peptides and proteins, a commonly ac-
cepted characterization of endogenous peptides is that they typically range from dipeptides
(consisting of two amino acids) to small proteins with a molecular mass of no more than
20 kDa [2]. They are cleaved from their intact precursor proteins by proteases in the context
of post-translation modifications (PTMs) or proteolysis [2]. Endogenous peptides related
to PTMs have a diversity of biological and regulatory functions; they act as hormones,
cytokines, neuropeptides, and growth factors [4]. Additionally, intracellular and extracel-
lular proteins are subjected to proteolysis, which is required for cell hemostasis, in which
the balance between protein synthesis and protein turnover should be kept [2,3]. Two
main processes are responsible for intracellular protein turnover, the ubiquitin–proteasome
system (UPS), which is considered the largest protein disposal system [5], and autophagy,
in which the proteins targeted to lysosomes for degradation by the action of enzymes [6].
Approximately 80% of protein degradation in eukaryotic cells is managed by the UPS,
highlighting its predominant role in protein turnover and maintaining cellular protein
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homeostasis [7]. In both UPS and autophagy, cysteine, aspartate, and threonine proteinases
are the main active intracellular endopeptidases at acidic pH levels. In contrast, at a neutral
pH, metalloproteinases and serine proteases are the active endopeptidases in the extracellu-
lar matrix that facilitate the degradation of extracellular proteins [8,9]. The deregulation
of all of these intracellular and extracellular proteases can promote, or sometimes initiate,
disease onset and progression. The fragments released from precursor proteins by the
action of these regulated proteases mirror the current health status of the organism; this
change can be used as a signature for pathological processes governing disease onset and
progression in different tissues and biofluids.

Urine, one of the most valuable biological fluids, is composed of a varied set of proteins
and peptides. The majority of them are derived from the kidney and urinary tract, which
enable deep and comprehensive insight into disease processes affecting the kidney and the
urogenital tract, whereas the minority which come from systemic circulation to some extent
reflect systematic physiology [10]. Additionally, urine, unlike other body fluids such as
blood, can be collected in large volumes non-invasively. Moreover, the urinary peptidome
has a relatively high stability because it was thought that proteolytic degradation was
completed by the time of voiding. In other words, urine constitutes the end-products of
proteolytic degradation, which represent the final snapshot of the peptidome without any
subsequent degradation [11].

Despite the growing interest in urinary biomarkers, the exploration of the urinary
peptidome remains comparatively underexplored. While numerous studies have focused
on the urinary proteome and its implications for disease diagnosis and monitoring [12–16],
the specific composition, dynamics, and functional significance of the urinary peptidome
have received less attention in both health and disease states [17,18].

One notable advancement in this field is the “CKD273 classifier,” a well-validated
panel of 273 urinary endogenous peptides. This classifier aids in diagnosing and predicting
the progression of chronic kidney disease (CKD). It is used in routine clinical practice for
early detection and risk stratification, demonstrating the potential of the urinary peptidome
in improving clinical outcomes for CKD patients [19].

Understanding the urinary peptidome under normal physiological conditions is es-
sential for uncovering novel biomarkers, elucidating disease mechanisms, and advancing
personalized medicine approaches tailored to individual patient profiles.

In this context, our study aims to comprehensively characterize the human urinary
peptidome under normal physiological conditions. To achieve this, we collected voided
urine samples from 19 healthy volunteers with no significant diseases. We then extracted
endogenous peptides and performed liquid chromatography–tandem mass spectrometry
(LC-MS/MS) analysis, followed by bioinformatic analysis.

A key component of our bioinformatic analysis was the development and use of
a Perl script to align urinary endogenous peptides with their corresponding precursor
proteins. This script facilitated the assignment of start and end positions of peptides on
their precursor proteins and the extraction of octapeptide sequences bordering the N and C
termini of the identified endogenous peptides. The output generated by this script served
as the foundation for all subsequent analyses, including sequence logo construction using
the WebLogo tool, prediction of peptidases involved in peptide generation using Proteasix,
and manual validation of peptidase predictions with MEROPS data.

By employing these techniques and leveraging the Perl script for detailed peptide
analysis, we aim to identify the composition, origin, and proteolytic processing mechanisms
of urinary peptides. Our findings hold promise for uncovering new insights into renal and
urogenital physiology, identifying novel biomarkers for disease diagnosis and monitoring,
and advancing our understanding of peptide-mediated signaling pathways in health
and disease.



Proteomes 2024, 12, 18 3 of 18

2. Materials and Methods
2.1. Sample Collection and Native Peptide Purification

1. Protein preparation

Voided urine samples were collected from 19 healthy volunteers with no significant
diseases (Table S1) by health check at Shinrakuen Hospital according to the urine collection
guide proposed by the HUPO Human Kidney and Urine Proteome Project (HKUPP) [20].
One ml of urine each was used for protein preparation by the methanol/chloroform
precipitation method as described previously [21]. The supernatant, which contains small
molecules such as endogenous peptides, was then processed further.

2. Filtration

The supernatant was filtered through a molecular weight cut-off (MWCO) column
with a 30 kDa cutoff (Pall, NY, USA). Before applying the sample to the MWCO membrane
filter, the filter was washed with 1 mL of Milli-Q water (MQ) and centrifuged at 3000× g
for 5 min. Following this, the sample was applied to the MWCO filter and centrifuged at
2000× g for 10 min. This final step was repeated twice for thorough filtration.

3. Ethanol Precipitation

The MWCO filtration was performed either before (protocol-1) or after (protocol-2)
ethanol precipitation. For the ethanol precipitation step, 20 mL of ethanol was added to
the sample and kept at −20 ◦C for 12 h. The sample was then centrifuged at 3000× g for
10 min. The supernatant was discarded, and the pellet was resuspended in 1 mL of 8 M
urea/50 mM Tris-HCl (pH 8.0) and mixed well.

4. Reduction and alkylation

Following ethanol precipitation, the reduction was performed by adding 10 µL of 1 M
dithiothreitol (DTT) to the sample and incubating at room temperature for 1 h. Alkylation
was then conducted by adding 40 µL of 500 mM iodoacetamide at room temperature for
1 h in the dark. The alkylation reaction was quenched by adding 2 µL of 1 M DTT.

5. Peptide Purification

The endogenous peptides generated either from protocol-1 or protocol-2 after reduc-
tion and alkylation were subjected to a C18 Monospin column (GL Science, Tokyo, Japan)
to purify the peptides. The native peptides were then suspended in 0.1% formic acid. Their
concentrations were measured using a NanoDrop 1000 spectrophotometer (Thermo-Fisher,
Wilmington, DE, USA) and stored at −80 ◦C until use.

2.2. LC-MS/MS, Mass Spectrometric Analysis

One sample of 1µg native urine peptides each was analyzed twice on an ultrahigh-
pressure nanoflow chromatography system (nanoElute, Bruker Daltonics, Billerica, MA,
USA) coupled to a trapped ion mobility quadrupole time-of-flight mass spectrometer
(timsTOF Pro, Bruker Daltonics) in PASEF mode. Peptides were separated on an analytical
column (25 cm × 75 µm, C18, 1.6 µm, Aurora Column, Ion Opticks, Victoria, Australia), at
a flow rate of 400 nL/min using a 120 min gradient with a liner increase of acetonitrile to
37% (mobile phase A: water with 0.1% formic acid; mobile phase B: acetonitrile with 0.1%
formic acid) at a 50 ◦C column oven temperature.

The eluting peptides were interrogated by an MS acquisition method recording spectra
from 100 to 1700 m/z and ion mobility scanned from 0.6 to 1.6 Vs/cm2 over a ramp time of
100 ms. Data-dependent acquisition was performed using 10 cycles of PASEF MS/MS per
total cycle time of 1.1 s with a target intensity of 20 k. A polygon filter was applied within
the ion mobility over m/z heatmaps to exclude low-m/z, singly charged ions from PASEF
precursor selection. An active exclusion time of 0.4 min was applied to precursors that
reached 20,000 intensity units. Precursors for data-dependent acquisition were fragmented
with an ion mobility-dependent collision energy, which was linearly increased from 20 to
59 eV.
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2.3. Peptide Quantification and Identification

The MASCOT search engine [22] (version 2.3.01, Matrix Science) was used to search the
acquired spectra against the Swiss-Prot database (release number: 2018-07) (downloaded
on 31 July 2018) alongside the contaminant database. Also, searching against the decoy
database was considered to calculate FDR. The search parameters were set to no enzyme
specificity, carbamidomethyl cysteine was used for fixed modification, and no variable
modifications were assigned. The mass tolerance was set to 50 ppm and 0.05Da for MS and
MS/MS, respectively.

Our strategy involves a two-step filtration process for endogenous peptide identifica-
tions to maximize the retention of true positive peptides. Initially, we apply a relatively
loose false discovery rate (FDR) threshold of 5% at the peptide–spectrum match (PSM) level,
rather than a stricter threshold of 1%. This allows us to capture a broader set of peptide
identifications, including those that might be excluded under a more stringent criterion.

In the second filtration step, we refine our selection by retaining only those peptides
identified in at least 50% of the samples. This ensures that we focus on peptides that are
consistently detected across the dataset, thus increasing the likelihood that they are true
positives. By initially using a 5% FDR threshold, we retain peptides that may have slightly
higher FDRs but demonstrate reproducibility across multiple samples. This approach helps
us avoid the premature exclusion of potentially significant peptides that might be lost if we
start with a strict 1% FDR threshold.

Relative abundance was used as a metric for peptide quantification where the spectral
count of each peptide was divided by the sum of all endogenous peptides in a certain sample.

2.4. The Origin of the Degraded Proteins Associated with the Identified Endogenous Peptides

The human RNA expression pattern dataset “proteinatlas.tsv.zip” was downloaded
from the Human Protein Atlas [23] (HPA, version 23) website. It provides comprehen-
sive insights into the RNA expression profiles of human genes across 37 distinct human
tissues. It was used to examine the origin of the precursor proteins, generating these
endogenous peptides.

Within the HPA framework, RNA expression patterns of putative protein-coding
genes were classified with regard to their specificity across all major organs and tissue types
into five categories: (1) those have elevated mRNA expression level in a particular tissue,
at least 5-fold compared with other tissues (tissue enriched genes); (2) those have elevated
mRNA expression level in a group of 2–7 tissues, with at least 5-fold (group enriched
genes), (3) those have elevated expression level in a particular tissue, with at least 5-fold
compared with average levels in all tissues (tissue enhanced genes), (4) those with low
tissue specificity, and finally (5) those that are not detected in any tissue (not detected).

Furthermore, regarding distribution, the RNA expression patterns of putative protein-
coding genes are categorized into five distinct classes: (1) those present exclusively in one
tissue (Detected in single), (2) those detected in a limited number of tissues, more than one
but less than one-third (Detected in some), (3) those present in at least one-third but not all
tissues (Detected in many), (4) those ubiquitously expressed across all tissues (Detected
in all).

Simultaneously, an investigation into the tissue type distribution was conducted for
enriched or enhanced protein-coding genes, shedding light on the tissues contributing
most significantly to urinary endogenous peptide generation.

2.5. Cleavage Site Analysis of Urinary Peptides
2.5.1. Determination of Cleavage Site Sequences Adjacent to Precursor
Endogenous Peptides

A Perl script (Texts S1 and S2) was developed to align urinary endogenous peptides
with their corresponding precursor proteins, facilitating the assigning of the start and end
position of the peptide on its precursor protein, and the extraction of octapeptide sequences
bordering the N and C termini of the identified endogenous peptides. The output data
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generated from this script is extremely important because it will act as input for further
processing done in the next steps.

2.5.2. Construct Sequence Logos

WebLogo tool [24] was employed to construct sequence logos representing the relative
occurrence of each amino acid at specific positions within the extracted N and C-terminal
cleavage site octapeptides from the previous step, offering a visual depiction of sequence
conservation and variability.

2.5.3. Prediction of Peptidases Involved in Peptide Generation

We used the peptide start and end positions on their precursor proteins obtained
from the Perl script in step 5.1 with peptide sequence and protein header as input for
Proteasix [25] a peptide-centric computational tool, to predict the peptidases responsible for
generating endogenous peptides. Proteasix operates as a web-based platform specifically
designed to analyze proteolytic events contributing to the natural generation of peptides.
It identifies both observed and predicted proteases involved in the proteolytic processing
of these cleavage sites across three prominent species: Homo sapiens, Mus musculus, and
Rattus norvegicus.

2.5.4. Validation of Proteasix Predictions through Manual Verification and Leveraging
MEROPS Data

To confirm the predictions made by Proteasix, manual confirmation was performed,
drawing upon data from the MEROPS database (Release number: 12.3) [26]. MEROPS
serves as a meticulously curated repository of information about various peptidases and
their associated protein inhibitors, providing comprehensive insights into the regulatory
mechanisms governing peptidase activity in vivo. This manual validation process enhances
the reliability and comprehensiveness of the peptidase prediction outcomes obtained from
Proteasix analysis.

2.6. Data Analysis and Visualization Tools

The data cleaning, manipulation, and summarization processes were facilitated by the
utilization of the Dplyr, tidyr, and stringr libraries. Concurrently, the ggplot library was
used to generate all the plots in the manuscript.

3. Results
3.1. Urine Peptidome Profile

Our dual-step filtration process, beginning with a loose 5% FDR followed by consistency-
based selection, allows us to balance the sensitivity and specificity of peptide identification,
ensuring a robust set of peptides for subsequent analysis.

In the first step of our filtration process, we successfully identified 29,372 endogenous
peptides derived from 7220 precursor protein groups in 19 samples (Table S2). These
identifications were obtained from the Mascot search engine at 5% PSM FDR. Specifically,
18,485 peptides were uniquely identified using the molecular weight cutoff (MWCO)
filtration step before ethanol precipitation (protocol-1), 6367 were identified using the
molecular weight cutoff (MWCO) filtration step after ethanol precipitation (protocol-2) (as
described in the materials and methods section), and 4520 peptides were common to both
methods (Figure 1a) (Table S2).

It is noteworthy that the observed increase in peptide identification with protocol-1
compared to protocol-2 likely stems from the more efficient enrichment and concentration
of peptides achieved by conducting filtration after methanol/chloroform precipitation.
This sequence maximizes peptide retention while minimizing losses, resulting in a higher
yield of peptides available for subsequent analysis and identification. Conversely, applying
ethanol precipitation before MWCO filtration may lead to the inefficient co-precipitation of
smaller hydrophilic peptides, resulting in their potential loss.
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Figure 1. (a) Venn diagram showing the overlapped and the exclusive endogenous peptides identified
by Protocol-1 and Protocol-2 through the first and second filtration processes, respectively. (b) Density
plot showing the retention time distribution for the identified endogenous peptides by Protocol-1
and Protocol-2 through the first and second filtration processes, respectively.

Overall, these protocols collectively facilitate the generation of a comprehensive pep-
tidome profile, capturing a diverse array of peptides with varied hydrophilic and hydropho-
bic characteristics (Figure 1b).

In the second filtration process, we focused only on the endogenous peptides identified
in at least ~50% of samples (10 samples), as they more comprehensively reflect the profile of
a healthy urine peptidome. This subset comprises 1505 endogenous peptides corresponding
to 436 precursor proteins (Table S3).

Of note, when we employed a stricter 1% FDR threshold in the first step, we identified
15,304 endogenous peptides, which further decreased to 953 peptides after the second
filtration. This comparison indicates that starting with a strict cutoff value of 1% FDR led
to the loss of 550 true positive peptide identifications. Notably, these lost peptides tend to
be identified at an FDR of less than 2%.

Additionally, peptides “AEDEGGEE” and “GVPHGKGRAIRLGVLKSPLKKLMSTA”
were removed from the final list in Table S3. These peptides were identified across a wide
range of retention times and, upon re-evaluation, the majority of spectra matching these
peptides showed slightly higher FDR values. Consequently, the final list of endogenous
peptides used for further analysis consisted of 1503 peptides (Table S3).

3.2. Consistency-Based Selection

Regarding the identified endogenous peptides in a number of samples, our data
showed that out of the total 29,372 identified endogenous peptides, a mere 69 peptides,
constituting only 0.23% of the entire urinary endogenous peptide count, were consistently
detected in all 19 analyzed urine samples, forming what is referred to as the core peptidome
(see Figure 2a). These peptides, originating from 26 proteins, represent a series of fragment
cascades with slight amino acid variations and are characterized as medium-to-high-
abundance peptides. Despite their small proportion of the total peptidome count, they
contribute to approximately 10% of the overall quantified peptidome, as indicated in
Table S4.

This finding underscores the dynamic and diverse nature of the urinary peptidome,
where only a fraction of peptides appear to be consistently present across a heterogeneous
population. The presence of a core peptidome suggests the existence of fundamental
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biological processes or molecules that are shared among individuals, reflecting essential
aspects of urinary physiology or metabolism.
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Figure 2. (a) Bar plot showing the urinary endogenous peptides identified in number of samples.
(b). Boxplot showing the relative abundance distribution for the urinary endogenous peptides
identified in number of samples. (c). Boxplot showing the best ion score distribution for the urinary
endogenous peptides identified in number of samples.

However, the vast majority of identified peptides exhibit variability in their presence
or abundance across samples, highlighting the complexity and heterogeneity of the urinary
peptidome within and between individuals. Factors such as genetic variation, physiological
status, diet, and environmental influences may contribute to this observed diversity.

3.3. Peptide Characteristics and Distribution

Notably, as depicted in Figure 2b,c, the peptide spectral count and the best ion score
distributions follow a certain pattern where the endogenous peptides detected in more
samples tend to be assigned to more spectra with a better score. For instance, the core
endogenous peptides, identified in all samples, show a tendency to be assigned the highest
number of spectra (median = 10, interpercentile range = 14 (5:19)) with a distribution of the
best peptide scores (median = 70.18, interpercentile range = 43.41 (54.62:98.03)).
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The top three precursor proteins contributing to the peptidome signal are uromodulin,
prostaglandin-H2 D-isomerase, and serum albumin, representing approximately 7.2%,
4.5%, and 3.0% of the peptidome signal, respectively.

3.4. The Origin of the Urinary Endogenous Peptides

The Human Protein Atlas data were utilized to investigate the origin of the 436 de-
graded proteins associated with the 1503 identified endogenous peptides across various
human tissues. Our analysis revealed that approximately 27% of these proteins exhibit
low tissue specificity, indicating a high likelihood of originating from multiple tissues
and ultimately being present in urine (Figure 3a). In contrast, the remaining 73% of the
degraded proteins found in urine tend to display high specificity for particular tissues or
groups of tissues, categorizing them as enriched and enhanced proteins. Notably, the liver
stands out with the highest number of tissue-enriched or enhanced genes (73), followed by
the kidney (29) (Figure 3b). This finding underscores the significance of utilizing urine as a
biofluid for biomarker discovery in liver and kidney diseases.
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showing the count of degraded proteins (correspond to the detected peptides in at least 10 samples)
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3.5. Cleavage Site Analysis of Urinary Peptides

To investigate the proteolytic mechanisms associated with normal physiological condi-
tions, firstly, we examined the cleavage sites associated with the N and C termini of urinary
peptides generated from our bioinformatics tool, and subsequently visualized by WebLogo
tool. Notably, the octapeptide profile (Figure 4a,b) revealed a notable abundance of proline
and glycine residues in the vicinity of both the N- and C termini of urinary peptides. This
result aligns with a study by Julie et al. study [18], in which a prevalence of proline residues
in healthy urinary peptides, particularly at or near the N- and C termini, was observed
compared to peptides in diabetic conditions.
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Additionally, the predominant motifs for the N and C terminus cleavage sites are
“GSSL*LVVP” and “GPTL*LSLG”, respectively, indicating that the peptidases with the
highest involvement in urinary endogenous peptide generation exhibit a preference for
cleaving before and after leucine (Figure 4a,b).

Subsequently, we employed the Proteasix peptide-centric prediction tool, utilizing
the observed mode, to match the N and C-terminus octapeptides cleavage sites flanking
the identified endogenous peptides to the proteases cleavage site associations compiled
from the literature. This analysis yielded 380 combinations of predicted proteases and
cleavage sites.

As depicted in Figure 4d, peptidases of the aspartic and metallopeptidases catalytic
types predominated among other catalytic types, collectively responsible for generating
35% and 32% of urinary endogenous peptides, respectively. Notably, CTSD and MMP2
emerged as the most prominent peptidases in the aspartic and metallopeptidases catalytic
types, respectively. Conversely, serine and cysteine peptidases contributed approximately
27% and 5%, respectively, to the generation of endogenous urinary peptides, with trypsin-3
(try3) being the over-represented peptidase in the serine catalytic type (Figure 4d).

Manual confirmation of Proteasix predictions, aligning with MEROPS data, demon-
strated a high consistency between the patterns in the octapeptide profile and the frequency
of predicted proteases. For instance, according to the MEROPS database, CTSD exhibited
a pronounced preference for cleaving after leucine (L) (Figure 4c), while MMP2 showed



Proteomes 2024, 12, 18 10 of 18

a distinct preference for cleaving before leucine (L) (Figure 4c). Concurrently, the pre-
dominant octapeptides for the N and C terminus cleavage sites were “GSSLLVVP” and
“GPTLLSLG,”, respectively, underscoring the significant involvement of CTSD and MMP2
in the generation of urinary endogenous peptides.

3.6. The Core Degradome Repertoire of Urinary Proteins

The rationale behind investigating these core components lies in their potential role as
key mediators or markers of biological processes within the urinary system. These peptides
may originate from various sources, including intracellular proteins, extracellular matrix
components, or circulating proteins, undergoing proteolytic cleavage and subsequent
excretion into the urine. Their consistent presence across multiple samples suggests a degree
of biological significance and may hint at underlying regulatory mechanisms governing
their generation and clearance.

The variety of endogenous peptides found in normal urine, known as the degradome
repertoire, reflects the typical activity of proteases in normal physiological conditions.
Therefore, any alterations in the activity of these proteases during the development and
progression of diseases will lead to changes in the degradome repertoire of these urinary
proteins. In Figure 5, the relative abundance of 69 core peptides, serving as degradation
products for 26 precursor proteins under normal physiological conditions, is depicted
(Table S4). For instance, the 21 core endogenous peptides of uromodulin exhibit an interest-
ing distribution, with “VIDQSRVLNLGPITR” and “SGSVIDQSRVLNLGPITR” being the
most abundant peptides, constituting approximately 1% and 0.9% of the total peptidome
signal, respectively. In contrast, “LNLGPITR” is the least abundant peptide, with a me-
dian of around 0.4%. Additionally, the 5 core endogenous peptides of Collagen alpha-1
(XVIII) chain display a distinct pattern, with “DDILASPPRLPEPQPYPGAPHHSS” being
the most abundant peptide (median = 0.17) and “DDILASPPRLPEPQPYPGAPH” being the
least abundant (median = 0.04). Since these profiles encompass repeatedly identified and
quantified peptides across all samples, they serve as a highly reliable baseline reference for
biomarker discovery in various human diseases.
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3.7. Placing of Findings in the Existent Literature

To assess whether our findings accurately represent the overall urine peptidome
profile under normal physiological conditions, we conducted an analysis using two of the
most comprehensive urine peptidome datasets available. These datasets, comprising 5011
and 4696 endogenous peptide lists from healthy urine, were obtained from prior studies
conducted by Julie et al. [18] and Ashley et al. [17], respectively.

An examination of the overlap and exclusivity of peptide identifications among our
dataset and the other two datasets revealed that 816 endogenous peptides are common to
all three datasets (Figure 6a). Furthermore, we investigated the overlap and exclusivity
of peptides within the core peptidome (peptides systematically identified in all samples)
for our dataset and the other two datasets. Our findings indicated that 29 endogenous
peptides, originating from 9 precursor proteins, consistently appeared across all samples in
all datasets (Figure 6b).

The assessment of the degradome repertoire of these 9 precursor proteins using their
released endogenous peptides is crucial, as it signifies the comprehensive degradome profile
of these proteins across three different datasets under normal physiological conditions.
Subsequently, we examined the signal ratios of these 29 endogenous peptides relative to
the total signal of core peptides in specific proteins and samples across the three datasets.
Remarkably, the peptide ratios within certain proteins appeared nearly identical across
all datasets.

As depicted in Figure 7a, the endogenous peptide “SGSVIDQSRVLNLGPITR” in
uromodulin exhibited significantly higher abundance compared to other uromodulin
peptides in all analyzed urine datasets. Additionally, as illustrated in Figure 7b–d, core
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endogenous peptides derived from ProSAAS, collagen alpha-1 (XVIII), and Membrane-
associated progesterone receptor component 1 precursor proteins displayed a consistent
pattern across all analyzed datasets.
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4. Discussion

The exploration of the human urinary peptidome under normal physiological condi-
tions is relatively limited compared to studies on the urinary proteome. Our objective was
to comprehensively examine the profile of the human urinary peptidome under normal
physiological conditions, including their origin, cleavage site patterns, and the involvement
of peptidases in these cleavages.

In this investigation, we identified 29,372 endogenous peptides from 19 healthy urine
samples. This vast dataset sheds light on the proteoforms present in the urinary peptidome,
reflecting the complexity of protein species in urine.

Unlike tryptic peptides in proteomics, endogenous peptides in peptidomics are char-
acterized by low abundance and low detectability rates across samples. For instance, 61%
of the urinary peptidome exhibited significant variability among individuals, while ap-
proximately 5% were consistently identified in at least 50% of samples, and fewer than 1%
were systematically identified in all 19 samples. These findings align with a previous study,
indicating that the core peptidome represents about 3% of all peptide identifications in all
15 samples. These findings highlight the proteome complexity and dynamic nature of the
urinary peptidome.

The urine peptides and proteins are known for their considerable variability, influ-
enced by a variety of factors such as gender, age, diet, hydration status, physical activity,
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and circadian rhythms [27,28]. This inherent variability is often higher compared to other
biofluids like blood or cerebrospinal fluid, which are more tightly regulated in terms of
their protein and peptide composition. Despite this variability, urine offers a non-invasive
means of sampling and provides a rich source of peptides that reflect the physiological and
pathological state of the body, particularly the renal and urinary systems [27].

Our analysis of 69 core peptides demonstrated consistent relative abundance across
multiple urine samples, suggesting a degree of stability that is crucial for their potential use
as biomarkers. This consistency, despite the expected variability in the urine peptidome,
underscores the robustness of our findings and supports the utility of urine as a viable
biofluid for peptidomic studies. Further comparative studies involving other biofluids
would be beneficial to fully elucidate the variability and stability of peptidomes across
different biological matrices.

Remarkably, around 73% of urinary peptides identified in this study exhibited ele-
vated expression in specific tissues or groups of tissues, with the brain being the most
enriched tissue in urine among the 29,372 endogenous peptides identified. This aligns
with results from a comprehensive analysis of the normal urinary proteome [29]. However,
when considering only peptides identified in at least 50% of samples (more consistent
identifications), the liver emerged as the most enriched tissue in urine. Notably, the liver
plays a key role in synthesizing plasma proteins and maintaining plasma constituents.

It is noteworthy that only five degraded precursor proteins are tissue-specific, with four
being liver-specific (prothrombin, coagulation factor IX, hemopexin, and thyroxine-binding
globulin) and one kidney-specific (uromodulin). Changes in the healthy degradome sig-
nature of these proteins may provide valuable insights into the onset and progression of
diseases related to these tissues.

Analyzing the pattern of octapeptide flanking identified endogenous peptides revealed
that proteases with the highest involvement in endogenous peptide generation prefer to
cleave between leucines at the N and C-termini. This pattern, occurring systematically
in at least 10 out of 19 samples, is considered a representative signature of a healthy
endogenous peptidome profile, shedding light on the proteolytic processing events shaping
the urinary peptidome.

Predicting the proteases involved in the generation of normal urinary endogenous
peptides highlighted the predominance of aspartic, metallopeptidase, serine, and cysteine
peptidases in the urine peptidome. This predominance can be attributed to their crucial
biological roles and substrate specificities, which align well with the protein and peptide
composition of urine.

Aspartic peptidases, such as cathepsin D (CTSD), are vital for lysosomal protein
degradation in almost all tissues with higher expression levels in the brain, leading to
the breakdown of intracellular proteins and the generation of peptide fragments [30,31].
These by-products are eventually excreted in urine, explaining the significant presence
of these peptidases. Similarly, metallopeptidases like matrix metalloproteinase 2 (MMP2)
are involved in extracellular matrix (ECM) remodeling and degradation, processes that
generate a diverse array of peptide fragments [32].

Notably, the reduced activity of MMP-2 has been associated with kidney damage in
diabetic kidney tissue [33].

Serine peptidases, including trypsin-3 (TRY3), play essential roles in digestion, im-
mune response, and blood coagulation [34], leading to the generation of numerous peptide
fragments that are excreted in urine. Their broad substrate specificity and involvement
in multiple biological pathways account for their significant contribution. Cysteine pep-
tidases, such as calpain 1 (CAPN1) and calpain 2 (CAPN2), are involved in cytoskeletal
remodeling and signal transduction, generating stable peptide fragments from structural
and signaling proteins [35]. The combined activities of these peptidases reflect the body’s
ongoing proteolytic processes, providing a comprehensive snapshot of physiological states
and proteolytic activities in the urine peptidome.
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Comparing our peptidome profile with the most comprehensive dataset to date re-
turned 816 common endogenous peptides. This variability emerged due to methodological
differences between our datasets and other peptidome datasets we compared with as well
as other physiological and environmental differences that we previously referred to in the
discussion part regarding the variability of urinary peptidome among samples of our study.

Among these, 29 endogenous peptides were consistently detected in all samples across
all datasets, indicating high stability and potential functionality. These stable proteoforms
could serve as valuable biomarkers for disease states or physiological conditions, war-
ranting further investigation into their role and significance. In a previous study, one of
these 29 endogenous peptides, “SGSVIDQSRVLNLG-PITR” (uromodulin peptide) showed
decreased expression in diabetes, suggesting its potential relevance in disease states [18].

5. Conclusions

The continuous turnover and processing of proteins by various peptidases generate
a diverse array of endogenous peptides, which are subsequently excreted in the urine.
This process provides a comprehensive snapshot of the body’s proteolytic activities and
physiological state. Analyzing the human urinary peptidome under normal physiological
conditions offers valuable insights into its complexities, including the identification of
peptidome patterns for each precursor protein in the human proteome and the specific
proteases involved in their cleavage. Our study contributes significantly to the field through
several key findings.

Firstly, our dual-step filtration process, beginning with a loose 5% FDR followed by
consistency-based selection, ensures a robust set of endogenous peptides for subsequent
analysis. This methodological rigor balances sensitivity and specificity, enhancing the relia-
bility of our findings and providing a valuable reference point for future research. Secondly,
by comparing our findings with two of the most comprehensive urine peptidome datasets
available, we demonstrated the robustness of our identified peptides. This comparative
approach provides additional validation and increases the applicability of our dataset for
broader biomarker discovery efforts.

Additionally, we identified 69 core peptides with consistent relative abundance across
multiple urine samples. Of these, 29 endogenous peptides from 9 precursor proteins
were consistently detected across multiple datasets. This core peptidome indicates a
degree of stability crucial for their potential use as biomarkers. The consistency observed,
despite the expected variability in the urine peptidome, underscores the robustness of
our findings and supports the utility of urine as a viable biofluid for peptidomic studies.
Finally, the identified core peptides are likely key components of the urine peptidome,
reflecting the underlying physiological state. Researchers can use our dataset as a baseline to
compare against pathological conditions, aiding in the identification of potential biomarkers
associated with various diseases.

In summary, the urine peptidome profile generated in our current work serves as a
reliable and physiologically relevant resource for future biomarker discovery. Researchers
can refer to our dataset to identify consistent and robust peptides, compare their find-
ings, and enhance their understanding of the urine peptidome under both normal and
pathological conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/proteomes12030018/s1, Table S1: Characteristics of the 19 sam-
ples analyzed in this study, Table S2: Characteristics of 29,372 human urinary endogenous peptides
identified across 19 healthy volunteer samples in both protocol-1 and protocol-2, Table S3: Char-
acteristics of 1503 human urinary endogenous peptides identified in at least 10 out all 19 healthy
volunteer samples in both protocol-1 and protocol-2, and they are used for investigating the urinary
endogenous peptide origin, and proteolytic processing mechanisms underlying urinary peptides,
Table S4: The features of the human urinary endogenous peptides detected repeatedly in all 19
samples (core peptidome), peptide_mapper_script: the Perl script “peptide_mapper_script.txt” for
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mapping the peptides to their precursor proteins to extract different cleavage site features, pep-
tide_mapper_script_manual.pdf: The Procedure for Peptide Mapping.
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