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Abstract: Soluble interleukin 1 receptor-like 1 (ST2) is a circulating protein demonstrated to be
associated with cardiovascular diseases; however, it has not been studied as a biomarker for peripheral
artery disease (PAD). Using a prospectively recruited cohort of 476 patients (312 with PAD and
164 without PAD), we conducted a prognostic study of PAD using clinical/biomarker data. Plasma
concentrations of three circulating proteins [ST2, cytokine-responsive gene-2 (CRG-2), vascular
endothelial growth factor (VEGF)] were measured at baseline and the cohort was followed for
2 years. The outcome of interest was a 2-year major adverse limb event (MALE; composite of major
amputation, vascular intervention, or acute limb ischemia). Using 10-fold cross-validation, a random
forest model was trained using clinical characteristics and plasma ST2 levels. The primary model
evaluation metric was the F1 score. Out of the three circulating proteins analyzed, ST2 was the only
one that was statistically significantly higher in individuals with PAD compared to patients without
PAD (mean concentration in plasma of 9.57 [SD 5.86] vs. 11.39 [SD 6.43] pg/mL, p < 0.001). Over a
2-year period, 28 (9%) patients with PAD experienced MALE. Our predictive model, incorporating
clinical features and plasma ST2 levels, achieved an F1 score of 0.713 for forecasting 2-year MALE
outcomes. Patients identified as high-risk by this model showed a significantly increased likelihood
of developing MALE (HR 1.06, 95% CI 1.02–1.13, p = 0.003). By combining clinical characteristics and
plasma ST2 levels, our proposed predictive model offers accurate risk assessment for 2-year MALE in
PAD patients. This algorithm supports risk stratification in PAD, guiding clinical decisions regarding
further vascular evaluation, specialist referrals, and appropriate medical or surgical interventions,
thereby potentially enhancing patient outcomes.

Keywords: soluble interleukin 1 receptor-like 1; biomarkers; prognosis; peripheral artery disease

1. Introduction

Over 200 million people worldwide suffer from peripheral artery disease (PAD) due
to atherosclerosis of the lower extremity arteries [1,2]. Although PAD is associated with
significant limb loss and mortality, it remains undertreated [3]. An important contributor
to this problem is the lack of validated and standardized prognostic biomarkers that can
help identify high-risk patients and guide subsequent management [3]. Therefore, there is
an important need to identify and validate novel biomarkers for PAD [4].

Soluble interleukin 1 receptor-like 1 (ST2), cytokine-responsive gene-2 (CRG-2), and
vascular endothelial growth factor (VEGF) are circulating protein species that have been
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shown to be correlated with diseases of the cardiovascular system [5–7]. We selected
the 3 aforementioned proteins for analysis because previous studies have demonstrated
strong associations between these proteoforms and cardiovascular diseases, suggesting
their potential relevance to PAD [5–7]. Specifically, Stojkovic et al. (2020) demonstrated
associations between ST2 and platelet activation in PAD patients undergoing endovascular
revascularization [5], while Horrevoets and colleagues showed that CRG fragments from
endothelial cells were involved in the inflammatory reaction of atherosclerotic lesions [6].
Elsewhere, Ganta et al. (2021) demonstrated that inhibition of VEGF isoforms in ischemic
muscle may promote perfusion recovery in preclinical PAD [7]. While previous research
has demonstrated correlations between these proteins and cardiovascular conditions, few
studies have assessed their prognostic implications for PAD [5–7]. Furthermore, prior
studies have primarily focused on individual proteins, with no previous exploration of
protein biomarkers in combination with clinical characteristics for prognostic purposes.

PAD is a complex disease involving multiple metabolic pathways that are related to
different proteoforms; therefore, we hypothesized that biomarkers integrated with clinical
features can enhance prognostic accuracy compared to the analysis of individual proteins
alone [8]. By amalgamating biomarker data with clinical features linked to PAD outcomes,
there is potential to develop highly accurate and specific predictive algorithms for adverse
limb events associated with PAD [9–11]. The goal of this study was to identify a PAD-
specific biomarker and integrate clinical and circulating protein species biomarker data
through predictive modeling techniques to support PAD prognosis.

2. Materials and Methods
2.1. Ethics Approval

Approval for this study was granted by the research ethics board at Unity Health
Toronto, University of Toronto, Canada on 2 August 2017 (approval code REB # 16-365).
Prior to participation, informed consent was obtained from all patients, and all procedures
adhered to the principles outlined in the Declaration of Helsinki [12].

2.2. Design

This prognostic study adhered to the Transparent Reporting of a Multivariable Predic-
tion Model for Individual Prognosis or Diagnosis + Artificial Intelligence (TRIPOD + AI)
statement [13], ensuring the transparent and comprehensive reporting of its findings.

2.3. Patient Recruitment

This study prospectively enrolled patients from ambulatory clinics at our institution
between September 2020 and February 2022, including individuals with and without PAD.
PAD was diagnosed based on an Ankle–Brachial Index (ABI) below 0.9 or a Toe Brachial
Index (TBI) below 0.67, along with absent or diminished pedal pulses [14]. Patients with
acute coronary syndrome, elevated troponin levels, or acute limb ischemia within the prior
three months were excluded from the study.

2.4. Baseline Characteristics

Baseline characteristics included gender, age, dyslipidemia, hypertension, diabetes,
smoking status, presence of congestive heart failure (CHF), coronary artery disease (CAD),
history of stroke, and medication use including statins, acetylsalicylic acid (ASA), an-
giotensin II receptor blocker (ARB) or angiotensin-converting enzyme inhibitor (ACE-I),
calcium channel blockers, beta-blockers, furosemide or hydrochlorothiazide, insulin, and
oral antihyperglycemic agents. The definitions for cardiovascular risk factors and medica-
tions followed guidelines from the American College of Cardiology [15,16].

2.5. Quantification of Plasma Protein Levels

A phlebotomist collected blood samples from participants through the median cubital
vein and centrifugation was used to isolate the plasma, which was then aliquoted and



Proteomes 2024, 12, 24 3 of 12

stored at −80 ◦C with no freeze–thaw cycles. On the day of analysis, the plasma was
thawed to room temperature. Specifically, citrate plasma samples were used to prevent
coagulation of the samples and to preserve the proteins of interest (ST2, CRG-2, and
VEGF) for quantification. Using the LUMINEX assay (Bio-Techne, Minneapolis, MO, USA),
in ref. [17], concentrations of three circulating proteins—ST2, CRG-2, and VEGF—were
measured due to their involvement in metabolic pathways linked to atherosclerosis and
cardiovascular diseases. Before analysis, the MagPix analyzer [18] was calibrated using
bead kits from Fluidics Verification and Calibration (Luminex Corp; Austin, TX, USA) [19].
To ensure consistency, all tests were performed on the same day to minimize variability
between assays. The inter- and intra-assay coefficients of variability for the samples
were less than 10%. Luminex xPonent software version 4.3 [20] was used to evaluate a
minimum of 50 beads per protein. The lower limit of detection (LLOD) and lower limit of
quantification (LLOQ) of the Luminex multiplex assays were in the 0.1–1 pg/mL range for
the proteins of interest [21]. Given that the mean plasma concentrations of the proteins of
interest (ST2, CRG-2, and VEGF) ranged from 9.57 to 42.5 pg/mL in our cohort, all samples
were measurable.

2.6. Follow-Up and Outcomes

Follow-up clinic visits were conducted at 12- and 24-months post-recruitment. The pri-
mary outcome of interest was major adverse limb events (MALE) occurring within 2 years
of recruitment. MALE was defined as the need for major amputation of the lower extremity
above the ankle, vascular intervention (either open or endovascular revascularization of
the lower extremity arteries), or acute limb ischemia (sudden decrease in limb perfusion
occurring within 14 days due to arterial thrombosis or embolism). Initial analysis revealed
that all adverse limb events occurred exclusively in PAD patients. Therefore, prognostic
models were developed solely within the PAD cohort.

2.7. Model Development and Evaluation

Random forest was chosen as the predictive algorithm, which is an ensemble model
that works through several decision trees [22]. Decision trees can classify samples into
branch-like segments and leverage data from multiple covariates to develop prediction al-
gorithms for an outcome of interest [23]. Random forest can leverage complex datasets effec-
tively because of its non-parametric nature [23]. This algorithm was chosen because it is well
described in literature and performs well for predicting human health outcomes [24–26].

The dataset was partitioned randomly into 70% for training and 30% for testing
purposes. Utilizing the random forest algorithm, which underwent training with 10-fold
cross-validation, our aim was to predict 2-year MALE. The input features comprised clinical
characteristics such as gender, age, diabetes, dyslipidemia, hypertension, smoking status,
CAD, CHF, previous stroke, and medication use (including statins, ASA, ARB or ACE-I,
beta-blockers, calcium channel blockers, furosemide or hydrochlorothiazide, insulin, and
oral antihyperglycemic agents), alongside plasma ST2 levels. Post-training, the models
were evaluated on unseen test set data. Variable importance scores (gain) were calculated to
identify the most influential predictive factors, gauging their relative impact on prediction
outcomes [27].

2.8. Statistical Analysis

We summarized the baseline characteristics using means and standard deviations
(SDs) for continuous variables or numbers and proportions for categorical variables. Group
differences were assessed using independent t-tests for continuous variables and chi-square
tests for categorical variables. Protein levels were compared between PAD and non-PAD
patients using independent t-tests. Proteins that showed differential expression in patients
with versus without PAD were further utilized in model development. Two-year event
rates were compared between patients with vs. without PAD using chi-square tests. Haz-
ard ratios were calculated to determine the association between ST2 and adverse limb
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events controlling for all baseline characteristics. The F1 score was the primary model
evaluation metric, which measures the harmonic mean of the precision and recall values by
which ST2 levels predicted adverse limb events [28]. The F1 score, defined by the formula
2 × (precision × recall)/(precision + recall), ranges from 0 to 1, where 0 indicates minimal
precision and/or recall, and 1 signifies optimal precision and recall [28]. Using our prognos-
tic model, patients were stratified into low- or high-risk categories for developing 2-year
MALE based on the Youden Index, which maximizes the model’s performance (sensitivity
and specificity) through receiver operating characteristic (ROC) curve analysis [29]. To
assess freedom from MALE over 2 years between low- and high-risk groups, Kaplan–Meier
curves were plotted and compared using Cox proportional hazards analysis, adjusting for
all baseline characteristics. This stratified analysis aimed to elucidate the clinical relevance
of risk predictions derived from the prognostic model, offering insights into how the tra-
jectories of low-risk versus high-risk patients differ in terms of MALE risk over a 2-year
period. Statistical significance was set at a two-tailed p-value < 0.05. All statistical analyses
were conducted using SPSS software version 23 (SPSS Inc., Chicago, IL, USA) [30].

3. Results
3.1. Patients

In total, 476 patients participated in this study, with 312 having PAD and 164 without
PAD. Those with PAD were older (mean age 71 [SD 10] vs. 65 [SD 12] years; p < 0.001) and
a higher percentage had CAD (38% vs. 21%; p < 0.001), diabetes (42% vs. 21%; p < 0.001),
dyslipidemia (84% vs. 61%; p < 0.001), hypertension (82% vs. 59%; p < 0.001), and a
history of stroke (16% vs. 8%; p = 0.011). They were also more likely to be current/past
smokers (80% vs. 64%; p = 0.002). Additionally, individuals with PAD were more frequently
prescribed risk-reduction medications such as ACE-I/ARB (66% vs. 45%, p = 0.001), statins
(73% vs. 57%, p < 0.001), ASA (80% vs. 60%, p < 0.001), and beta blockers (41% vs. 30%,
p = 0.001) (Table 1).

Table 1. Baseline characteristics.

PAD
(n = 312)

Non-PAD
(n = 164) p

Age, mean (SD) 71 (10) 65 (12) <0.001

Female sex 109 (35) 67 (41) 0.204

Hypertension 257 (82) 96 (59) <0.001

Diabetes 131 (42) 34 (21) <0.001

Dyslipidemia 263 (84) 100 (61) <0.001

Current smoking 78 (25) 35 (21) 0.002

Past smoking 171 (55) 71 (43) 0.001

Coronary artery disease 118 (38) 34 (21) <0.001

Congestive heart failure 11 (4) 4 (2) 0.519

Previous stroke 51 (16) 13 (8) 0.011

Statin 229 (73) 93 (57) <0.001

Acetylsalicylic acid 251 (80) 99 (60) <0.001

Beta blocker 134 (41) 50 (30) 0.001

ACE-I/ARB 216 (66) 74 (45) 0.001

Calcium channel blocker 82 (25) 34 (21) 0.079
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Table 1. Cont.

PAD
(n = 312)

Non-PAD
(n = 164) p

Hydrochlorothiazide or furosemide 41 (13) 17 (10) 0.190

Insulin 22 (7) 6 (4) 0.255

Oral antihyperglycemic agent 24 (8) 8 (5) 0.201
Values are presented as number (percentage) unless specified otherwise. ARB (angiotensin II receptor blocker),
ACE-I (angiotensin-converting enzyme inhibitor), PAD (peripheral artery disease), SD (standard deviation).

3.2. Plasma Protein Concentrations

Of the three proteins tested, ST2 was the only protein that was statistically significantly
higher in individuals with PAD compared to patients without PAD: mean concentration in
plasma of 11.39 [SD 6.43] vs. 9.57 [SD 5.86] pg/mL; p < 0.001 (Table 2). ST2 was therefore
included in further analyses.

Table 2. Protein plasma concentrations in individuals with vs. without peripheral artery disease.

Non-PAD
(n = 164)

PAD
(n = 312)

Mean Standard
Deviation Mean Standard

Deviation p

ST2 9.57 5.86 11.39 6.43 <0.001

CRG-2 38.56 28.56 42.5 30.46 0.085

VEGF 16.61 12.24 20.81 26.96 0.096
Protein concentrations reported in pg/mL. Abbreviations: soluble interleukin 1 receptor-like 1 (ST2), cytokine-
responsive gene-2 (CRG-2), vascular endothelial growth factor (VEGF).

3.3. Adverse Limb Events

All adverse limb events observed during the 2-year follow-up period were exclusively
found in patients with PAD: MALE (n = 28, 9%), major amputation (n = 17, 5%), and vascular
intervention (n = 19, 6%). No patients developed acute limb ischemia (Table 3). There
were significant associations between ST2 and adverse events over 2 years of follow-up,
including MALE (HR 1.06 [95% CI 1.02–1.13], p = 0.005) and need for vascular intervention
(HR 1.07 [95% CI 1.01–1.12], p = 0.003) (Table 4). Of note, Tables 1 and 3 are similar to
our previous publication because we used a similar patient cohort to investigate PAD
biomarkers [31]. While our previous paper identified IL-7 as a myokine biomarker for
PAD, the current study is innovative in that we discovered a novel PAD biomarker, ST2,
which has a unique biological relationship with PAD through its involvement in various
mechanistic pathways of atherosclerosis, thrombosis, and plaque vulnerability. Therefore,
the current study adds to our previous work by unveiling a new PAD biomarker that can
further guide our understanding of PAD pathophysiology and prognosis.

Table 3. Two-year adverse limb events.

PAD
(n = 312)

Non-PAD
(n = 164) p

Major adverse limb event 28 (9) 0 (0) 0.001

Major amputation 17 (5) 0 (0) 0.002

Vascular intervention 19 (6) 0 (0) 0.001

Acute limb ischemia 0 (0) 0 (0) N/A
Values are presented as number (percentage) unless specified otherwise. PAD (peripheral artery disease).
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Table 4. Adjusted hazard ratios for associations between soluble interleukin 1 receptor-like 1 (ST2)
and 2-year major adverse limb events in patients with peripheral artery disease.

Hazard Ratio [95% CI] * p-Value

Major adverse limb event 1.06 [1.02–1.13] 0.005

Vascular intervention 1.07 [1.01–1.12] 0.003

Major amputation 1.00 [0.99–1.11] 0.084
* Adjusted for age, sex, hypertension, dyslipidemia, diabetes, past/current smoking, congestive heart failure,
coronary artery disease, previous stroke, acetylsalicylic acid, statin, angiotensin-converting enzyme inhibitor or
angiotensin II receptor blocker, beta blocker, calcium channel blocker, hydrochlorothiazide or furosemide, oral
antihyperglycemic agent, and insulin.

3.4. Model Performance

Using a combination of clinical features and plasma ST2 levels, the random forest
model achieved an F1 score of 0.713 for predicting 2-year MALE. The most important
predictive features for the model were (1) ST2, (2) age, (3) current/past smoking, (4) diabetes,
(5) hypertension, (6) gender, (7) CAD, (8) dyslipidemia, and (9) CHF (Figure 1). Of note,
ST2 was the most important predictive feature for 2-year MALE when evaluated alongside
patient age, gender, and comorbidities as input features.
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Figure 1. Variable importance scores (gain) for the random forest model input features for prognosis
of 2-year major adverse limb events in individuals with peripheral artery disease. Abbreviations:
soluble interleukin 1 receptor-like 1 (ST2), congestive heart failure (CHF), coronary artery disease
(CAD), diabetes mellitus (DM), hypercholesterolemia (HC), hypertension (HTN).

3.5. Risk Stratification Using Model

Youden’s Index calculation identified 0.60 as the optimal threshold for predicting
2-year MALE using our model. This threshold was employed to categorize our cohort
into high and low-risk groups for adverse limb events. Over the 2-year follow-up period,
patients classified as high-risk exhibited reduced freedom from MALE compared to those
classified as low-risk (HR 1.06, 95% CI 1.02–1.13, p = 0.005) (Figure 2).
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Figure 2. Kaplan–Meier analysis of the freedom from major adverse limb events among patients
categorized as low versus high risk by the random forest model. Classification into these risk
groups was based on a threshold of 0.60 derived from the Youden Index, optimizing the prediction
model’s sensitivity and specificity through receiver operating characteristic curve analysis. Cox
proportional hazards analysis adjusted for sex, age, dyslipidemia, hypertension, diabetes, smoking
history, coronary artery disease, congestive heart failure, previous stroke, use of statins, acetylsalicylic
acid, angiotensin II receptor blocker or angiotensin-converting enzyme inhibitor, calcium channel
blocker, beta blocker, furosemide or hydrochlorothiazide, oral antihyperglycemic agent, and insulin.
Abbreviations: CI (confidence interval), HR (hazard ratio).

4. Discussion
4.1. Summary of Findings

In this study, we identified ST2 as a specific proteoform biomarker for PAD and devel-
oped a robust prognostic model combining clinical characteristics and plasma ST2 levels
to accurately predict PAD prognosis. Several key findings emerged from our analysis.
Firstly, among the three circulating protein species studied, ST2 was the sole proteoform
found to be elevated in individuals with PAD compared to those without PAD. Although
this study investigated multiple proteins as potential PAD biomarkers, only ST2 emerged
as the singular protein that was significantly correlated with PAD-related adverse limb
events. Therefore, ST2 was identified as the most robust PAD-specific prognostic biomarker.
Secondly, our predictive model, integrating clinical features and plasma ST2 levels, demon-
strated strong performance in forecasting PAD prognosis. Feature importance analysis
underscored ST2 levels as the most significant predictor, highlighting the pivotal role of
proteoform biomarkers in predicting outcomes in PAD. Although additional research is
needed to confirm our findings, our study demonstrates that ST2 can be considered a PAD-
specific biomarker, as it was the only protein that was significantly elevated in patients
with PAD and predicted the development of adverse limb events over a 2-year follow-up
period. Given the prognostic relevance of ST2, further research is warranted to explore its
biological relationship with PAD development and progression, aiming to enhance our
understanding of proteome complexity and inform targeted therapeutic strategies. Thirdly,
utilizing our prognostic model, we stratified patients into low- and high-risk categories for
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adverse events. Kaplan–Meier analysis illustrated that patients identified as high-risk by
our model were more susceptible to developing 2-year MALE compared to those classified
as low-risk. This underscores the clinical utility of our model in aiding clinicians to predict
the future risk trajectory of PAD patients concerning adverse limb events.

4.2. Comparison to Existing Literature

Ross and colleagues (2019) developed a prognostic model for predicting major adverse
cardiac and cerebrovascular events in PAD patients using electronic health records data [32].
However, their model did not incorporate biomarker-based input features, despite the
demonstrated impact of proteoform biomarkers on PAD prognosis in our study and oth-
ers [5–7]. Our research addressed this limitation by integrating protein species biomarker
data into our prediction models. We achieved strong performance in predicting 2-year
MALE among PAD patients, with an F1 score of 0.713. Thus, our study underscores the im-
portance of utilizing proteoform biomarker data to enhance prognostic models, potentially
improving their predictive accuracy compared to models based solely on clinical features.

4.3. Explanation of Findings

There are several potential explanations for our findings. First, ST2 was found to be
significantly elevated in patients with PAD in this study and was an important predictor of
PAD prognosis. Discovered in 1989, the ST2 gene is found on chromosome 2q12 as part
of the wider interleukin 1 (IL-1) gene cluster [33]. ST2 is the IL-33 receptor and facilitates
downregulation of hypertrophy and fibrosis in tissues that are mechanically strained [34].
ST2 has been demonstrated to be associated with the pathogenesis of atherosclerosis and
thrombosis in previous studies [35,36]. Specifically, in monocytes, ST2 proteoforms induce
tissue factor expression and the release of prothrombotic vesicles [37]. Consequently, in-
creased levels of IL-33/ST2 are associated with an increased risk of in-stent restenosis and
poor outcomes in patients with CAD [38,39]. Similarly, in patients with carotid artery steno-
sis, ST2 levels have been found to be elevated and correlated with atherosclerotic plaque
vulnerability [40]. ST2 has been shown to be a potential biomarker in individuals with heart
failure and myocardial infarction as it is correlated with adverse cardiovascular events and
death [41,42]. Taken together, these findings explain the potential mechanism by which ST2
is involved in PAD development. In comparison to our previously published work [43–47],
we identified ST2 as a novel prognostic biomarker for PAD that has excellent predictive
performance for adverse limb events in combination with clinical features. Importantly,
ST2 has a strong biological relationship to PAD through its involvement in various mecha-
nistic pathways of atherosclerosis, thrombosis, and plaque vulnerability. Therefore, there
is potential to combine ST2 with our previously identified PAD biomarkers to form a
comprehensive panel of proteins to support PAD management. This may form the basis for
a larger future validation study. Secondly, our analysis demonstrated a high incidence of
adverse limb events in PAD patients, with close to 10% of the cohort experiencing MALE
over 2 years. This highlights the need for new strategies to reduce complications in this
patient population, emphasizing the value of developing more effective prognostic tools.
Third, our prognostic model achieved excellent performance for several potential reasons.
Contrary to traditional statistics such as logistic regression, which assumes that there is a
linear correlation between the covariates and the logit of the dependent variable, advanced
modeling methods are not limited by the linearity assumption and can therefore better
model non-linear relationships [48,49]. This is valuable in proteoform biomarker-based
prognostic models, where different protein species may be involved in various biological
pathways that may interact in complex ways because of proteome complexity to contribute
to a disease condition [50]. Our random forest algorithm likely achieved good performance
because it is an ensemble model that combines several decision trees [51]. This approach
minimizes overfitting, reduces variance, and effectively handles complex datasets [51]. Our
study highlights the advantages of developing a prognostic model that includes proteoform
biomarker information, which may enhance model performance in comparison to solely
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using clinical information. Because PAD is a complex condition that involves multiple
biological pathways, previous papers have shown the value of an integrated approach to
support the prognosis of PAD [52]. This investigation affirms that by applying advanced
predictive modeling methods to assess clinical information in conjunction with biomarker
data, accurate PAD prognostic tools can be generated.

4.4. Implications

Our predictive models offer practical implications for guiding clinical decision-making
across various scenarios. First, our algorithm can help screen individuals for asymptomatic
PAD, which is especially valuable in family practice settings. General practitioners use the
predictive model during their clinical assessments to understand a patient’s PAD risk [53].
Patients who screen positive for being at elevated risk of PAD-associated adverse outcomes
may be sent for additional vascular evaluation, including arterial duplex ultrasound,
to confirm a PAD diagnosis [54]. Patients identified as low-risk may receive ongoing
treatment from their family physician with a focus on risk factor optimization such as
lifestyle modifications and prescription of statins and ASA [55]. Patients predicted to be
at elevated risk for MALE should be referred to a vascular surgeon for evaluation and
treatment [56]. Vascular surgeons can integrate our model with their clinical judgment to
identify individuals at heightened risk of adverse limb outcomes, potentially benefiting
from the following: (1) additional imaging studies to evaluate vascular anatomy and
disease severity [57], (2) low-dose rivaroxaban therapy [58], or (3) surgical interventions for
limb salvage [59,60]. Our predictive model has the potential to enhance care for individuals
with PAD across both generalist and specialist healthcare settings. It can facilitate PAD
screening, risk stratification, and early identification of patients at increased risk for adverse
limb outcomes. This approach may reduce unnecessary specialist referrals, improve PAD
management outcomes, and decrease healthcare expenditures [61].

4.5. Limitations

Our study has several limitations. Firstly, recruitment occurred at a single center,
and validation in other settings may help determine model generalizability. Notably,
the non-PAD group had a smaller sample size compared to the PAD group because the
focus of this study was to identify a prognostic biomarker for PAD patients. However, it
may be prudent for future studies to include a larger non-PAD cohort as a control group.
Secondly, the outcomes in our study were recorded based on a 2-year follow-up period.
Additional follow-up may improve our understanding of the predictive ability of our model
given that PAD is a chronic condition. Given that the goal of this study was to identify
prognostic biomarkers for PAD, the correlation between ST2 and other cardiovascular
diseases was not investigated. Thirdly, laboratory results such as lipid levels, creatinine,
liver function tests, glucose, and coagulation parameters were not measured in this study.
Future models incorporating these variables may further improve predictive performance.
Fourthly, the protein species biomarkers evaluated in this paper are used predominantly in
research environments. Additional work is required to demonstrate the clinical feasibility
of including these proteoform biomarkers in the routine care of patients with PAD.

5. Conclusions

We identified ST2 as a protein species biomarker for PAD and used plasma concentra-
tions of ST2 in combination with clinical characteristics to build an algorithm that accurately
predicts PAD prognosis. Our model holds promise for PAD risk stratification, supporting
prompt identification and targeted treatment of PAD. Specifically, the model can identify
high-risk patients who may be referred for additional vascular work-up and may benefit
from more aggressive medical and/or surgical management. Additionally, our paper
highlights the need for translational research assessing the biological relationship between
ST2 and PAD progression, offering potential advancements in our understanding of the
underlying pathogenesis of PAD and informing targeted therapeutic strategies.
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