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Abstract: Background: Diabetes, particularly type 2 diabetes (T2D), is linked with an increased risk of
developing coronary heart disease (CHD). The present study aimed to evaluate potential circulating
biomarkers of CHD by adopting a targeted proteomic approach based on proximity extension assays
(PEA). Methods: The study was based on 30 patients with both T2D and CHD (group DC), 30 patients
with T2D without CHD (group DN) and 29 patients without diabetes but with a diagnosis of CHD
(group NC). Plasma samples were analyzed using PEA, with an Olink Target 96 cardiometabolic panel
expressed as normalized protein expression (NPX) units. Results: Lysosomal Pro-X carboxypeptidase
(PRCP), Liver carboxylesterase 1 (CES1), Complement C2 (C2), and Intercellular adhesion molecule 3
(ICAM3) were lower in the DC and NC groups compared with the DN groups. Lithostathine-1-alpha
(REG1A) and Immunoglobulin lambda constant 2 (IGLC2) were found higher in the DC group
compared to DN and NC groups. ROC analysis suggested a significant ability of the six proteins to
distinguish among the three groups (whole model test p < 0.0001, AUC 0.83–0.88), with a satisfactory
discriminating performance in terms of sensitivity (77–90%) and specificity (70–90%). A possible
role of IGLC2, PRCP, and REG1A in indicating kidney impairment was found, with a sensitivity of
92% and specificity of 83%. Conclusions: The identified panel of six plasma proteins, using a targeted
proteomic approach, provided evidence that these parameters could be considered in the chronic
evolution of T2D and its complications.

Keywords: targeted proteomics; type 2 diabetes; cardiovascular disease

1. Introduction

Diabetes, particularly type 2 diabetes (T2D), is linked with a 2–4 times higher chance
of developing coronary heart disease (CHD) [1], which is the primary cause of illness and
death in developed nations. T2D is a condition that can negatively impact the prognosis of
patients who have experienced acute myocardial infarction (MI), congestive heart failure,
and coronary revascularization [2–4]. This is because T2D patients have an increased onset
of atherosclerosis and atherothrombosis, which can be attributed to several factors, includ-
ing endothelial dysfunction, dyslipidemia, chronic hyperglycemia, and insulin resistance.
Furthermore, the prolonged duration of diabetes (>10–12 years) in men increases CHD
mortality at a rate similar to that of men without diabetes but with a history of MI [5].

Identifying specific protein markers that can recognize different levels of disease
severity or the progression of T2D associated with CHD is a relevant issue. Proteomic
“signatures” made of multiple disease-relevant proteins could improve the management of
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complex diseases [6–8]. A multimarker approach assessing several biomarkers simultane-
ously can provide comprehensive information about the patient’s condition and improve
personalized care by identifying individuals at high risk of disease progression. Through
the utilization of a targeted mass spectrometry approach, we have recently established that
13 specific circulating proteins have the potential to serve as biomarkers for the progression
of cardiovascular damage associated with T2D. Notably, this methodology has yielded
exceptional classification outcomes with regard to sensitivity and specificity [9].

Herein, we extend our knowledge of potential circulating biomarkers by adopting a
targeted proteomic approach based on proximity extension assays (PEA), which offers the
advantage of increasing the plasma proteome coverage by merging a quantitative real-time
polymerase chain reaction (qPCR) with multiplex immunoassays [10]. Indeed, proteins
are more challenging to measure than DNA, and current proteomics technologies struggle
with specificity, sensitivity, throughput, and dynamic range. The wide dynamic range of
protein concentration in plasma presents a significant challenge in analyzing the plasma
proteome. PEA is an advanced technology specifically developed for analyzing secreted
proteins in serum and blood plasma. This groundbreaking technology has unequivocally
demonstrated unparalleled specificity and sensitivity (sub-pg/mL), enabling the perfor-
mance of high multiplex assays with extensive coverage across an extensive dynamic range
(~9 log) while minimizing sample usage.

2. Materials and Methods
2.1. Patient Recruitment

The present investigation, which has the characteristics of a cross-sectional observa-
tional study, was conducted on 30 patients affected by both T2D and CHD (group DC),
30 patients with T2D without CHD (group DN), and 29 patients not affected by diabetes
but with a diagnosis of CHD (group NC), attending the Center of Diabetology and Dietetics
of Ulss 6 Euganea, Padova (Italy).

Patients with T2D (DC and DN groups) followed a Mediterranean-style diet (isocaloric)
and were treated with individualized hypoglycemic therapy, consisting mainly of met-
formin. CHD was defined according to standard criteria and anamnestic data available
from electronic records. Ninety percent of the NC group patients were assuming anti-
hypertensive drugs. DC and NC patients were assuming low-dose aspirin (70% and
57%, respectively) and statins (79% and 60%, respectively). No differences in smoking
habits were detected among the groups of patients. The study was conducted in the
pre-COVID period. All patients were in good health without signs of heart failure (no
dyspnea on exertion or rest, no declivous oedema; NYHA class 0/1) and without acute
respiratory diseases. Patients with chronic obstructive pulmonary disease, asthma, a history
and/or documentation of pulmonary embolism and/or pulmonary hypertension, as well
as patients with severe cerebrovascular, renal, and hepatic and hematologic diseases were
excluded from the study. The complete details about enrolled patients have been previously
published [9,11]. The research was carried out in compliance with the guidelines of the
Declaration of Helsinki and received approval by the Ethics Committee for Clinical Trials in
the Province of Padova, reference study No. 97610. Informed written consent was obtained
from all participants.

2.2. Sample Preparation

Plasma was obtained by centrifugation (1500× g for 15 min, 4 ◦C) from blood samples
collected in citrate tubes (0.129 mmol/L). The plasma was subsequently divided into
aliquots and stored at 80 ◦C until analysis.

2.3. Circulating Proteome Profiling and Analysis

The plasma samples were analyzed using the proximity extension assay (PEA) with
Olink Target 96 cardiometabolic panel (Olink Proteomics, Uppsala, Sweden). In this
technique, target proteins specifically bind to double oligonucleotide-labeled antibody
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probes. Subsequently, microfluidic real-time PCR amplifies the oligonucleotide sequence
for quantitative DNA sequence detection. Quality control and normalization were applied
to the threshold cycle (Ct) data obtained from internal and external controls. The list of
proteins analyzed with respective acronym and Uniprot code is shown in Table S1. Protein
levels were quantified on a relative scale and expressed as normalized protein expression
(NPX) units in log2 scale. Higher NPX values indicate higher protein concentrations.

2.4. Statistical Analysis

The statistical analysis was conducted with JMP® Pro 17 software (SAS Institute Inc.,
Cary, NC, USA) and MetaboAnalyst 5.0 [12]. NPX data were evaluated using the non-
parametric multivariate method of principal component analysis (PCA) [13] and cluster
analysis technique [12]. Analysis of data was obtained also with a parametric approach,
where differences in protein plasma content across the patients’ groups were evaluated
with one-way analysis of variance (ANOVA) followed by post hoc test with Fisher’s least
significant difference (LSD) and Tukey’s HSD methods. Correlations between proteins
were determined with Pearson’s r correlation coefficient. A p-value < 0.05 was considered
as statistically significant. A receiver operating characteristic (ROC) analysis was carried
out in order to predict the ability of the identified protein panel to classify the three groups
of patients. Area under the ROC curve (AUC) was used to indicate the goodness of fit for
the logistic model; significance was assessed by likelihood ratio chi-square test. Sensitivity
and specificity were determined at optimal cut-off points.

3. Results

The clinical and metabolic data of the subjects are reported in Table S2. Full information
of the patients’ characteristics is available in a previously published study [11]. Significant
differences between groups were observed for BMI, fasting plasma glucose, HbA1c, in
particular for T2D patients (DN and DC groups) with respect to non-diabetic patients with
CHD (NC group) (Table S2). Diabetes duration in DC patients was significantly longer
than DN patients (10.9 ± 7.6 y vs. 1.9 ± 0.9 y, p < 0.001).

Plasma samples from the three groups of subjects were analyzed by a targeted pro-
teomic approach based on the PEA principle in order to detect relative changes in protein
levels according to the group belonging. Figure S1 shows the distribution profile of the
investigated panel of 92 proteins as obtained in the overall subjects; Table S3 presents
the protein data divided according to the three groups of patients. Differences in the
proteomic profile among patient groups were evaluated using one-way ANOVA, revealing
six significantly different proteins (Table 1 and Figure 1). A post hoc analysis with pairwise
comparisons confirmed the differences between groups (Table 1). In particular, Lysosomal
Pro-X carboxypeptidase (PRCP), Liver carboxylesterase 1 (CES1), Complement C2 (C2), and
Intercellular adhesion molecule 3 (ICAM3) were lower in the DC and NC groups compared
with the DN groups. Lithostathine-1-alpha (REG1A) and Immunoglobulin lambda constant
2 (IGLC2) were higher in the DC group than in DN and NC groups (Figure 1).

To evaluate the combined discriminatory ability of all the 92 measured proteins
across the three groups of patients, multivariate approaches were employed. However, an
unsupervised analysis using PCA did not reveal any significant differentiation between
the groups (Figure S2). Indeed, no clear distinction of the three groups appeared, since the
scores plot presented overlapping clusters. Cluster analysis also conducted using all the
92 measured proteins did not reveal a clear separation of the three groups of subjects, as
indicated by the heatmap of Figure S3.

Statistical analysis was then focused on the six significant proteins, which revealed
some common features in their behavior. The biplot from a PCA conducted on this restricted
panel of proteins (Figure 2) permitted the identification of a very similar profile for IGLC2
and REG1A, demonstrated by the small angle formed between the vectors. The remaining
proteins displayed a more dispersed range of distribution. To complete the view, also a
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linear correlation was evaluated between the 6 proteins (Figure 3; Table S4 shows statistical
details), confirming significant relationships between almost all the proteins.

Table 1. Proteins found to differ significantly (ANOVA) among the three patients’ groups. Post hoc
analysis (Fisher’s LSD and Tukey’s HSD test) shows the pairwise comparisons which significantly
differ between groups. False discovery rate (FDR) is also presented.

Protein
UNIPROT

Code

Protein Name
(and Abbreviation)

ANOVA
F Value

ANOVA
p −log10(p) FDR

Fisher’s LSD
Paired

Comparisons

Tukey’s HSD
Paired

Comparisons

P05451 Lithostathine-1-alpha
(REG1A) 12.229 2.12 × 10−5 4.6741 0.002 DC-DN; DC-NC;

DN-NC NC-DC; NC-DN

P23141 Liver carboxylesterase 1
(CES1) 10.625 7.52 × 10−5 4.1236 0.003 DN-DC; DN-NC DN-DC; NC-DN

P0DOY2
Immunoglobulin

lambda constant 2
(IGLC2)

7.7751 0.000787 3.1038 0.020 DC-DN; DC-NC NC-DC

P42785
Lysosomal Pro-X
carboxypeptidase

(PRCP)
7.6633 0.000866 3.0627 0.020 DN-DC; DN-NC DN-DC; NC-DN

P06681 Complement (C2) 7.2305 0.001252 2.9025 0.023 DC-NC; DN-NC NC-DC; NC-DN

P32942 Intercellular adhesion
molecule 3 (ICAM3) 6.9678 0.001568 2.8045 0.024 DN-DC; DN-NC DN-DC; NC-DN
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while the horizontal line within each box represents the median. Whiskers extend to 1.5 × IQR.
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Figure 2. Biplot from PCA analysis on the six identified significant proteins. When vectors show a
small angle, then the corresponding variables are positively correlated, while when the vectors are at
90◦, they are not likely correlated. The biplot illustrates in a bidimensional space the multivariate
distribution of the proteins, represented as vectors, together the points relative to the subjects
investigated. Red dots: DC group; green: DN group; blue: NC group. The left and bottom axes show
principal component scores; the top and right axes indicate the loadings. Further details about the
structure of the PCA biplot can be found in [13].

To evaluate the possible role of the six significant proteins in distinguishing among
the three groups of subjects, ROC curves were obtained following a nominal logistic
regression. Figure S4 shows the result for the overall model, which suggests a significant
distinction among the three groups (whole model test p < 0.0001). Figure 4 presents the ROC
analysis directed at specific comparisons between groups. The model allows a satisfactory
discriminating performance in terms of sensitivity and specificity (Table 2). The parameters
of ROC analysis obtained for each single protein is presented in Table S5; the performance of
the overall model including the 6 proteins is better than that of each protein taken alone.

The role of the six identified plasma proteins was also evaluated in discriminating
the kidney function. Taking the overall cohort of patients, the presence of a renal function
impairment was considered for eGFR < 60 mL/min. A logistic regression with following
ROC analysis (Figure S5) revealed a possible role of IGLC2, PRCP and to a lesser extent
of REG1A in indicating kidney impairment, with a sensitivity of 92% and specificity
of 83% (Table S6). Table S6 also presents the estimated parameters from ROC analysis
for each separate protein, confirming the predictive role on the presence of a kidney
impaired function.
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Table 2. Parameters obtained with ROC analysis with the six identified proteins to distinguish
between the three groups of patients in terms of sensitivity and specificity.

Parameter NC vs. DN DC vs. DN DC vs. NC

AUC 0.829 0.840 0.876
p † 0.0015 0.0033 <0.0001

Sensitivity, % 90 77 79
Specificity, % 70 90 87

PPV, % 74 88 85
NPV, % 88 79 81
FDR, % 26 12 15

† Model significance, chi-square test. AUC: Area under the curve; Sensitivity: [True positives/(True positives +
False negatives)]; Specificity: [True negatives/(True negatives + False Positives)]; PPV: positive predictive value or
precision, calculated as [True positives/(True positives + False positives)], or (1 − FDR); NPV: negative predictive
value, calculated as [True negatives/(True negatives + False negatives)]; FDR: False discovery rate, equivalent to
[False positives/(False positives + True positives)].

4. Discussion

The present investigation, performed by a targeted proteomic approach based on the
PEA technology, revealed a panel of six plasma proteins which could represent a poten-
tial predictive tool for the development of diabetes-related cardiovascular complications
and indicates possible applications of plasma proteome within precision medicine. The
six proteins that resulted significantly different in our study were able to differentiate
among subjects with diabetes, with or without CHD, and subjects with CHD but without
diabetes, respectively. The multiple statistical approaches performed on the proteomic
analytical data permitted to show a satisfactory ROC curve performance with good levels
of sensitivity and specificity in order to distinguish between patients with diabetes, and
patients with or without evolution to CHD, respectively.

The six proteins that emerged from the multivariate statistical analysis have some
roles already demonstrated in the pathogenetic history of diabetes, and therefore can be
here discussed.

Lysosomal Pro-X carboxypeptidase (PRCP) is a serine protease that acts on peptides
in three major pathways: the pro-opiomelanocortin (POMC) system, the renin-angiotensin
system (RAS), and the kallikrein-kinin system (KKS). PRCP regulates the anorexigenic prop-
erties of α-Melanocyte-stimulating hormone (α-MSH1-13) within the POMC system [14].
Mice lacking PRCP show increased levels of α-MSH in the hypothalamus and improved
glucose metabolism on a high-fat diet compared to wild-type mice [14]. PRCP is active in
the RAS and the KKS in the cardiovascular system. It is involved in vascular and cardio-
vascular homeostasis, tone regulation, and inflammation response. It converts kallicrein to
bradykinin 1–9, which regulates the release of nitric oxide and prostaglandins, leading to
vasodilation and inflammation [15]. Serum PRCP activity has been found to be higher in
T2D in obese men [16], in comparison to lean and obese non-diabetic men, and a positive
correlation was observed with glycemic control, and related to immune cells from visceral
adipose tissue. In a study on ZDF rats fed a high-fat diet (HFD), Tabrizian et al. [17] found
altered PRCP expression, which was linked to severe hyperglycemia and nephropathy.
The data from the current study show that individuals in the DN group, who have re-
cently developed T2D but do not have CHD, have higher levels of a PRCP in their plasma
compared to individuals in the DC and NC groups. The higher level of PRCP found in
plasma of DN subjects, who have a short diabetes duration history, may suggest an ongoing
dysregulation in the inflammatory status during the early diabetes phases, and therefore
could represent an additional prognostic factor to be evaluated in the follow-up of the
disease. In our study, however, no correlation was found between PRCP in blood and FPG
in any of the three patients’ groups (see Table S7); only a marginally significant negative
correlation was found in DN group with BMI, in contrast with the findings reported by
De Hert et al. [16] who instead found a positive correlation with obesity. Therefore, the
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exact role of and pathogenesis linked to PRCP needs further investigation in relation to
diabetes history.

Carboxylesterase 1 (CES1), an enzyme involved in lipid metabolism that hydrolyses
triglycerides and cholesterol esters, has been demonstrated to possess a role in glucose
homeostasis. In a mouse model, Xu et al. [18] have shown that hepatic CES1 overex-
pression is able to decrease plasma glucose and improve insulin sensitivity. Moreover,
a decreased CES1 expression has been reported in a rat model of T2D [19]. The higher
plasma concentration of CES1 observed in our DN group, in comparison to the other
groups, suggests that in the early stages of diabetes, this protein could possess a protective
role in the disease evolution that ceases with disease progression and proceeds toward
cardiovascular complications.

Comparing the three groups of subjects, the plasma levels of C2 and ICAM3 showed a
similar trend to those of PRCP and CES1. Studies have revealed that high levels of comple-
ment C2 in the blood plasma are linked with an increased risk of type 2 diabetes [20,21].
These findings support the existing knowledge about the role of the complement system
in inflammation and how it adversely affects metabolism [20,21]. Shim et al. [22] have
reported that activation of complement system is strictly linked to the initiation and pro-
gression of metabolic disorders, such as obesity, insulin resistance and diabetes. ICAM3
facilitates intercellular adhesion among leucocytes. This protein is expressed on resting
antigen-presenting cells, such as dendritic cells, and plays a crucial role in the initial
interactions between dendritic cells and T cells that lead to T cell activation [23].

The profiles of the four above discussed proteins exhibit similarities, as shown in
Figure 1 and by the correlations (PCA and linear correlation: Figures 2 and 3). It is therefore
reasonable to consider them as a cluster that may deserve further investigation regarding
their functional and pathophysiological interconnections.

The last two proteins identified, namely REG1A and IGLC2, display a similar profile
in the three groups of patients, but differ if compared to the cluster of the four previously
described proteins.

REG1A, also known as lithostatine, belongs to a family of secreted proteins char-
acterized by the presence of a C-type lectin domain. Its expression is observed across
various organs and is implicated in vital cellular processes within the digestive system,
including proliferation, differentiation, inflammation, and carcinogenesis [24]. The ex-
pression of REG1A has been demonstrated to be significantly increased in blood samples
of patients affected by diabetic kidney disease (DKD) [25] and correlated with urinary
albumin/creatinine ratio, suggesting a role as a biomarker for the risk of developing DKD.
The present data agree with this observation, since our DC patients, affected by both T2D
and CHD, have the highest plasma level of the protein REG1A. Therefore, a possible link
of the protein with the evolution of diabetic kidney disease could be hypothesized.

IGCL2, the immunoglobulin lambda constant 2, located in blood microparticles and
extracellular exosome, is believed to influence antigen binding activity and immunoglobu-
lin receptor binding activity. It is involved in several immune-related processes, including
phagocytosis [26]. Osuna-Martinez et al. [27] reported that the IGLC2 gene is upregulated
in samples of kidney tubules from patients with diabetic kidney disease (DKD). It is of
interest to compare the higher level found in our cohort of DC patients, in comparison to
the other two groups, suggesting a possible involvement in kidney disease evolution. Also
of interest is the present finding related to the predictive role of IGLC2 and REG1A, with
the contribution of PRCP, for the presence of impaired kidney function, as demonstrated
by ROC analysis, confirming the relevance of the above-mentioned proteins as a possible
marker of renovascular damage. The overlap in plasma concentrations of both REG1A
and IGLC2 in patients affected by diabetes with (DC) and without CHD (DN) (box plot
of Figure 1; close vector angle in PCA plot of Figure 2) supports a role of these plasma
proteins throughout the time course evolution of diabetic cardiorenal disease. At present,
no other links to metabolic or cardiovascular disease have been reported in the literature,
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and therefore our finding may be of interest as a possible predictor of DKD evolution,
although the exact pathogenetic role remains to be elucidated.

The overall results of the present investigation suggest that the six identified plasma
proteins are involved at various levels in patients affected by diabetes, with (DC group)
or without CHD (DN group), but not in subjects affected by CHD only (NC group). A
schematic representation of the hypothetical pathophysiological mechanisms is illustrated
in Figure 5. In particular, considering the glucometabolic aspect, PRCP and CES1, which
resulted here fairly well correlated (Figure 3) also according to PCA analysis (Figure 2), have
been found linked to glycemic control (PRCP) [16] and insulin sensitivity (CES1) [18,19].
At the inflammatory level, since diabetes is considered a typical proinflammatory state
accompanied by increased cellular inflammation [28], the close correlation found between
PRCP and ICAM3 plasma levels (documented both by linear correlation in Figure 3 and by
the tight vector angle in PCA plot of Figure 2) supports their role in endothelial dysfunction
induced by glucotoxicity. In addition to glucotoxicity, insulin resistance presents a close
link with endothelial dysfunction [29]. Insulin resistance is represented in this case by
C2 [22], whose activation has been reported in initiation and progression of glucometabolic
disorders; in this respect, the correlation detected here between C2 and ICAM3 supports
the relevance of a dysfunction at endothelial level, which may lead to overt atherosclerosis
even before the diagnosis of diabetes [30].
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Figure 5. Schematic representation of how the identified proteins can act as pathophysiological factors
leading to cardiovascular complications of diabetes. The color assigned to the proteins indicates
similar behavior of the plasma profile in our subjects.

It can be of interest to make a comparison between the proteins found in the present
study and those identified in our previous investigation [9] conducted on the same subjects
using multiplexed MRM-based proteomics. The whole protein panel investigated in the
two studies mainly did not coincide, with only about 10% proteins in common, so making
the two investigations complementary. Although the different proteomic techniques cannot
permit a direct quantitative comparison of data, the relative behavior of proteins in common
was similar. By means of a multivariate approach (PCA) it is possible to observe that the
overall pattern of the significant proteins indicates, besides absence of any overlapping, the
complementary profile of the proteome (Figure S6), with a quite diversified distribution
among the different proteins, presenting various degrees of affinities, as suggested by
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the dispersion of the loadings. In particular, since the vectors of the group of proteins
ICAM3/PRCP/CES1/C2 identified in the present study show an angle near 90◦ in com-
parison to others, a low correlation with the other proteins is suggested. Although the
comparison may be affected by the different method of analysis, it is possible to hypothesize
that the whole pattern of proteins may serve to increase the number of potentially useful
markers for cardiovascular complications of diabetes.

The present investigation has limitations. Since the protocol is related to our previous
study [11], the data are based on a relatively small number of participants, and as a
preliminary evaluation, it did not rely on a specific power analysis. A further limitation
regards the absence of a healthy control group, that was not considered, since the aim of
the present investigation was a comparison of the levels of plasma proteins in pathological
conditions involving CHD, a complication typical in the history of T2D. Due to the fact that
the present research is a cross-sectional observational study, we could not evaluate every
lifestyle factor or comorbidity, so omitting possible residual confounding factors. It should
be pointed out that T2D patients (DC and DN groups) were assuming anti-diabetic drugs,
differently from NC group patients, and therefore the potential interaction of these drugs
with the investigated protein levels remains to be elucidated. An additional limitation,
due to the observational nature of the study, regards the difficulty to provide a causal
inference for the identified proteins. However, the significance obtained with the present
data suggests a role of the identified plasma proteins in the cardiovascular complications
of patients with diabetes. The findings deserve confirmation with a larger sample size and
with a more specific experimental protocol.

The identified protein species in plasma of patients with T2D suggest that attention
should be given to the study of the proteome complexity also in this specific clinical
diabetology field. Future research could possibly investigate, within the identified targets
in the plasma proteome complexity, also the presence of proteoforms, that could help in
distinguishing protein variants more specifically to be considered in the clinical history of
T2D and its complications.

5. Conclusions

In conclusion, the present study, which identified a panel of six plasma proteins using
a targeted proteomic approach, provides evidence that these parameters, in addition to the
conventional risk factors and single disease biomarkers, could be considered in the chronic
evolution of T2D and its complications. The identified plasma proteins are associated
with the cardiovascular risk profile of T2D, aligning with our previous investigation on
multiple circulating proteins which suggested possible biomarkers for cardiovascular
damage progression in T2D [9]. The exact role of these proteins detected in the present
study remains to be confirmed in wider scale future investigations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/proteomes12040029/s1, Figure S1: Distribution of Normalized
Protein eXpression (NPX) in the overall samples. Data are expressed as Olink’s arbitrary unit in Log2
scale. Please see Table S3 for values in each group; Figure S2: PCA analysis using the 92 measured
proteins, indicating no specific distinction between the three patients’ groups; Figure S3: Heatmap
from cluster analysis using the 92 measured proteins, indicating no specific distinction between
the three patients’ groups; Figure S4: ROC analysis obtained with nominal logistic plot using the
six significant proteins for distinguishing among the three groups. The table below the graph
indicates the effect summary with logworth and p value for each protein contribution; Figure S5:
ROC analysis obtained with nominal logistic plot using the six significant proteins on prediction
of eGFR impairment (eGFR < 60 mL/min), considering all the subjects together. The table below
the graph indicates the effect summary with logworth and p value for each protein contribution;
Figure S6: Biplot from PCA analysis on the 6 identified significant proteins together the 11 identified
proteins found in a previous investigation on the same subjects using Multiplexed MRM-based
proteomics [9]. The left and bottom axes show principal component scores; the top and right axes
indicate the loadings. Red dots: DC group; green: DN group; blue: NC group; Table S1: List of
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proteins analyzed using proximity extension assay (PEA); Table S2: Clinical and metabolic parameters
of subjects in study; Table S3: Values of Normalized Protein eXpression (NPX) in the three groups
of patients. Data are expressed as Olink’s arbitrary unit in Log2 scale; Table S4: Linear correlation
between the six identified significant proteins with the p values for statistical significance of the
correlations. See also Figure 3 in the manuscript. P values highlighted in red color and marked
with an asterisk indicate significant correlations; Table S5: Parameters obtained with ROC analysis
with each of the six identified proteins to distinguish between the three groups of patients; Table S6:
Performance of ROC analysis on prediction of eGFR impairment (eGFR < 60 mL/min) considering all
the subjects together. Results are presented for the model including all six proteins, and separately for
the three proteins resulted as main contributors in the overall logistic regression; Table S7: Correlation
of protein P42785 (PRCP) with BMI and glycemia (FPG) in the three groups of subjects. p value
highlighted in red color and marked with an asterisk indicates significant correlation.

Author Contributions: Conceptualization: C.B., F.P., G.S. and A.L.; Data curation: F.P. and G.S.;
Formal analysis: E.R., G.S. and F.P.; Funding acquisition: A.L. and C.B.; Investigation: A.M., S.G. and
M.C.; Project administration: A.L.; Resources: C.B.; Software: E.R.; Writing—original draft: E.R., C.B.,
F.P. and G.S.; Writing—review and editing: E.R., C.B., F.P., G.S. and A.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and was approved by the Ethics Committee for Clinical Trials in the Province of Padova,
reference study No. 97610, approved 22 July 2020, resolution no. 539.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The datasets generated and/or analyzed in the current study are
available from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Aronson, D.; Edelman, E.R. Coronary artery disease and diabetes mellitus. Cardiol. Clin. 2014, 32, 439–455. [CrossRef] [PubMed]
2. Donahoe, S.M.; Stewart, G.C.; McCabe, C.H.; Mohanavelu, S.; Murphy, S.A.; Cannon, C.P.; Antman, E.M. Diabetes and mortality

following acute coronary syndromes. JAMA 2007, 298, 765–775. [CrossRef] [PubMed]
3. Zareini, B.; Blanche, P.; D’Souza, M.; Elmegaard Malik, M.; Nørgaard, C.H.; Selmer, C.; Gislason, G.; Kristensen, S.L.; Køber, L.;

Torp-Pedersen, C.; et al. Type 2 Diabetes Mellitus and Impact of Heart Failure on Prognosis Compared to Other Cardiovascular
Diseases: A Nationwide Study. Circ. Cardiovasc. Qual. Outcomes 2020, 13, e006260. [CrossRef] [PubMed]

4. Shah, A.D.; Langenberg, C.; Rapsomaniki, E.; Denaxas, S.; Pujades-Rodriguez, M.; Gale, C.P.; Deanfield, J.; Smeeth, L.; Timmis, A.;
Hemingway, H. Type 2 diabetes and incidence of cardiovascular diseases: A cohort study in 1·9 million people. Lancet Diabetes
Endocrinol. 2015, 3, 105–113. [CrossRef]

5. Wannamethee, S.G.; Shaper, A.G.; Lennon, L. Cardiovascular disease incidence and mortality in older men with diabetes and in
men with coronary heart disease. Heart 2004, 90, 1398–1403. [CrossRef]

6. Taqui, S.; Daniels, L.B. Putting it into perspective: Multimarker panels for cardiovascular disease risk assessment. Biomark. Med.
2013, 7, 317–327. [CrossRef]

7. Ho, J.E.; Lyass, A.; Courchesne, P.; Chen, G.; Liu, C.; Yin, X.; Hwang, S.J.; Massaro, J.M.; Larson, M.G.; Levy, D. Protein Biomarkers
of Cardiovascular Disease and Mortality in the Community. J. Am. Heart Assoc. 2018, 7, e008108. [CrossRef]

8. Núñez, E.; Fuster, V.; Gómez-Serrano, M.; Valdivielso, J.M.; Fernández-Alvira, J.M.; Martínez-López, D.; Rodríguez, J.M.; Bonzon-
Kulichenko, E.; Calvo, E.; Alfayate, A.; et al. Unbiased plasma proteomics discovery of biomarkers for improved detection of
subclinical atherosclerosis. eBioMedicine 2022, 76, 103874. [CrossRef]

9. Piarulli, F.; Banfi, C.; Ragazzi, E.; Gianazza, E.; Munno, M.; Carollo, M.; Traldi, P.; Lapolla, A.; Sartore, G. Multiplexed MRM-based
proteomics for identification of circulating proteins as biomarkers of cardiovascular damage progression associated with diabetes
mellitus. Cardiovasc. Diabetol. 2024, 23, 36. [CrossRef]

10. Petrera, A.; von Toerne, C.; Behler, J.; Huth, C.; Thorand, B.; Hilgendorff, A.; Hauck, S.M. Multiplatform Approach for Plasma
Proteomics: Complementarity of Olink Proximity Extension Assay Technology to Mass Spectrometry-Based Protein Profiling. J.
Proteome Res. 2021, 20, 751–762. [CrossRef]

11. Piarulli, F.; Banfi, C.; Brioschi, M.; Altomare, A.; Ragazzi, E.; Cosma, C.; Sartore, G.; Lapolla, A. The Burden of Impaired Serum
Albumin Antioxidant Properties and Glyco-Oxidation in Coronary Heart Disease Patients with and without Type 2 Diabetes
Mellitus. Antioxidants 2022, 11, 1501. [CrossRef] [PubMed]

https://doi.org/10.1016/j.ccl.2014.04.001
https://www.ncbi.nlm.nih.gov/pubmed/25091969
https://doi.org/10.1001/jama.298.7.765
https://www.ncbi.nlm.nih.gov/pubmed/17699010
https://doi.org/10.1161/CIRCOUTCOMES.119.006260
https://www.ncbi.nlm.nih.gov/pubmed/32571092
https://doi.org/10.1016/S2213-8587(14)70219-0
https://doi.org/10.1136/hrt.2003.026104
https://doi.org/10.2217/bmm.13.15
https://doi.org/10.1161/JAHA.117.008108
https://doi.org/10.1016/j.ebiom.2022.103874
https://doi.org/10.1186/s12933-024-02125-1
https://doi.org/10.1021/acs.jproteome.0c00641
https://doi.org/10.3390/antiox11081501
https://www.ncbi.nlm.nih.gov/pubmed/36009220


Proteomes 2024, 12, 29 12 of 12

12. Pang, Z.; Zhou, G.; Ewald, J.; Chang, L.; Hacariz, O.; Basu, N.; Xia, J. Using MetaboAnalyst 5.0 for LC–HRMS spectra processing,
multi-omics integration and covariate adjustment of global metabolomics data. Nat. Protoc. 2022, 17, 1735–1761. [CrossRef]
[PubMed]

13. Greenacre, M.; Groenen, P.J.F.; Hastie, T.; Iodice D’Enza, A.; Markos, A.; Tuzhilina, E. Principal component analysis. Nat. Rev.
Methods Primers 2022, 2, 100. [CrossRef]

14. Graham, T.H. Prolylcarboxypeptidase (PrCP) inhibitors and the therapeutic uses thereof: A patent review. Expert Opin. Ther. Pat.
2017, 27, 1077–1088. [CrossRef]

15. Dielis, A.W.; Smid, M.; Spronk, H.M.; Hamulyak, K.; Kroon, A.A.; ten Cate, H.; de Leeuw, P.W. The prothrombotic paradox of
hypertension: Role of the renin-angiotensin and kallikrein-kinin systems. Hypertension 2005, 46, 1236–1242. [CrossRef]

16. De Hert, E.; Verboven, K.; Wouters, K.; Jocken, J.W.E.; De Meester, I. Prolyl Carboxypeptidase Activity Is Present in Human
Adipose Tissue and Is Elevated in Serum of Obese Men with Type 2 Diabetes. Int. J. Mol. Sci. 2022, 23, 13529. [CrossRef]

17. Tabrizian, T.; Hataway, F.; Murray, D.; Shariat-Madar, Z. Prolylcarboxypeptidase gene expression in the heart and kidney: Effects
of obesity and diabetes. Cardiovasc. Hematol. Agents Med. Chem. 2015, 13, 113–123. [CrossRef]

18. Xu, J.; Yin, L.; Xu, Y.; Li, Y.; Zalzala, M.; Cheng, G.; Zhang, Y. Hepatic carboxylesterase 1 is induced by glucose and regulates
postprandial glucose levels. PLoS ONE 2014, 9, e109663. [CrossRef]

19. Chen, R.; Wang, Y.; Ning, R.; Hu, J.; Liu, W.; Xiong, J.; Wu, L.; Liu, J.; Hu, G.; Yang, J. Decreased carboxylesterases expression and
hydrolytic activity in type 2 diabetic mice through Akt/mTOR/HIF-1α/Stra13 pathway. Xenobiotica 2015, 45, 782–793. [CrossRef]

20. Gudmundsdottir, V.; Zaghlool, S.B.; Emilsson, V.; Aspelund, T.; Ilkov, M.; Gudmundsson, E.F.; Jonsson, S.M.; Zilhão, N.R.; Lamb,
J.R.; Suhre, K.; et al. Circulating Protein Signatures and Causal Candidates for Type 2 Diabetes. Diabetes 2020, 69, 1843–1853.
[CrossRef]

21. Steffen, B.T.; Tang, W.; Lutsey, P.L.; Demmer, R.T.; Selvin, E.; Matsushita, K.; Morrison, A.C.; Guan, W.; Rooney, M.R.; Norby,
F.L.; et al. Proteomic analysis of diabetes genetic risk scores identifies complement C2 and neuropilin-2 as predictors of type 2
diabetes: The Atherosclerosis Risk in Communities (ARIC) Study. Diabetologia 2023, 66, 105–115. [CrossRef]

22. Shim, K.; Begum, R.; Yang, C.; Wang, H. Complement activation in obesity, insulin resistance, and type 2 diabetes mellitus. World
J. Diabetes 2020, 11, 1–12. [CrossRef]

23. Montoya, M.C.; Sancho, D.; Bonello, G.; Collette, Y.; Langlet, C.; He, H.T.; Aparicio, P.; Alcover, A.; Olive, D.; Sánchez-Madrid, F.
Role of ICAM-3 in the initial interaction of T lymphocytes and APCs. Nat Immunol. 2002, 3, 159–168. [CrossRef] [PubMed]

24. Acquatella-Tran Van Ba, I.; Marchal, S.; François, F.; Silhol, M.; Lleres, C.; Michel, B.; Benyamin, Y.; Verdier, J.M.; Trousse, F.;
Marcilhac, A. Regenerating islet-derived 1α (Reg-1α) protein is new neuronal secreted factor that stimulates neurite outgrowth
via exostosin Tumor-like 3 (EXTL3) receptor. J. Biol. Chem. 2012, 287, 4726–4739. [CrossRef] [PubMed]

25. Wang, X.; Wu, H.; Yang, G.; Xiang, J.; Xiong, L.; Zhao, L.; Liao, T.; Zhao, X.; Kang, L.; Yang, S.; et al. REG1A and RUNX3 Are
Potential Biomarkers for Predicting the Risk of Diabetic Kidney Disease. Front. Endocrinol. 2022, 13, 935796. [CrossRef]

26. IGLC2 Immunoglobulin Lambda Constant 2 [Homo sapiens (Human)] Gene ID: 3538. Available online: https://www.ncbi.nlm.
nih.gov/gene/3538 (accessed on 30 September 2024).

27. Osuna-Martinez, U.; Aviña-Padilla, K.; Olimon-Andalon, V.; Angulo-Rojo, C.; Guadron-Llanos, A.; Rivas-Ferreira, J.C.; Urrea,
F.; Calderon-Zamora, L. In Silico Prediction of Hub Genes Involved in Diabetic Kidney and COVID-19 Related Disease by
Differential Gene Expression and Interactome Analysis. Genes 2022, 13, 2412. [CrossRef]

28. Devaraj, S.; Dasu, M.R.; Jialal, I. Diabetes is a proinflammatory state: A translational perspective. Expert Rev. Endocrinol. Metab.
2010, 5, 19–28. [CrossRef]

29. Beckman, J.A.; Creager, M.A.; Libby, P. Diabetes and atherosclerosis: Epidemiology, pathophysiology, and management. JAMA
2002, 287, 2570–2581. [CrossRef]

30. Janka, H.U. Metabolisches Syndrom und Typ-II-Diabetes. Beziehungen zur Makroangiopathie [Metabolic syndrome and type-II
diabetes. Relations to macroangiopathy]. Fortschr. Med. 1992, 110, 637–641.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/s41596-022-00710-w
https://www.ncbi.nlm.nih.gov/pubmed/35715522
https://doi.org/10.1038/s43586-022-00184-w
https://doi.org/10.1080/13543776.2017.1349104
https://doi.org/10.1161/01.HYP.0000193538.20705.23
https://doi.org/10.3390/ijms232113529
https://doi.org/10.2174/1871525713666150911112916
https://doi.org/10.1371/journal.pone.0109663
https://doi.org/10.3109/00498254.2015.1020353
https://doi.org/10.2337/db19-1070
https://doi.org/10.1007/s00125-022-05801-7
https://doi.org/10.4239/wjd.v11.i1.1
https://doi.org/10.1038/ni753
https://www.ncbi.nlm.nih.gov/pubmed/11812993
https://doi.org/10.1074/jbc.M111.260349
https://www.ncbi.nlm.nih.gov/pubmed/22158612
https://doi.org/10.3389/fendo.2022.935796
https://www.ncbi.nlm.nih.gov/gene/3538
https://www.ncbi.nlm.nih.gov/gene/3538
https://doi.org/10.3390/genes13122412
https://doi.org/10.1586/eem.09.44
https://doi.org/10.1001/jama.287.19.2570

	Introduction 
	Materials and Methods 
	Patient Recruitment 
	Sample Preparation 
	Circulating Proteome Profiling and Analysis 
	Statistical Analysis 

	Results 
	Discussion 
	Conclusions 
	References

