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Abstract: In this paper, we consider the max-product neural network operators of the Kantorovich
type based on certain linear combinations of sigmoidal and ReLU activation functions. In general, it
is well-known that max-product type operators have applications in problems related to probability
and fuzzy theory, involving both real and interval/set valued functions. In particular, here we face
inverse approximation problems for the above family of sub-linear operators. We first establish their
saturation order for a certain class of functions; i.e., we show that if a continuous and non-decreasing
function f can be approximated by a rate of convergence higher than 1/n, as n goes to +∞, then f
must be a constant. Furthermore, we prove a local inverse theorem of approximation; i.e., assuming
that f can be approximated with a rate of convergence of 1/n, then f turns out to be a Lipschitz
continuous function.

Keywords: sigmoidal functions; ReLU function; neural network operators; saturation result; local
inverse theorem

1. Introduction

The introduction of the max-product version of families of linear approximation
operators is due to Bede, Coroianu and Gal (see, e.g., [1,2]) and it led to a new branch
of approximation theory. The new theory of max-product operators has been deeply
studied, and recently the above-mentioned authors summarized their results in a complete
monograph [3].

In general, the max-product version of a sequence/net of linear operators is a family
of nonlinear (more precisely sub-linear) operators with better approximation properties of
their original version: in many cases, the order of convergence is faster than their linear
counterparts [4–6]. Further, the above operators can also be useful, for instance, in the
applications of probability and fuzzy theory involving both real and interval/set valued
functions (see, e.g., [7,8]).

In the present paper, we study the max-product form of the neural network (NN) oper-
ators of the Kantorovich type K(M)

n , first introduced in [9] and here recalled in Definition 3
of Section 2. In general, the NN operators (see [10]) are strictly related to the theory of
artificial neural networks, which has been introduced in order to provide a very simple
model for the human brain, which is able to reproduce all its main abilities [11–14].

Each basic element composing a neural network is called an artificial neuron; its
behavior is regulated by suitable activation functions, which must represent the two
possible states of the biological neuron: the activation and the quiet phases [15]. From the
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mathematical point of view, functions which better represent the latter fact are those with
sigmoidal shape (see, e.g., [16]).

For the above reasons, in the present paper, we mainly consider the operators K(M)
n

activated by suitable sigmoidal functions. Very useful examples of sigmoidal functions
(in view of their importance in learning algorithms, [17]) are, e.g., the logistic and the
hyperbolic tangent functions [18].

However, independently of its biological meaning, in some recent papers, a new
unbounded activation function has also been introduced and deeply investigated. This
function is the so-called rectified linear unit (ReLU) function (see, e.g., [19]), and it is simply
defined by the positive part of x, for every x ∈ R. The ReLU activation is revealed to
be very suitable for training deep (i.e., multi-layer) neural networks, in view of the very
simple form that is assumed by its derivative (whenever it exists).

Here, we show that the above operators can also be based on a certain finite linear
combination of ReLU activation function, and in this case, the approximation properties of
K(M)

n are also preserved.
Problems of interpolation, or more in general, of approximation, are related to the

topic of training a neural network by sample values belonging to a certain training set:
this explains the interest in studying approximation results by means of NN operators in
various contexts [15,20–24].

Indeed, as can be seen from the references therein, results in this sense have been
studied deeply in terms of various aspects, such as the convergence and the order of ap-
proximation.

In this paper, we deal with the problem of the saturation order and of inverse results
of approximation.

In general, the problem of establishing the saturation order for a family of operators
Ln (see [25–28]), n ∈ N, consists in determining a class of functions D, a certain subclass
E of trivial functions of D, and a positive non-increasing function ϕ(n), n ∈ N, such that
there exists g ∈ D \ E with ‖Lng− g‖ = O(ϕ(n)), as n→ +∞, and with the property that,
for any f ∈ D with:

‖Ln f − f ‖ = o(ϕ(n)), n→ +∞,

it turns out that f ∈ E , and vice versa. Here, ‖ · ‖ denotes any suitable norm on D.
In this case, ϕ(n) is said to be the saturation order of the approximation process Ln, and it
represents the best possible order of approximation that can be achieved on D by the above
approximation operators.

In case of the max-product NN operators of the Kantorovich type, according to the
studies given in [9,29], we expect that for a certain subclass D of C([0, 1]) (endowed with
the usual max-norm), with ϕ(n) = 1/n, n ∈ N, then f is constant over [0, 1]. Hence, we also
have that the trivial class of functions E is given by constant functions. Indeed, one of the
main results that we establish in the present paper is exactly the proof of the above claim.

Further, since in [9] it has been proved that, in the space Lip([0, 1]), the order of
approximation is exactly 1/n, as n goes to +∞, it is natural to ask if also the converse
implication holds.

In this paper, we proved exactly a local version of such an inverse approximation
theorem, i.e., if the relation:∥∥∥K(M)

n ( f , ·)− f (·)
∥∥∥

∞
= O(1/n), n→ +∞,

olds, with f continuous and non-decreasing, then f belongs to Lip([a, b]),for every sub-
interval [a, b] ⊂ [0, 1].

2. Preliminaries

By C([0, 1]), we will denote the space of continuous functions f : [0, 1]→ R, while by
C+([0, 1]), we will indicate the subspace of C([0, 1]) of the non-negative valued functions.
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Furthermore, we will denote by Lip([0, 1]) the subspace of C([0, 1]) of the Lipschitz con-
tinuous functions on [0, 1], i.e., the space of functions f for which there exists a positive
constant L such that

| f (x)− f (y)| ≤ L|x− y|, x, y ∈ [0, 1].

Finally, we also denote by ‖·‖∞the classical max-norm. Obviously, all the above notations
can be given by replacing the interval [0, 1] with any bounded or unbounded interval
I ⊂ R.

We now recall the definition of a sigmoidal function introduced by Cybenko [30].

Definition 1. Let σ : R→ R be a measurable function. We call σ a sigmoidal function if

lim
x→−∞

σ(x) = 0, and lim
x→+∞

σ(x) = 1.

In what follows, we consider non-decreasing sigmoidal functions σ that satisfy the
following conditions:

(Σ1) σ(x)− 1/2 is an odd function;
(Σ2) σ ∈ C2(R) is concave for x ≥ 0;

(Σ3) σ(x) = O
(
|x|−α−1

)
as x → −∞ for some α > 0.

Notice that assumptions (Σi), i = 1, 2, 3 are satisfied by the main examples of sig-
moidal functions known in the literature.

For instance, examples of sigmoidal activation functions are given by σ`(x): =

(1 + e−x)
−1, x ∈ R (i.e., the so-called logistic function), and by σh(x) := (tanh(x) + 1)/2,

x ∈ R (i.e., the so-called hyperbolic tangent activation function). Note that both σ`(x) and
σh(x) satisfy (Σ3) for all α > 0 in view of their exponential decay at x → −∞.

Further, we can also recall the definition of the sigmoidal functions that can be gener-
ated by the well-known central B-splines of order n ∈ N+

Mn(x) :=
1

(n− 1)!

n

∑
i=0

(−1)i
(

n
i

)(n
2
+ x− i

)n−1

+
, x ∈ R,

where the function (x)+ := max{x, 0}. Hence, we can define the sigmoidal function σMn

generated by Mn as follows:

σMn(x) :=
∫ x

−∞
Mn(t)dt, x ∈ R.

Obviously, σMn satisfies assumption (Σ1) for every n ≥ 1. Further, since Mn have

compact supports, and the supports are contained in the intervals
[
−n

2
,

n
2

]
, it turns out

that σMn also satisfies (Σ3) for every α > 0. Further, assumption (Σ2) is satisfied for n ≥ 1.
Now, considering (from now on) a function σ that satisfies the above assumptions, we

can recall the definition of the density (kernel) function φσ, that is:

φσ(x) :=
1
2
[σ(x + 1)− σ(x− 1)], x ∈ R.

For the function φσ, the following lemma can be proved.

Lemma 1. (i) φσ(x) ≥ 0 for every x ∈ R, with φσ(2) > 0, and limx→±∞ φσ(x) = 0;
(ii) φσ(x) is an even function;
(iii) φσ(x) is non-decreasing for x < 0 and non-increasing for x ≥ 0;
(iv) φσ(x) = O

(
|x|−α−1

)
as x → ±∞ where α is the positive constant of condition (Σ3).
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For a proof of conditions (i)–(iv), see [31].
Now, we introduce the following notation used in the literature (see, e.g., [3]) in order

to define the so-called max-product type operators.

Definition 2. Let K1, K2 be two integers with K1 ≤ K2 and let Ak ∈ R, k = K1, . . . , K2 . Then
we define

K2∨
k=K1

Ak := max{Ak, k = K1, . . . , K2}.

Now, we recall the following lemma that will be useful in order to show that the
family of operators investigated in this paper are well-defined.

Lemma 2. ([29])
n−1∨
k=0

φσ(nx− k) ≥ φσ(2) > 0 for every x ∈ [0, 1].

The definition of the max-product NN operators of the Kantorovich type can now be
recalled.

Definition 3. Let f : [0, 1] → R be a bounded and locally integrable function and let n ∈ N+.
The max-product NN operators of the Kantorovich type activated by σ are defined by:

K(M)
n ( f , x) :=

n−1∨
k=0

φσ(nx− k)n
∫ (k+1)/n

k/n
f (u)du

n−1∨
k=0

φσ(nx− k)

, x ∈ [0, 1].

Clearly, in view of the properties established in Lemma 2, it turns out that K(M)
n ( f , x) are

well-defined, and, moreover, it is quite simple to observe that
∥∥∥K(M)

n ( f , ·)
∥∥∥

∞
≤ ‖ f ‖∞ < +∞.

Concerning the assumptions (Σ1), (Σ2), and (Σ3) assumed above, we can observe
that condition (Σ2) could be avoided, requiring that the sigmoidal function σ is such that
σ(3) > σ(1) and condition (iii) of Lemma 1 is fulfilled by φσ. The main advantage that
can be achieved by the latter fact is that one could apply all the approximation results
established below also to discontinuous and non-smooth sigmoidal functions.

An example of continuous but non-smooth sigmoidal function (given according to the
above remark) is the so-called ramp function σR(x) (see [12]) defined as follows:

σR(x) :=


0, x < − 3

2
x
3 + 1

2 , − 3
2 ≤ x ≤ 3

2

1, x > 1.

In particular, σR satisfies condition (Σ3) for all α > 0, and φσR turns out to be a function
with compact support; moreover, σR(3) > σR(1).

Note that (see [27]) the sigmoidal function σM1(3 ·) coincides with the ramp function
σR; now recalling the definition of the well-known rectified linear unit (ReLU) activation
function (see, e.g., [19,32]):

ψReLU(x) := (x)+, x ∈ R,

it turns out that:

σM1(3 x) := ψReLU(3 x + 1/2)− ψReLU(3 x− 1/2), x ∈ R.
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Thus, the density function φσM1 (3·)
can be expressed in terms of ReLU activation

function as follows:

φσR(x) = φσM1 (3 ·)
(x) = ψReLU(3 x + 1)− 2 ψReLU(3 x) + ψReLU(3 x− 1), x ∈ R.

As a consequence of the latter relation, the NN operators K(M)
n activated by σM1(3 ·)

can be considered as an NN activated by the above linear combination of ReLU activation
functions. Recently, it has been proved that ψReLU is very suitable in order to train deep
(i.e., multi-layer) neural networks; see, e.g., [33,34]. For more details concerning ψReLU ,
see also [19,35].

3. The Saturation Order

It is well known that, if f ∈ C+([0, 1]) the family
(

K(M)
n ( f , ·)

)
converges uniformly to

f (see [9]). Moreover, we also know that the following quantitative estimates:∥∥∥K(M)
n ( f , ·)− f (·)

∥∥∥
∞
≤ Mω

(
f ,

1
n

)
, (1)

as n→ +∞, there holds if condition (Σ3) is satisfied for α ≥ 1, M > 0 and where:

ω

(
f ,

1
n

)
:= sup{| f (x)− f (y)| : x, y ∈ [0, 1], with |x− y| ≤ 1/n}

denotes the usual modulus of continuity of the function f ∈ C+([0, 1]) (see, e.g., [36]).
From the latter result, it turns out that, if the function f belongs to Lip([0, 1]), then the
order of uniform approximation is 1/n, as n→ +∞.

In this section, we study the saturation order for the NN operator of the Kantorovich
type activated by sigmoidal functions; i.e., we show that 1/n is the best possible order of
approximation that can be achieved for non-decreasing functions that belong to C+([0, 1]).

In order to reach our main purpose, we need some preliminary lemmas.

Lemma 3. For any j ∈ {0, . . . , n− 1}, n ∈ N+, we have:

n−1∨
k=0

φσ(nx− k) = φσ(nx− j)

for every x ∈
[

j
n −

1
2n , j

n + 1
2n

]
∩ [0, 1]. Further, if x ∈

(
1− 1

2n , 1
]

we have:

n−1∨
k=0

φσ(nx− k) = φσ(nx− n + 1).

Proof. Let j ∈ {0, . . . , n− 1} be fixed and x ∈
[

j
n −

1
2n , j

n + 1
2n

]
∩ [0, 1]. Observing that

|nx− j| = n|x− j/n| ≤ 1/2 (2)

and, since φσ(x) is even and non-increasing for x ≥ 0, we get:

φσ(nx− j) = φσ(|nx− j|) ≥ φσ(1/2) ≥ φσ(2) > 0.

Similarly, if k ∈ {0, . . . , n− 1} and k 6= j, we have

|nx− k| = n|x− k/n| ≥ 1/2 (3)
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and so, using the previous properties of φσ(x) we have:

φσ(nx− k) = φσ(|nx− k|) ≤ φσ(1/2).

If x ∈
(

1− 1
2n , 1

]
we note that

|nx− n + 1| = n|x− (n− 1)/n| ≤ 1

and, if k 6= n− 1
|nx− k| = n|x− k/n| > 1

and the claim follows, arguing as in (2) and (3), respectively.

Lemma 4. Let I ⊆ R be a bounded or unbounded interval and f ∈ C(I). Suppose in addition
that there exists an absolute positive constant C with the property that for every ε > 0 there exists
n(ε) ∈ N+ such that for any n ∈ N, n ≥ n(ε) and j ∈ Z, with j

n , j+1
n ∈ I, we have∣∣∣∣ f( j + 1

n

)
− f

(
j
n

)∣∣∣∣ ≤ Cε

n
. (4)

Then f is a constant function.

Proof. Let us choose arbitrary x0, y0 ∈ I, x0 < y0 and ε > 0. The continuity of f implies
the existence of n0(ε) ∈ N+, such that for any x, y ∈ I, |x− x0| ≤ 1

n0(ε)
, |y− y0| ≤ 1

n0(ε)
,

we have
| f (x)− f (x0)| ≤ ε, | f (y)− f (y0)| ≤ ε.

We now fix n1 = max
{

n(ε), n0(ε), 1
y0−x0

}
, where n(ε) is the constant arising from the

assumptions, and let us choose arbitrary n ∈ N such that n ≥ n1. Since 1
n1
≤ y0 − x0, it

follows that there exists k ∈ Z and l ∈ N such that

k− 1
n
≤ x0 ≤

k
n
≤ k + 1

n
≤ · · · ≤ k + l

n
≤ y0 ≤

k + l + 1
n

.

Applying successively the triangle inequality we get

| f (x0)− f (y0)| ≤
∣∣∣∣ f (x0)− f

(
k
n

)∣∣∣∣+ ∣∣∣∣ f( k
n

)
− f

(
k + 1

n

)∣∣∣∣
+ · · ·+

∣∣∣∣ f( k + l − 1
n

)
− f

(
k + l

n

)∣∣∣∣
+

∣∣∣∣ f( k + l
n

)
− f (y0)

∣∣∣∣.
By relation (4), we have∣∣∣∣ f( k + p

n

)
− f

(
k + p + 1

n

)∣∣∣∣ ≤ Cε

n
, p = 0, 1, . . . , l − 1,

and since max
{∣∣∣x0 − k

n

∣∣∣, ∣∣∣y0 − k+l
n

∣∣∣} ≤ 1
n ≤

1
n0(ε)

, we get

| f (x0)− f (y0)| ≤
lCε

n
+ 2ε.

On the other hand, we observe that k+l
n −

k
n ≤ y0 − x0, which implies that l ≤

n(y0 − x0). Thus, we obtain

| f (x0)− f (y0)| ≤ Cε(y0 − x0) + 2ε.
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Now, since ε > 0 has been chosen arbitrarily, passing to the infimum for ε > 0 in the
previous inequality, we deduce that f (x0) = f (y0). By the arbitrariness of x0 and y0, it
turns out that f is a constant function on the whole I.

Lemma 5. Let I ⊆ R be a bounded or unbounded interval and f ∈ C(I) be a non-decreasing
function with the property that for any couple a, b, a < b, of inner points of I, and for every
ε > 0 there exists n(a, b, ε) ∈ N+ such that for any n ∈ N, n ≥ n(a, b, ε) and j ∈ Z, such that
j+1

n , 2j+1
2n ∈ [a, b], we have

f
(

j + 1
n

)
− f

(
2j + 1

2n

)
≤ ε

n
. (5)

Then f is a constant function over I.

Proof. Let n ∈ N, n ≥ n(a, b, ε), such that 1
n ≤ b− a, and let us choose arbitrary j ∈ Z such

that a ≤ j
n ≤

j+1
n ≤ b. We observe that for any k ∈ N+, we have

j
n
<

2k j + 1
2kn

<
j + 1

n
.

Therefore, applying successively relation (5) we obtain

f
(

j + 1
n

)
− f

(
2j + 1

2n

)
≤ ε

n
,

f
(

2j + 1
2n

)
− f

(
4j + 1

4n

)
≤ ε

2n
, (j := 2j, n := 2n)

f
(

4j + 1
4n

)
− f

(
8j + 1

8n

)
≤ ε

4n
, (j := 4j, n := 4n)

·
·

f

(
2k j + 1

2kn

)
− f

(
2k+1 j + 1

2k+1n

)
≤ ε

2kn
,
(

j := 2k j, n := 2kn
)

.

Taking, respectively, the sums of all the terms in the first and second parts of the
previous inequalities, we obtain

f
(

j + 1
n

)
− f

(
2k+1 j + 1

2k+1n

)
≤ ε

n
·
(

1 +
1
2
+ · · ·+ 1

2k

)
≤ 2ε

n

Since

lim
k→∞

f

(
2k+1 j + 1

2k+1n

)
= f

(
j
n

)
,

it follows that

f
(

j + 1
n

)
− f

(
j
n

)
≤ 2ε

n

and since f is non-decreasing, we get∣∣∣∣ f( j + 1
n

)
− f

(
j
n

)∣∣∣∣ ≤ 2ε

n
.

By Lemma 4 it follows that f is constant in [a, b]. Since a and b are two arbitrary inner
points of I and f is continuous, it easily results that f is constant in I.

Note that Lemma 4 and Lemma 5 can also be extrapolated from the monograph [3].
Now we can prove the main theorem of this section.
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Theorem 1. Let f ∈ C+([0, 1]) be a non-decreasing function such that∥∥∥K(M)
n ( f , ·)− f (·)

∥∥∥
∞
= o

(
n−1

)
as n→ ∞. Then f is constant over [0, 1].

Proof. Let us choose arbitrary a, b ∈ (0, 1), a < b. Further, let n ∈ N+ be sufficiently
large such that 1

n < b − a and b < 1− 1
2n . Now, we fix j ∈ {0, 1, . . . , n − 2}, such that

j+1
n , j

n + 1
2n ∈ [a, b]. We have

K(M)
n

(
f ,

j
n
+

1
2n

)
= K(M)

n

(
f ,

2j + 1
2n

)
=

n−1∨
k=0

φσ

(
n · 2j+1

2n − k
)

n
(k+1)/n∫

k/n
f (u)du

n−1∨
k=0

φσ

(
n · 2j+1

2n − k
) .

By Lemma 3, it follows that

n−1∨
k=0

φσ

(
n · 2j + 1

2n
− k
)

= φσ

(
n · 2j + 1

2n
− j
)

= φσ

(
n · 2j + 1

2n
− (j + 1)

)
which easily implies that

K(M)
n

(
f ,

2j + 1
2n

)
≥ n

(j+2)/n∫
(j+1)/n

f (u) du.

Moreover, recalling that f is non-decreasing, it follows that K(M)
n

(
f , 2j+1

2n

)
≥ f

(
j+1

n

)
,

and this implies

0 ≤ f
(

j + 1
n

)
− f

(
2j + 1

2n

)
≤
∥∥∥K(M)

n ( f , ·)− f
∥∥∥

∞
= o

(
n−1

)
, as n→ +∞.

Then, we can prove that for every ε > 0, there exists n(ε) ∈ N+ such that for any
n ∈ N+, with n ≥ n(ε) and j ∈ Z, such that j+1

n , 2j+1
2n ∈ [a, b], we have

f
(

j + 1
n

)
− f

(
2j + 1

2n

)
≤ ε

n
,

and hence the proof follows by Lemma 5.

Remark 1. The previous theorem can be easily generalized in the case of functions defined
on arbitrary intervals [a, b], a, b ∈ R, instead of [0, 1]. This is possible by defining the
operators K(M)

n on generic intervals [a, b] (as made in [9]) and then working with continuous
and non-decreasing f : [a, b]→ R+.

4. Local Inverse Result

The main aim of this section is to prove an inverse theorem of approximation. We will
use a strategy similar to that presented in the previous section.
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Lemma 6. Let I ⊆ R be a bounded or unbounded interval and f ∈ C(I). Suppose in addition that
there exists an absolute positive constant C such that for any sufficiently large n ∈ N and every
j ∈ Z, with j

n , j+1
n ∈ I, we have ∣∣∣∣ f( j + 1

n

)
− f

(
j
n

)∣∣∣∣ ≤ C
n

. (6)

Then f ∈ Lip(I).

Proof. Let us choose arbitrary x0, y0 ∈ I, x0 < y0. Moreover, let ε > 0 with ε < y0− x0. The
continuity of f implies the existence of n0(ε) ∈ N+, such that for any x, y ∈ I, |x− x0| ≤

1
n0(ε)

, |y− y0| ≤ 1
n0(ε)

, we have

| f (x)− f (x0)| ≤ ε, | f (y)− f (y0)| ≤ ε.

We now fix n1 = max
{

n0(ε), 1
y0−x0

}
, and let us choose arbitrary n ∈ N with n ≥ n1.

Proceeding as in the proof in Lemma 4, we get

| f (x0)− f (y0)| ≤
lC
n

+ 2ε.

and since ε < y0 − x0, we get

| f (x0)− f (y0)| ≤ (C + 2)(y0 − x0).

Then the thesis follows by the arbitrariness of x0 and y0.

Lemma 7. Let I ⊆ R be a bounded or unbounded interval and f ∈ C(I) be a non-decreasing
function with the property that, for any couple a, b, a < b, of inner points of I, there exists a C > 0
such that for every sufficiently large n ∈ N and j ∈ Z, with j+1

n , 2j+1
2n ∈ [a, b], we have

f
(

j + 1
n

)
− f

(
2j + 1

2n

)
≤ C

n
. (7)

Then f ∈ Lip([a, b]).

Proof. Let n ∈ N be sufficiently large such that 1
n ≤ b− a, and let us choose arbitrary j ∈ Z

such that a ≤ j
n ≤

j+1
n ≤ b. Arguing as in Lemma 5, we get

f
(

j + 1
n

)
− f

(
2k+1 j + 1

2k+1n

)
≤ C

n
·
(

1 +
1
2
+ · · ·+ 1

2k

)
≤ 2C

n
, k ∈ N+.

Taking the limit as k→ +∞, we obtain

f
(

j + 1
n

)
− f

(
j
n

)
≤ 2C

n

and, since f is non-decreasing,∣∣∣∣ f( j + 1
n

)
− f

(
j
n

)∣∣∣∣ ≤ 2C
n

.

Hence, by Lemma 6, it follows that f ∈ Lip([a, b]) .

For results similar to that ones of Lemma 6 and Lemma 7 (only in the case of bounded
intervals), one can see, e.g., [3].

Now we can finally prove a (local) inverse theorem of approximation.
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Theorem 2. Let f ∈ C+([0, 1]) be a non-decreasing function such that∥∥∥K(M)
n ( f , ·)− f (·)

∥∥∥
∞
= O

(
n−1

)
as n→ ∞. Then, for every [a, b] ⊂ (0, 1), it turns out that f ∈ Lip([a, b]).

Proof. As in Theorem 1, we choose arbitrary a, b ∈ (0, 1), a < b. Let now n ∈ N+ be
sufficiently large such that 1

n < b− a and b < 1− 1
2n . Then, let j ∈ {0, 1, . . . , n− 2}, such

that j+1
n , 2j+1

2n ∈ [a, b]. Proceeding as in the proof of the above-mentioned theorem, we
immediately get

0 ≤ f
(

j + 1
n

)
− f

(
2j + 1

2n

)
≤
∥∥∥K(M)

n ( f , ·)− f (·)
∥∥∥

∞
= O

(
n−1

)
, as n→ +∞,

and, by Lemma 7, this implies that f ∈ Lip([a, b]).
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