
����������
�������

Citation: Ivanov, D.; Granichin, O.;

Pankov, V.; Volkovich, Z. Design of `1

New Suboptimal Fractional Delays

Controller for Discrete Non-

Minimum Phase System under

Unknown-but-Bounded Disturbance.

Mathematics 2022, 10, 69. https://

doi.org/10.3390/math10010069

Academic Editor: Michal Fečkan
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Abstract: `1-regularization methodologies have appeared recently in many pattern recognition and
image processing tasks frequently connected to `1-optimization in the control theory. We consider
the problem of optimal stabilizing controller synthesis for a discrete non-minimum phase dynamic
plant described by a linear difference equation with an additive unknown-but-bounded noise. Under
considering the “worst” case of noise, the solving of these optimization problem has a combinatorial
complexity. The choosing of an appropriate sufficiently high sampling rate allows to achieve an
arbitrarily small level of suboptimality using a noncombinatorial algorithm. In this paper, we suggest
to use fractional delays to achieve a small level of suboptimality without increasing the sampling rate
so much. We propose an approximation of the fractional lag with a combination of rounding and a
first-order fractional lag filter. The suggested approximation of the fractional delay is illustrated via a
simulation example with a non-minimum phase second-order plant. The proposed methodology
appears to be suitable to be used in various pattern recognition approaches.

Keywords: non-minimum phase system; fractional delays; unknown-but-bounded noise; stabilizing
controller

1. Introduction

Many kinds of modeling problems can be represented as

Aα = B,

where A is a linear operator acting in a Hilbert space, and α, and B are appropriate vectors.
After discretizing with sampling rate δ, this equation can be re-written as

Aδαδ = Bδ. (1)

The case of Aδ with dimensionality m× N often arises in practice when unknown
physical characteristics described by αδ cannot be measured directly, but Bδ is observed.
Matrix Aδ is an observation scheme matrix. The interesting case is m << N. It is a
conventional ill-posed problem admitting perhaps an infinite number of solutions and is
frequently resolved by a regularization method resting upon some preliminary information
with the aim to discover a suitable αδ.

One of the widely used regularization methods is `1-minimization of the αδ value,
which is a typical situation in pattern recognition and signal processing operating with the
compressive sensing (CS) methodology.
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CS was introduced by Candens, Romberg and Tao [1] in 2006. This approach theoretically
guarantees a precise recovery of s-sparse signal αδ based on m << N measurements sampled
below the Nyquist rate. CS and its applications are reviewed in detail in [2]. CS is commonly
used in such areas as super-resolution imaging [3–5], MRI fast image acquisition [6–8],
and seismic data compression [9–11]. A signal possesses in these fields natural s-sparse
representation corresponding to a specific domain, and the resultant regularized solutions
of (1) with the minimal `1 norm leads to sufficiently correct outcomes.

As it can be seen, the task of finding a s-sparse solution αδ is widely used in various
applications. To formulate the overall problem, let us introduce Xδ = col(x1,δ, x2,δ, . . . , xs,δ),
the vector containing indices of the required nonzero elements of αδ and αδ(Xδ) = col(αx1,δ ,
αx2,δ , . . . , αxs,δ) a vector containing the matching elements. Let Aδ(Xδ) denote the restriction
of operator Aδ to subspace Xδ. Then, (1) is rewritten as

Aδ(Xδ)αδ(Xδ) = Bδ.

This much simpler relationship treats vectors of much smaller dimensionality because
s < m << N, and it can be efficiently solved by standard techniques, such as LU or QR
decomposition. Compared to the original problem, this system is not underdetermined. In
the case of an invertible operator Aδ and m = s, αδ(Xδ) is expressed as

αδ(Xδ) = Aδ(Xδ)
−1Bδ. (2)

So, the task of finding an s-sparse solution αδ can be reformulated as an optimization
problem: to find such Xδ corresponding to a minimal `1 norm of αδ such that

‖αδ(Xδ)‖1 =
s

∑
i=1
|αxi,δ | → min

X
. (3)

Suppose that Xδ is not a vector containing integers, but a real-valued vector. In this
case, a necessary condition for points Xδ where the gradient exists is

∇(||Aδ(Xδ)
−1Bδ||1, Xδ) = 0, (4)

where ∇ is the gradient operator. If the corresponding minimum point has all integer
components, then it is a solution of original problem (3). Otherwise, a suboptimal one
can be obtained by rounding the components to nearest integers. It can be shown that the
nearest solution with integer components αδ(Xδ) has a suboptimality level of difference
between values of (3) at real-valued and rounded solutions (see [12], which is based on [13]
or [14]).

A more accurate outcome can be obtained by rounding the minimum to the nearest
vector with rational components in the ε neighborhood and by choosing the sampling rate

δ =
1

lcd(x1,δ, x2,δ, . . . , xs,δ)
,

where lcd is the least common denominator of Xδ coordinates. Further, the required solution
is given just by multiplying by the lcd value. As was shown in [15], the fractional solution
has a suboptimality level ε.

In this paper, the idea of a fractional solution is used for the synthesis of a suboptimal
`1 stabilizing controller based on filters approximating fractional delay. This work is based
on the method described in the paper [13], where the problem of synthesis of an optimal
stabilized controller for a discrete non-minimal phase plant under an irregular bounded
noise is considered. The result of [13] was applied in [16,17] for solving a SISO plant
adaptive optimal control problem under unknown-but-bounded disturbances. The general
solution to the problem of `1 stabilizing optimal controller was obtained in [18].



Mathematics 2022, 10, 69 3 of 15

Non-minimal phase systems have zeros or poles of a transfer function with a pos-
itive real part. Such schemes are used to describe various processes, such as ship mo-
tion control [19], flexible manipulators [20], servomechanism [21,22], continuous stirred
tank reactors [23], electronic circuits [24,25], cart inverted pendulum and coupled-tank
systems [25], settle time applications [26], and so on. Moreover, similar structures can
appear, for example, due to an approximation, such as a Pade approximation to unit delay,
of processes described by partial differential equations [27].

The control of a non-minimal phase plant leads to many difficulties [28]. More precisely,
these limitations can be concluded, for example, from the classical root-locus method [29],
waterbed effect phenomena [30], and the LTR problem [31]. In linear time-invariant
systems, the source of all of the limitations mentioned above is that the non-minimum
phase zero of the given process cannot be annulled by the unstable controller pole since
such a cancellation causes internal instability [32].

Another generalization of the minimal phase integer order systems consists of the frac-
tional order systems used mainly to describe viscoelasticity/damping [33], electrochemical
processes and flexible robots [34].

Automatic control algorithms, based on the concepts of fractional calculus, have
been proposed both in the frequency [35] and in the time [36] domains. In [37], fractional
order PID controller was proposed. The synthesis of linear quadratic regulator (LQR)
based on fractional order PID controllers was suggested in [38–40]. A task of tuning of
fractional order PID controllers was considered in [41]. Ref. [42] was based on a fractional
order controller for compensating the unstable zeros. Various modifications of fractional-
order controllers for controlling non-minimum phase systems was discussed in [43,44].
A comprehensive overview of fractional order control, fractional PID controllers, and
fractional order calculus application for MIMO plants was described in [45–48] . The
fundamental methods of fractional control were described in [49–52]. It is worth noting
that fractional order controllers in published papers are proposed only for the deterministic
continuous case.

This paper’s main contribution consists of a new implementation of a suboptimal `1
controller based on filters approximating fractional delay. The problem of synthesizing an
optimal stabilizing controller under conditions of arbitrary bounded noise is investigated.
The results of [12] serve as a basis for creating an `1 suboptimal stabilizing control regulator
with fractional delays for discrete non-minimal phase systems with bounded noise. But
with an arbitrary fixed sampling rate for the dynamical system underlying the processes
under study, it is impossible to achieve an arbitrarily small level of suboptimality. For a
suboptimal solution, an algorithm for the synthesis of a fractional controller (with non-
integer delay) is proposed and justified. We show that the use of fractional lag controllers
allows to achieve the control aim that is closer to the optimal level, and with the help of
fractional lag, it is not needed to greatly increase the sampling rate to achieve an arbitrarily
small level of suboptimality. An advantage of the proposed approach is also the dimension
reduction to the number of unstable zeros of a control plant, which is better compared to
the infinite dimension of the original optimization problem.

The paper is organized as follows. Section 2 presents the problem statement and intro-
duction of fractional delay and fractional delay filters for the implementation of fractional
delay. Section 3 discusses the approximation errors of the controller. The simulation results
are presented in Section 4. Finally, Section 5 concludes this paper.

2. Problem Statement and the Theoretical Framework

The results presented in this section are mostly based on the material stated in [12,15].

2.1. Controller for Continuous Non-Minimum Phase System under Unknown-But-
Bounded Disturbance

Let us consider a continuous-time control plant with the input–output transfer function
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G(z) =
g0(z− λ(1)) . . . (z− λ(s)) . . . (z− λ(n−1))

(z− λ
(1)

) . . . (z− λ
(2)

) . . . (z− λ
(n)

)
(5)

We assume that the excess of the poles and zeros of the system is equal to unity, the
first s zeros of the transfer function G(z) are unstable (Reλ(i) > 0, i = 1, . . . , s) and the
remaining zeros are stable (Re(λ(i)) < 0, i = s + 1, . . . , n− 1). Here, Re(λ) stands for the
real part of a complex number λ. Let the poles λ(1), . . . , λ(n) of the transfer function G(z)
not coincide with the first s unstable zeros.

We choose a discretization step δ > 0 and study a family of piecewise constant func-
tions defining the control actions varying at time instants kδ, k = 0, 1, 2, . . .. By considering
the discretization of the given continuous-time system in the zero approximation (see [21]),
we obtain for a sufficiently small value of δ a discrete system with the transfer function

Hδ(z) =
hδz(z− λ

(1)
δ ) . . . (z− λ

(s)
δ ) . . . (z− λ

(n−1)
δ )

(z− λδ
(1)

) . . . (z− λδ
(2)

) . . . (z− λδ
(n)

)
(6)

with the poles λδ
(1)

, . . . , λδ
(s)

, . . . , λδ
(n−1)

and zeros λ
(1)
δ , λ

(2)
δ , . . . , λ

(n)
δ . It is well known

that for δ→ 0 (see [21]), the poles of the transfer function Hδ(z) are approximately related

to the poles of G(z) by λ
(i)
δ = e−δλ

(i)
, i = 1, . . . , n; for zeros, these relations are

λ
(i)
δ ≈ e−δλ(i)

, i = 1, . . . , n− 1.

2.2. Controller for Discrete Non-Minimum Phase Plant under Unknown-But-
Bounded Disturbance

Let us consider a discrete dynamic control plant described by the following equation

a
(

q−1
)

yt = b
(

q−1
)

xt + υt, (7)

where

• yt , xt, υt are the output, input, and disturbance signals at time instant t respectively;
• q−1 is the backward shift operator: q−1yi = yi−1;
• a

(
q−1) and b

(
q−1) are polynomials of q−1 ;

a(λ) = 1 +
na

∑
i=1

aiλ
i, b(λ) =

nb

∑
i=r

biλ
i,

where r ≥ 1 is a time lag.
It is additionally supposed that ‖υ‖∞ = max

t
|υt| ≤ Cυ, Cυ > 0.

A linear stationary regulator carries out the control of a plant with known parameters

α
(

q−1
)

ut = β
(

q−1
)

yt , (8)

where α(λ) and β(λ) are polynomials of q−1:

α(λ) = 1 +
nc

∑
i=1

αiλ
i, β(λ) =

kc

∑
i=1

βiλ
i.

If the characteristic polynomial of the closed-loop system described by Equations (7) and (8)

χ(λ) = α(λ)a(λ)− β(λ)b(λ) (9)

has no unstable roots (in unit disk), then regulator described by Equation (8) is stabilizing

sup
t

(|yt|+ |ut|) < ∞, (10)
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i.e., output yt and control ut are bounded.
Denote by ȳ ∈ l∞ the desired output of the control plant described by Equation (7).

The meaningful formulation of the problem is to build the polynomials α(·) and β(·), which
are guaranteeing Inequality (10)—stabilizing of output and input—and asymptotic bound

lim
i→∞
|yt − ȳt| ≤ J(α(·), β(·), Cv) (11)

with performance index

J(α(·), β(·), Cv) = inf
α(·),β(·)

sup
‖υ‖∞≤Cυ

lim
i→∞
|yt − ȳt|. (12)

Let be ψy/υ(λ) transfer function of closed-loop system from disturbance υt to input yt

ψy/υ(λ) =
αy/υ(λ)

χ(λ)
=

∞

∑
i=0

ψiλ
i.

So, we have

yt =
∞

∑
i=0

ψiυt−i.

The control problem described by Equations (11) and (12) has an infinite dimension.
Equation (12) can be rewritten in the form

J(α(·), β(·), Cv) = Cv inf
ψy/υ(·)

∞

∑
i=0
|ψi|

due to the arbitrary nature of the disturbance performance index.
Denote b−(λ) and b+(λ) the unstable and stable part of polynomial b(λ). So, we have

b(λ) = b−(λ)b+(λ).

Assumption 1. a(λ) and b−(λ) are coprime polynomials, and polynomial b−(λ) has s unstable
different not zero and not unit roots λ1, . . . , λs and does not have unit roots.

In [13] it was shown under Assumption 1 that optimal regulator characteristic poly-
nomial χ(λ) is equal to b+(λ) and optimal polynomial α(λ) has following structure:
α(λ) = f (λ)b+(λ), where polynomial f (λ) has not more s non-zero coefficient (s-sparse
structure) and highest possible degree of f (λ) is bounded and depended on highest of
magnitude on non-stable zeros of polynomial b(λ).

The following theorem from [12] gives the answer to the question about the achiev-
able quality of control. It allows to reformulate the control problem (11)–(12) as a finite
dimension problem, which is similar to (3).

Theorem 1. Under Assumption 1, the minimum value of the function Cv‖F(X)‖1 is a lower
bound estimate for minimum value of (12), i.e.

min
X∈Rs

+

Cv‖F(X)‖1 ≤ J(α(·), β(·), Cv) (13)
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where F(X) = A−1(X)B ∈ Rr+s, X = (x1, x2, . . . , xs)
T ∈ Rs

+, xi ≥ 1, ‖F‖1 =
s+r−1

∑
i=0
| fi|,

A(X) =



1 0 0 0 . . . 0 . . . 0

0 1 0 0 . . . 0
. . . 0

0 2a(1) 2 0 . . . 0
. . . 0

0 6a(2) 6a(2) 3 . . . 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .

1 λ1 . . . . . . λr−1
1 λr−1+x1

1 . . . λ

r−1+
s
∑

j=1
xj

1
...

...
. . . . . .

...
...

. . .
...

1 λs . . . . . . λr−1
s λr−1+x1

s . . . λ

r−1+
s
∑

j=1
xj

s



,

B =
(

1 −a1 . . . (r− 1)ar−1
1

a(λ1)
. . . 1

a(λs)

)T
.

If the minimum of the left side of Equation (13) is achieved in point Xo with integer-
value components, then the polynomial of the `1-optimal stabilizing controller can be
obtained by the formulas (see [12])

α(λ) = f (λ)b+(λ), (14)

β(λ) =
(a(λ) f (λ)− 1)

b−(λ)
, (15)

where f (λ) =
r−1
∑

j=0
f jλ

j +
s+r−1

∑
j=r

f j(Xo)λ
Dj , Dj = r− 1 +

j−r+1
∑

i=1
xi.

For the general case, in order for the controller to be physically attainable, it is necessary
to resolve Equation (13) in the positive integers.

Xz = arg min
X∈Zs

+

J(X) = arg min
X∈Zs

+

Cυ

s+r

∑
j=0

∣∣ f j(X)
∣∣. (16)

A NP-hard problem of finding this point admits a relaxation consisting of resolving
in the real numbers field, followed by rounding to the nearest integer. However, the
continuous optimization methods applied here can provide ill-treatment solutions. To
avoid such a circumstance, the current paper proposes using fractional delay filters to
implement a consistent suboptimal controller.

More precisely, in the case non-integer-value components Xo, we can relax the con-
sidered problem to the fractional case when delays Dj may be fractional in controller
Equations (14) and (15). Next, we consider more carefully the fractional delay for discrete
systems.

2.3. Fractional Delay Filters

The ideal fractional delay element is a digital version of a continuous-time delay line

q−Dj ui = ui−Dj . (17)

The impulse response of an ideal fractional delay (FD) filter is a shifted and sampled
sinc function

hj(i) =
sin
(
πi− Dj

)
πi

(18)

where Dj is the delay with an integral part D̃j = f loor
(

Dj
)

is a rounding of Dj to the
nearest integers less than or equal to Dj, and dj is the fractional part dj = Dj − D̃j.
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For case dj > 0, the impulse response is an infinite length. The impulse response of
the ideal fractional delay filter is presented in Figure 1.

Figure 1. The impulse response of ideal fractional delay filter.

The infinite length of the impulse response leads to a noncausal filter that cannot be
made causal by a finite shift in time. In addition, the filter is not stable since the impulse
response is not absolutely summable. Thus, the ideal FD filter is nonrealizable.

The problem of a suboptimal controller is faced with the problem of design s frac-
tional delay filters. To produce a realizable finite-length fractional delay filter, causal
approximation for the sinc function can be used [53].

Generally, today, there are a large number of papers deal with the design of filters with
fractional delays of both filters with finite impulse response (FIR) [54] and infinite impulse
response IIR [55,56].

This article discusses the most straightforward non-recursive first-order filters. These
filters are consistently stable [57,58] and somewhat increase the complexity of the synthe-
sized controller. More complex filters should be considered on a case-by-case basis.

3. Approximation Errors of the Controller

The approximation of the fractional delay leads to an additional error in the plants.
Let us define this error as ∆F, so

(A + ∆A)(F + ∆F) = B, (19)

This is shown in [59]
‖∆F‖1
‖F‖1

≤ µ
‖∆A‖1
‖A‖1

, (20)

where µ =
∥∥A−1

∥∥
1‖A‖1 is the condition number.

Substituting (20) into Equation (19), we have

‖∆F‖1 ≤ ‖∆A‖1

∥∥∥A−1
∥∥∥

1
‖F‖1. (21)
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Equation [23] shows that the approximation error ‖∆F‖1 is naturally bounded by an
estimator linearly depending on the error ‖∆A‖1. According to the definition of the `1
norm, a decrease in errors of all its elements will lead to a decrease in the total error.

Let us compare the approximation error of the rounding method [12] and the simplest
non-recursive fractional delay filter and introduce

D̂
(

q−1
)
= (1− d) + dq−1 (22)

Consider the approximation by the example of an unstable zero λx1
1 representing it in

the irreducible fraction of an integer and a fractional part λx1
1 = λD̃

1 λd
1.

An approximation of the fractional part λd
1 by the method of rounding to integer

powers is [12]

λd
1 ≈

{
1, d < 0.5

λ1, d ≥ 0.5
(23)

An approximation of the fractional part λd
1 for a non-recursive fractional delay filter is

λd
1 ≈ 1− d + dλ1. (24)

The rounding approximation error is defined as

εr(d, λ1) =

{
1− λd

1, d < 0.5
λd

1 − λ1, d ≥ 0.5
(25)

The error of approximation by the fractional lag filter is defined as

ε f (d, λ1) = 1− d + dλ1 − λd
1. (26)

Consider for which values of the parameters λ1 and d the approximation error of (26)
is less than (25).

Theorem 2. The approximation error (26) is less than approximation error (25) if parameter
λ1 ∈ (0, 1), delay d ∈ (0, 1), and

d <
λ1 + 1
1− λ1

−
LambertW

(
−2λ

(λ1+1)/(1−λ1)
1 ln(λ1)

λ1−1

)
ln(λ1)

, (27)

where LambertW is Lambert W function, namely the branches of the converse relation of the
function f (w) = wew.

Proof. Let us consider two possible cases.
Case 1. λd

1 ≈ λ0
1 = 1. Consider the inequality 1− d + dλ1 − λd

1 < 1− λd
1. After

simplification, the inequality takes the form

d(λ1 − 1) < 0, (28)

and it always holds true for the values d ∈ [0, 0.5) , λ ∈ (0, 1).
Case 2. λd

1 ≈ λ. Consider the inequality 1− d + dλ1 − λd
1 < λd

1 − λ1. After simplifica-
tion, the inequality takes the form

1− d + λ1(1 + d) < 2λd
1. (29)

After finding a solution to the inequality (29) with respect to d, it is expressed as (27).
Figure 2 shows the region (marked in blue) in which inequality (29) is satisfied. As we

can see from the figure, this is possible only for the values d > 0.1 , λ1 < 0.285.
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Figure 2. Region when Inequality (29) is satisfied.

When Inequality (27) is satisfied, an approximation based on a fractional delay filter
should be chosen. If Inequality (27) is not satisfied, the approximation is based on rounding.
The filter approximating the fractional delay according to this rule can be defined as

d
(

q−1
)
=


1− d + dq−1, d < λ+1

1−λ −
LambertW

(
−2λ(λ+1)/(1−λ) ln(λ)

λ−1

)
ln(λ) ,

q−1, d ≥ λ+1
1−λ −

LambertW
(
−2λ(λ+1)/(1−λ) ln(λ)

λ−1

)
ln(λ) .

(30)

An approximation by fractional delay filters of other elements of the matrix is carried
out similarly. The use of filters approximating the fractional delay allows to reduce the ap-
proximation error of most elements without resorting to increasing the sampling frequency
in the controller.

Remark 1. This approach can be applied to design a controller for a continuous system. The
sampling error can be considered as an unknown-but-bounded noise [44].

4. Simulation Results

The class of non-minimum phase plants is described by the equation

yt − 1.91yt−1 + 5.2yt−2 = λ1λ2ut−1 − (λ1 + λ2)ut−2 + ut−3 + υt, (31)

where the appropriate vector and matrix are

A(X) =

∥∥∥∥∥∥
1 0 0
1 λx1

1 λx1+x2
1

1 λx1
2 λx1+x2

2

∥∥∥∥∥∥, B =

 1
1/a(λ1)
1/a(λ2)


and r = 1, Cv = 1.

The controller for the experiment was implemented according to the following steps:

1. The minimum of the function (12) is found using optimization algorithm;
2. Extraction of fractional parts dj of delay Dj is performed;
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3. Fractional parts dj are approximated according to the condition (30);
4. The controller implementation is performed based on the approximation from the

previous step and Formulas (14) and (15).

The minimum of function (9) is a function of the values of unstable zeros λ1, λ2 :

Jmin(λ1, λ2) = arg min
X

J(X, λ1, λ2). (32)

Figure 3 presents the surface of the function Jmin(λ1, λ2) (32). It shows the minimum
achievable error for different values of unstable zeros.

Figure 3. Function Surface (33), which depicts minimum achievable error for different values of
unstable zeros.

Determine the absolute error in the assessment using a suboptimal controller (23)

∆J1(λ1, λ2) = J1(λ1, λ2)− Jmin(λ1, λ2), (33)

and controller (30)

∆J2(λ1, λ2) = J2(λ1, λ2)− Jmin(λ1, λ2). (34)

The function surface of error (33) is shown on the Figure 4, and the function surface of
error (34) is shown on the Figure 5.

As it can be seen from Figure 5, the error caused by the fractional lag filter is less
than the error caused by rounding (Figure 4) for all values of λ1, λ2. The use of a filter
approximating fractional delay allows to obtain a more accurate solution compared to
a suboptimal controller [12]. The histogram presented on Figure 6 shows that errors of
fractional lag filter have a lower variance with maximum value 0.5, compared to Figure 7,
where the maximum additional error is greater than 2.

Table 1 shows the mean and standard deviation of additional errors for all λ1, λ2.
Compared to the rounding method, the mean value and standard deviation of errors
caused by the proposed algorithm are smaller.
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Figure 4. Function Surface (33), which depicts additional error caused by rounding.

Figure 5. Function Surface (34), which depicts additional error caused by using of fractional lag filter.
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Figure 6. Histogram of additional errors caused by using of fractional lag filter.

Figure 7. Histogram of additional errors caused by rounding.

Table 1. Mean and standard deviation of additional errors.

Method Mean Std

Rounding 0.0591 0.2050
Fractional filter 0.0468 0.1018

For instance, let us compare suboptimality levels for the case when λ1 = 0.5, λ2 = 0.7.
The rounding method consists of the following steps:

1. A(X) =

∥∥∥∥∥∥
1 0 0
1 0.5x1 0.5x1+x2

1 0.7x1 0.7x1+x2

∥∥∥∥∥∥, B =

 1
0.743
0.452

 by definition in Theorem 1;

2. F(X) = A−1(X)B;
3. Jmin(x1, x2) = 1 + | f1(x1, x2)|+ | f2(x1, x2)|;
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4. The minimum value of Jmin = 2.224 at the point Xopt = (2.255, 2.409);
5. The coefficients α1 ≈ −0.973, α2 ≈ −0.421 of the polynomial α is found from the

system of equations

1 + α1λ
bxopt

1 e
1 + α2λ

bxopt
1 +xopt

2 e
1 = 1

a(λ1)

1 + α1λ
bxopt

1 e
2 + α2λ

bxopt
1 +xopt

2 e
2 = 1

a(λ2)

,

where bxe denotes rounding of x to the nearest integer;
6. The suboptimality level is calculated as 1 + |α1|+ |α2| − Jmin = 0.170.

The proposed method consists of the following steps:

1. Extraction of fractional parts d1 = 0.745 + 0.255q−1, d2 = 0.336 + 0.664q−1 of delay is
performed using the (30);

2. The coefficients α = (α11 + α12, α21 + α22) is found using the formula (14), where
α11 = −0.855, α21 = −0.049 are coefficients of integer part, and α12 = −0.293, α22 =
−0.098 are coefficients of fractional part.

3. The suboptimality level is calculated as 1 + |α11|+ |α12|+ |α21|+ |α22| − Jmin = 0.071.

If a more accurate approximation of the fractional delay filter is necessary, multi-rate
signal processing with a higher sampling frequency in the controller can be used, allowing
to use a filter of a higher order.

5. Conclusions

The paper proposes a new method of synthesis of a `1 suboptimal stabilizing controller
with fractional delays for a discrete non-minimum phase plant described by a linear
difference equation with an additive unknown-but-bounded noise. The fractional delays
approach is used to achieve a small level of suboptimality without significantly increasing
the sampling rate. This approach consists of an approximation of the fractional lag with a
combination of rounding and a first-order fractional lag filter. The suggested approximation
of the fractional delay is illustrated via a simulation example with a non-minimum phase
second-order plant. The results of the simulation shows that the proposed methodology
allows to obtain a more accurate solution compared to approximation of the fractional
delay by rounding.

The proposed methodology appears to be suitable to be used in various pattern
recognition approaches, such as CS. A relationship between the fractional delay control
problem and CS remains open and will be investigated in the future.
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