Damage Detection and Isolation from Limited Experimental Data Using Simple Simulations and Knowledge Transfer
Abstract
:1. Introduction
2. Proposed Methodology
2.1. Simulation Model and Source Data Generation
2.2. Deep Learning Model for Simulation Data
2.3. Experimental Data
2.4. Autonomous Feature Extraction Using Pretrained Models
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Sudhakar, G.; Sekhar, A.S. Identification of Unbalance in a Rotor Bearing System. J. Sound Vib. 2011, 330, 2299–2313. [Google Scholar] [CrossRef]
- Jain, J.R.; Kundra, T.K. Model Based Online Diagnosis of Unbalance and Transverse Fatigue Crack in Rotor Systems. Mech. Res. Commun. 2004, 31, 557–568. [Google Scholar] [CrossRef]
- Tonks, O.; Wang, Q. The Detection of Wind Turbine Shaft Misalignment Using Temperature Monitoring. CIRP J. Manuf. Sci. Technol. 2017, 17, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Verma, A.K.; Sarangi, S.; Kolekar, M.H. Experimental Investigation of Misalignment Effects on Rotor Shaft Vibration and on Stator Current Signature. J. Fail. Anal. Prev. 2014, 14, 125–138. [Google Scholar] [CrossRef]
- Al-bedoor, B.O. Transient Torsional and Lateral Vibrations of Unbalanced Rotors with Rotor-to-Stator Rubbing. J. Sound Vib. 2000, 229, 627–645. [Google Scholar] [CrossRef]
- Jiang, J.; Ulbrich, H.; Chavez, A. Improvement of Rotor Performance under Rubbing Conditions through Active Auxiliary Bearings. Int. J. Non-Linear Mech. 2006, 41, 949–957. [Google Scholar] [CrossRef]
- Luo, L.-Y.; Fan, Y.-H.; Tang, J.-H.; Chen, T.-Y.; Zhong, N.-R.; Feng, P.-C.; Kao, Y.-C. Frequency Enhancement of Oil Whip and Oil Whirl in a Ferrofluid–Lubricated Hydrodynamic Bearing–Rotor System by Magnetic Field with Permanent Magnets. Appl. Sci. 2018, 8, 1687. [Google Scholar] [CrossRef] [Green Version]
- El-Shafei, A.; Tawfick, S.H.; Raafat, M.S.; Aziz, G.M. Some Experiments on Oil Whirl and Oil Whip. J. Eng. Gas Turbines Power 2007, 129, 144–153. [Google Scholar] [CrossRef]
- Schweizer, B. Oil Whirl, Oil Whip and Whirl/Whip Synchronization Occurring in Rotor Systems with Full-Floating Ring Bearings. Nonlinear Dyn. 2009, 57, 509–532. [Google Scholar] [CrossRef]
- Gao, Z.; Cecati, C.; Ding, S.X. A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis with Model-Based and Signal-Based Approaches. IEEE Trans. Ind. Electron. 2015, 62, 3757–3767. [Google Scholar] [CrossRef] [Green Version]
- Mansouri, M.; Harkat, M.-F.; Nounou, H.N.; Nounou, M.N. Data-Driven and Model-Based Methods for Fault Detection and Diagnosis; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Wang, X.; Shen, C.; Xia, M.; Wang, D.; Zhu, J.; Zhu, Z. Multi-Scale Deep Intra-Class Transfer Learning for Bearing Fault Diagnosis. Reliab. Eng. Syst. Saf. 2020, 202, 107050. [Google Scholar] [CrossRef]
- Xu, Z.; Saleh, J.H. Machine Learning for Reliability Engineering and Safety Applications: Review of Current Status and Future Opportunities. Reliab. Eng. Syst. Saf. 2021, 211, 107530. [Google Scholar] [CrossRef]
- Lu, B.; Li, Y.; Wu, X.; Yang, Z. A Review of Recent Advances in Wind Turbine Condition Monitoring and Fault Diagnosis. In Proceedings of the 2009 IEEE power electronics and machines in wind applications, Lincoln, NE, USA, 24–26 June 2009; IEEE: Piscataway Township, NJ, USA, 2009; pp. 1–7. [Google Scholar]
- Yin, S.; Ding, S.X.; Xie, X.; Luo, H. A Review on Basic Data-Driven Approaches for Industrial Process Monitoring. IEEE Trans. Ind. Electron. 2014, 61, 6418–6428. [Google Scholar] [CrossRef]
- Gómez, M.J.; Castejón, C.; García-Prada, J.C. Automatic Condition Monitoring System for Crack Detection in Rotating Machinery. Reliab. Eng. Syst. Saf. 2016, 152, 239–247. [Google Scholar] [CrossRef]
- Khan, S.; Yairi, T. A Review on the Application of Deep Learning in System Health Management. Mech. Syst. Signal Process. 2018, 107, 241–265. [Google Scholar] [CrossRef]
- Shukla, S.; Yadav, R.N.; Sharma, J.; Khare, S. Analysis of Statistical Features for Fault Detection in Ball Bearing. In Proceedings of the 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Madurai, India, 10–12 December 2015; pp. 1–7. [Google Scholar]
- Oh, H.; Jung, J.H.; Jeon, B.C.; Youn, B.D. Scalable and Unsupervised Feature Engineering Using Vibration-Imaging and Deep Learning for Rotor System Diagnosis. IEEE Trans. Ind. Electron. 2017, 65, 3539–3549. [Google Scholar] [CrossRef]
- Mottershead, J.E.; Friswell, M.I. Model Updating in Structural Dynamics: A Survey. J. Sound Vib. 1993, 167, 347–375. [Google Scholar] [CrossRef]
- Cavalini, A.A., Jr.; Lobato, F.S.; Koroishi, E.H.; Steffen, V., Jr. Model Updating of a Rotating Machine Using the Self-Adaptive Differential Evolution Algorithm. Inverse Probl. Sci. Eng. 2016, 24, 504–523. [Google Scholar] [CrossRef]
- Immovilli, F.; Bianchini, C.; Cocconcelli, M.; Bellini, A.; Rubini, R. Bearing Fault Model for Induction Motor with Externally Induced Vibration. IEEE Trans. Ind. Electron. 2012, 60, 3408–3418. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Bakator, M.; Radosav, D. Deep Learning and Medical Diagnosis: A Review of Literature. Multimodal Technol. Interact. 2018, 2, 47. [Google Scholar] [CrossRef] [Green Version]
- Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep Learning for Computer Vision: A Brief Review. Comput. Intell. Neurosci. 2018, 2018, 7068349. [Google Scholar] [CrossRef]
- Pierson, H.A.; Gashler, M.S. Deep Learning in Robotics: A Review of Recent Research. Adv. Robot. 2017, 31, 821–835. [Google Scholar] [CrossRef] [Green Version]
- Morozov, V.; Petrovskiy, M. An Approach for Complex Event Streams Processing and Forecasting. In Proceedings of the 2020 26th Conference of Open Innovations Association (FRUCT), Yaroslavl, Russia, 20–24 April 2020; IEEE: Piscataway Township, NJ, USA, 2020; pp. 305–313. [Google Scholar]
- Dey, L.; Meisheri, H.; Verma, I. Predictive Analytics with Structured and Unstructured Data-a Deep Learning Based Approach. IEEE Intell. Inform. Bull. 2017, 18, 27–34. [Google Scholar]
- Gecgel, O.; Ekwaro-Osire, S.; Dias, J.P.; Serwadda, A.; Alemayehu, F.M.; Nispel, A. Gearbox Fault Diagnostics Using Deep Learning with Simulated Data. In Proceedings of the 2019 IEEE International Conference on Prognostics and Health Management (ICPHM), San Francisco, CA, USA, 17–20 June 2019; IEEE: Piscataway Township, NJ, USA, 2019; pp. 1–8. [Google Scholar]
- Tiwari, R. Rotor Systems: Analysis and Identification; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Zheng, H.; Wang, R.; Yang, Y.; Yin, J.; Li, Y.; Li, Y.; Xu, M. Cross-Domain Fault Diagnosis Using Knowledge Transfer Strategy: A Review. IEEE Access 2019, 7, 129260–129290. [Google Scholar] [CrossRef]
- Li, C.; Zhang, S.; Qin, Y.; Estupinan, E. A Systematic Review of Deep Transfer Learning for Machinery Fault Diagnosis. Neurocomputing 2020, 407, 121–135. [Google Scholar] [CrossRef]
- Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Ma, H.; Luo, Z.; Li, X. Transfer Learning Using Deep Representation Regularization in Remaining Useful Life Prediction across Operating Conditions. Reliab. Eng. Syst. Saf. 2021, 211, 107556. [Google Scholar] [CrossRef]
- Cao, P.; Zhang, S.; Tang, J. Preprocessing-Free Gear Fault Diagnosis Using Small Datasets with Deep Convolutional Neural Network-Based Transfer Learning. IEEE Access 2018, 6, 26241–26253. [Google Scholar] [CrossRef]
- Xu, G.; Liu, M.; Jiang, Z.; Shen, W.; Huang, C. Online Fault Diagnosis Method Based on Transfer Convolutional Neural Networks. IEEE Trans. Instrum. Meas. 2020, 69, 509–520. [Google Scholar] [CrossRef]
- Yan, R.; Shen, F.; Sun, C.; Chen, X. Knowledge Transfer for Rotary Machine Fault Diagnosis. IEEE Sens. J. 2020, 20, 8374–8393. [Google Scholar] [CrossRef]
- Hasan, M.J.; Kim, J.-M. Bearing Fault Diagnosis under Variable Rotational Speeds Using Stockwell Transform-Based Vibration Imaging and Transfer Learning. Appl. Sci. 2018, 8, 2357. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Tang, T.; Tang, B.; He, Q. Deep Convolution Domain-Adversarial Transfer Learning for Fault Diagnosis of Rolling Bearings. Measurement 2021, 169, 108339. [Google Scholar] [CrossRef]
- Zhang, R.; Tao, H.; Wu, L.; Guan, Y. Transfer Learning with Neural Networks for Bearing Fault Diagnosis in Changing Working Conditions. IEEE Access 2017, 5, 14347–14357. [Google Scholar] [CrossRef]
- Huang, P.; Wang, G.; Qin, S. Boosting for Transfer Learning from Multiple Data Sources. Pattern Recognit. Lett. 2012, 33, 568–579. [Google Scholar] [CrossRef]
- Byeon, Y.-H.; Pan, S.-B.; Kwak, K.-C. Intelligent Deep Models Based on Scalograms of Electrocardiogram Signals for Biometrics. Sensors 2019, 19, 935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Z.K.; Chu, F.L.; Tse, P.W. Detection of the Rubbing-Caused Impacts for Rotor–Stator Fault Diagnosis Using Reassigned Scalogram. Mech. Syst. Signal Process. 2005, 19, 391–409. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems 25; Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q., Eds.; Curran Associates, Inc.: New York, NJ, USA, 2012; pp. 1097–1105. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; IEEE: Piscataway Township, NJ, USA, 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway Township, NJ, USA, 2016; pp. 770–778. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How Transferable Are Features in Deep Neural Networks? In Advances in Neural Information Processing Systems 27; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q., Eds.; Curran Associates, Inc.: New York, NK, USA, 2014; pp. 3320–3328. [Google Scholar]
- Guo, Y.; Shi, H.; Kumar, A.; Grauman, K.; Rosing, T.; Feris, R. Spottune: Transfer Learning through Adaptive Fine-Tuning. In Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 4805–4814. [Google Scholar]
- Shao, S.; McAleer, S.; Yan, R.; Baldi, P. Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning. IEEE Trans. Ind. Inform. 2018, 15, 2446–2455. [Google Scholar] [CrossRef]
- Filippi, M.; Carrera, E. Stability and Transient Analyses of Asymmetric Rotors on Anisotropic Supports. J. Sound Vib. 2021, 500, 116006. [Google Scholar] [CrossRef]
- Standard, I.S.O. Mechanical Vibration-Evaluation of Machine Vibration by Measurements on Non-Rotating Parts; ISO/IS: 1996; p. 10816. Available online: https://www.iso.org/obp/ui/#iso:std:iso:7919:-1:ed-2:v1:en (accessed on 18 February 2021).
- Standardization, I.O. for ISO 20816-1: 2016 (En), Mechanical Vibration—Measurement and Evaluation of Machine Vibration—Part 1: General Guidelines. 2016. Available online: https://www.iso.org/obp/ui/#iso:std:iso:20816:-1:ed-1:v1:en (accessed on 18 February 2021).
- ISO 16084:2017(En), Balancing of Rotating Tools and Tool Systems. Available online: https://www.iso.org/obp/ui/#iso:std:iso:16084:ed-1:v1:en (accessed on 15 January 2021).
- Hashamdar, H.; Ibrahim, Z.; Jameel, M. Finite Element Analysis of Nonlinear Structures with Newmark Method. IJPS 2011, 6, 1395–1403. [Google Scholar] [CrossRef]
- Jondral, F.K. White Gaussian Noise–Models for Engineers. Frequenz 2018, 72, 293–299. [Google Scholar] [CrossRef]
- Liu, N.; Schumacher, T. Improved Denoising of Structural Vibration Data Employing Bilateral Filtering. Sensors 2020, 20, 1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Add White Gaussian Noise to Signal—MATLAB Awgn. Available online: https://www.mathworks.com/help/comm/ref/awgn.html (accessed on 23 December 2021).
- Benítez, R.; Bolós, V.J.; Ramírez, M.E. A Wavelet-Based Tool for Studying Non-Periodicity. Comput. Math. Appl. 2010, 60, 634–641. [Google Scholar] [CrossRef] [Green Version]
- Türk, Ö.; Özerdem, M.S. Epilepsy Detection by Using Scalogram Based Convolutional Neural Network from EEG Signals. Brain Sci. 2019, 9, 115. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.T.; Yamamoto, A. Wavelet Analysis: Theory and Applications. Hewlett Packard J. 1994, 45, 44–52. [Google Scholar]
- Olhede, S.C.; Walden, A.T. Generalized Morse Wavelets. IEEE Trans. Signal Process. 2002, 50, 2661–2670. [Google Scholar] [CrossRef] [Green Version]
- Lilly, J.M.; Olhede, S.C. Higher-Order Properties of Analytic Wavelets. IEEE Trans. Signal Process. 2008, 57, 146–160. [Google Scholar] [CrossRef] [Green Version]
- Lilly, J.M.; Olhede, S.C. Generalized Morse Wavelets as a Superfamily of Analytic Wavelets. IEEE Trans. Signal Process. 2012, 60, 6036–6041. [Google Scholar] [CrossRef] [Green Version]
- Silik, A.; Noori, M.; Altabey, W.A.; Ghiasi, R.; Wu, Z. Comparative Analysis of Wavelet Transform for Time-Frequency Analysis and Transient Localization in Structural Health Monitoring. Struct. Durab. Health Monit. 2021, 15, 1–22. [Google Scholar] [CrossRef]
- De Moortel, I.; Munday, S.A.; Hood, A.W. Wavelet Analysis: The Effect of Varying Basic Wavelet Parameters. Sol. Phys. 2004, 222, 203–228. [Google Scholar] [CrossRef]
- Bolós, V.J.; Benítez, R. The Wavelet Scalogram in the Study of Time Series. In Advances in Differential Equations and Applications; Springer: Berlin/Heidelberg, Germany, 2014; pp. 147–154. [Google Scholar]
- Yamamoto, G.K.; da Costa, C.; da Silva Sousa, J.S. A Smart Experimental Setup for Vibration Measurement and Imbalance Fault Detection in Rotating Machinery. Case Stud. Mech. Syst. Signal Process. 2016, 4, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Yang, Y.; Peng, Z.; Wang, S.; Zhang, W.; Chen, X. Detection of Rub-Impact Fault for Rotor-Stator Systems: A Novel Method Based on Adaptive Chirp Mode Decomposition. J. Sound Vib. 2019, 440, 83–99. [Google Scholar] [CrossRef]
- Ma, H.; Tai, X.; Sun, J.; Wen, B. Analysis of Dynamic Characteristics for a Dual-Disk Rotor System with Single Rub-Impact. Adv. Sci. Lett. 2011, 4, 2782–2789. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Nwankpa, C.; Ijomah, W.; Gachagan, A.; Marshall, S. Activation Functions: Comparison of Trends in Practice and Research for Deep Learning. arXiv 2018, arXiv:1811.03378. [Google Scholar]
- Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A Survey of the Recent Architectures of Deep Convolutional Neural Networks. Artif Intell Rev 2020, 53, 5455–5516. [Google Scholar] [CrossRef] [Green Version]
- Hanley, J.A.; McNeil, B.J. The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) Curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.H.; Jeon, B.C.; Youn, B.D.; Kim, M.; Kim, D.; Kim, Y. Omnidirectional Regeneration (ODR) of Proximity Sensor Signals for Robust Diagnosis of Journal Bearing Systems. Mech. Syst. Signal Process. 2017, 90, 189–207. [Google Scholar] [CrossRef]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Parameters and <0.5MB Model Size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- SpectraQuest Inc. Available online: https://spectraquest.com/ (accessed on 18 February 2021).
- Marins, M.A.; Ribeiro, F.M.; Netto, S.L.; da Silva, E.A. Improved Similarity-Based Modeling for the Classification of Rotating-Machine Failures. J. Frankl. Inst. 2018, 355, 1913–1930. [Google Scholar] [CrossRef]
- MAFAULDA: Machinery Fault Database. Available online: http://www02.smt.ufrj.br/~offshore/mfs/page_01.html (accessed on 24 November 2021).
- Gibbons, C.B. Coupling Misalignment Forces. In Proceedings of the Proceedings of the 5th Turbomachinery Symposium, College Station, TX, USA, 12–14 October 1976; Texas A&M University, Gas Turbine Laboratories: College Station, TX, USA, 1976. [Google Scholar]
- Jalan, A.K.; Mohanty, A.R. Model Based Fault Diagnosis of a Rotor–Bearing System for Misalignment and Unbalance under Steady-State Condition. J. Sound Vib. 2009, 327, 604–622. [Google Scholar] [CrossRef]
- Tai, X.; Ma, H.; Liu, F.; Liu, Y.; Wen, B. Stability and Steady-State Response Analysis of a Single Rub-Impact Rotor System. Arch. App. Mech. 2015, 85, 133–148. [Google Scholar] [CrossRef]
Model | Parameter | Value |
---|---|---|
General | Length of shaft (L) | 1 m |
Modulus of elasticity (E) | 211 × 109 Pa | |
Modulus of Rigidity (G) | 81.1 × 109 Pa | |
Diameter of shaft (ds) | 0.01 m | |
Diameter of disk (d) | 0.075 m | |
Thickness of disk (h) | 0.0254 m | |
Density of shaft and disk (ρ) | 7810 kg/m3 | |
Mass of disk m = ρhπd2/4 | 0.8764 kg | |
Stiffness at bearing 1 along x-axis (kx1) | 1.0 × 106 N/m | |
Stiffness at bearing 1 along y-axis (ky1) | 1.0 × 106 N/m | |
Stiffness at bearing 2 along x-axis (kx2) | 1.0 × 106 N/m | |
Stiffness at bearing 2 along y-axis (ky2) | 1.0 × 106 N/m | |
Damping at bearing 1 along x-axis (cx1) | 1000 Ns/m | |
Damping at bearing 1 along y-axis (cy1) | 1000 Ns/m | |
Damping at bearing 2 along x-axis (cx2) | 1000 Ns/m | |
Damping at bearing 2 along y-axis (cy2) | 1000 Ns/m | |
Residual Unbalance | Mass eccentricity (er) | 0.000015 m |
Phase angle (α) | 0° | |
Unbalance | Added masses (ma) | (1:2:20) g |
Phase angle (β) | 0° | |
Misalignment | Misalignment along x-axis (ΔX1 = −ΔX2) | 0 m |
Misalignment along y-axis (ΔY1= −ΔY2) | (8:2:26) mm | |
Center of articulation (Z3) | 0.024 m | |
Bending angular flexibility rate (Kb) | 0.35 degree/Nm | |
Power of Motor (P) | 700 Watt | |
Rubbing | Clearance between rotor and stator (δ0) | (9.2: −0.5:4.7) × 10−8 m |
Stiffness of axial rub-impact rod (kr) | 1.2 × 107 Pa | |
Coefficient of friction (f) | 0.7 |
Training/Validation Accuracy % | ROC Area% | Testing Accuracy % | |
---|---|---|---|
Simulation Model | 97.5 | 100 | 97.14 |
GoogleNet | 93.8 | 99 | 83.57 |
Vgg16 | 95 | 100 | 83.5 |
Resnet18 | 97.1 | 100 | 86.43 |
Alexnet | 95.2 | 99 | 85.71 |
SqueezeNet | 90.2 | 99 | 81.43 |
Name | Size of Network (Bytes) | Number of Network Parameters | Computational Time (sec) | |
---|---|---|---|---|
CPU * | GPU ** | |||
Simulation Model | 631,037 | 139,587 | 4.542 | 1.65 |
GoogleNet | 29,670,809 (191.7%) | 6,698,552 (192.2%) | 25.66 (139.8%) | 2.55 (42.7%) |
Vgg16 | 554,895,306 (199.5%) | 138,357,54 (199.6%) | 149.47 (188.2%) | 6.33 (117.2%) |
Resnet18 | 47,156,446 (194.7%) | 11,694,312 (195.2%) | 23.56 (135.3%) | 2.33 (34.1%) |
Alexnet | 245,283,524 (198.9%) | 60,965,224 (199.0%) | 10.14 (76.3%) | 1.86 (12.12) |
SqueezeNet | 5,232,394 (156.9%) | 1,235,496 (159.4%) | 17.59 (117.9%) | 1.89 (13.3%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.; Kim, J.-S.; Kim, H.S. Damage Detection and Isolation from Limited Experimental Data Using Simple Simulations and Knowledge Transfer. Mathematics 2022, 10, 80. https://doi.org/10.3390/math10010080
Khan A, Kim J-S, Kim HS. Damage Detection and Isolation from Limited Experimental Data Using Simple Simulations and Knowledge Transfer. Mathematics. 2022; 10(1):80. https://doi.org/10.3390/math10010080
Chicago/Turabian StyleKhan, Asif, Jun-Sik Kim, and Heung Soo Kim. 2022. "Damage Detection and Isolation from Limited Experimental Data Using Simple Simulations and Knowledge Transfer" Mathematics 10, no. 1: 80. https://doi.org/10.3390/math10010080
APA StyleKhan, A., Kim, J. -S., & Kim, H. S. (2022). Damage Detection and Isolation from Limited Experimental Data Using Simple Simulations and Knowledge Transfer. Mathematics, 10(1), 80. https://doi.org/10.3390/math10010080