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Abstract: In this paper, we first introduce the concept of a Rota–Baxter operator on a cocommutative
weak Hopf algebra H and give some examples. We then construct Rota–Baxter operators from the
normalized integral, antipode, and target map of H. Moreover, we construct a new multiplication “ ∗ ”
and an antipode SB from a Rota–Baxter operator B on H such that HB = (H, ∗, η, ∆, ε, SB) becomes
a new weak Hopf algebra. Finally, all Rota–Baxter operators on a weak Hopf algebra of a matrix
algebra are given.
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1. Introduction and Preliminaries

Weak bialgebras and weak Hopf algebras were introduced by Böhm, Nill, and Szlachányi
in 1999 [1]. They are one kind of the generalizations of ordinary bialgebras and Hopf
algebras by weakening some conditions. In general, a weak Hopf algebra H is both
an (associative and unital) algebra and a (coassociative and counital) coalgebra, but its
comultiplication of the unit is allowed to be non-unital, namely ∆(1H) = ∑ 11 ⊗ 12 6= 1H ⊗
1H . In addition, the multiplicativity of the counit does not hold any longer but is replaced
by a weaker condition: for any h, g ∈ H, ε(hg) = ∑ ε(h11)ε(12g). Weak Hopf algebras have
a wide range of applications, such as quantum field theory and operator algebras.

Let A be an arbitrary algebra over a field K, λ ∈ K. A linear map R : A→ A is called
a Rota–Baxter operator [2] of weight λ on A if for all x, y ∈ A:

R(x)R(y) = R(R(x)y + xR(y) + λxy).

It is obvious that the Rota–Baxter operator on an associative algebra satisfies an identity
abstracted from the integration by part formula in calculus. The Rota–Baxter algebra is
widely used in pure mathematics and more recently mathematical physics. It originated
from the paper by Baxter in 1960, which helped him understand Spitzer’s identity in
fluctuation [3]. Soon afterwards, Rota began a study of Rota–Baxter algebras from an
algebraic and combinatorial perspective in connection with hypergeometric functions,
incidence algebras, and symmetric functions [2]. In recent years, many mathematicians,
such as Guo, Bai, Sheng, and Brzeziński et al., studied Rota–Baxter algebras and obtained
some interesting results. They succeeded in constructing connections between Rota–Baxter
algebras and pre-Lie algebras and dendriform algebras (see [4–8] for examples).

Recently, the relationships between Rota–Baxter operators and Hopf algebras have
attracted many researchers, such as Jian [9], Yu, Guo and Thibon [10], and Zheng, Guo, and
Zhang [11]. In 2021, Guo, Lang, and Sheng gave the notion of a Rota–Baxter operator on
a group [12], moreover, based on the above notion, Goncharov introduced the definition
of a Rota–Baxter operator on a cocommutative Hopf algebra and proved that the Rota–
Baxter operator on the universal enveloping algebra U(L) of a Lie algebra L is one to one
corresponding to the Rota–Baxter operator on L [13]. As we know, a weak Hopf algebra is
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a generalization of a Hopf algebra. For this purpose, we introduce and study Rota–Baxter
operators on cocommutative weak Hopf algebras, which is the motivation of this paper.

This paper is organized as follows. In Section 1, we shall recall some definitions and
useful properties on weak Hopf algebras. In Section 2, we introduce the definition of a
Rota–Baxter operator on a cocommutative weak Hopf algebra and investigate its properties.
Meanwhile, we present some examples of Rota–Baxter weak Hopf algebras. In particular,
we construct Rota–Baxter operators by using the normalized integral, antipode, and target
map of weak Hopf algebras, respectively. In Section 3, for a given arbitrary Rota–Baxter
weak Hopf algebra (H, B), we define a new multiplication “ ∗ ” and a new antipode SB of
(H, B) such that HB = (H, ∗, η, ∆, ε, SB) becomes a new weak Hopf algebra, which will be
called a descent weak Hopf algebra. In Section 4, we give all Rota–Baxter operators on a
weak Hopf algebra of an n-dimensional matrix algebra.

Throughout the paper, we always work on a fixed field K and use the Sweedler’s
notations [14]. If A is a vector space over K and ∆ : A→ A⊗ A is a comultiplication on A,
then we shall use the following sumless Sweedler notation for the image of a ∈ A:

∆(a) = a1 ⊗ a2.

Definition 1. [1] A weak bialgebra H = (H, m, η, ∆, ε) is both an algebra and a coalgebra such
that for any x, y, z ∈ H, the following identities hold:

∆(xy) = ∆(x)∆(y),

ε(xyz) = ε(xy1)ε(y2z) = ε(xy2)ε(y1z),

∆2(1H) = (∆(1H)⊗ 1H)(1H ⊗ ∆(1H))

= (1H ⊗ ∆(1H))(∆(1H)⊗ 1H),

where ∆(1H) = 11 ⊗ 12 and ∆2 = (∆⊗ idH) ◦ ∆.
Further, if there exists a linear map S : H → H such that for all h ∈ H,

h1S(h2) = ε(11h)12, S(h1)h2 = 11ε(h12), S(h1)h2S(h3) = S(h),

then we call (H, m, µ, ∆, ε, S) a weak Hopf algebra and S an antipode of H. We say that the weak
Hopf algebra H is cocommutative if ∆ = τ ◦ ∆, where τ is the flipping map.

The antipode S of a weak Hopf algebra H is both anti-multiplicative and anti-comultiplicative.
Meanwhile, the unit and counit are S-invariant. That means for any h, g ∈ H,

S(hg) = S(g)S(h), ∆(S(h)) = S(h2)⊗ S(h1), S(1H) = 1H , ε ◦ S = ε.

For H, a weak bialgebra, we define the maps ΠL and ΠR : H → H by the formulas:

ΠL(h) = ε(11h)12, ΠR(h) = ε(h12)11,

which are called the target map and source map, respectively. Their images HL =ImΠL and
HR =ImΠR are both separable subalgebras of H and commute with each other. Further-
more, by [1,15–17], we have the following Equations (1)–(4) for all x ∈ HL, y ∈ HR and
h, g ∈ H:

∆(x) = 11x⊗ 12, ∆(y) = 11 ⊗ y12, (1)

h1 ⊗ΠL(h2) = 11h⊗ 12, ΠR(h1)⊗ h2 = 11 ⊗ h12, (2)

ε(hΠL(g)) = ε(hg) = ε(ΠR(h)g), (3)

hΠL(g) = ε(h1g)h2, g1ε(hg2) = ΠR(h)g. (4)

For H, a weak Hopf algebra with an antipode S and h ∈ H, we have:

ΠL ◦ S = ΠL ◦ΠR = S ◦ΠR, ΠR ◦ S = ΠR ◦ΠL = S ◦ΠL, (5)
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ΠL(h1)⊗ h2 = S(11)⊗ 12h, h1 ⊗ΠR(h2) = h11 ⊗ S(12). (6)

For a cocommutative weak Hopf algebra H, it is known that the antipode S is an
involution (i.e., S2 = idH) and the elements in HL and HR are all S-invariant. Hence,

HL = HR = HL HR,

is a weak Hopf subalgebra of H by [18].

Example 1. Let R be the real field. We set

A =
{(a 0

0 b

)
| a, b ∈ R

}
.

Then, A is an algebra under matrix multiplication with the basis

e1 =

(
1 0
0 0

)
, e2 =

(
0 0
0 1

)
.

Define its comultiplication and counit:

∆(e1) = e1 ⊗ e1, ∆(e2) = e2 ⊗ e2, ε(e1) = 1 = ε(e2).

Then, by [19], A is a cocommutative weak Hopf algebra with the antipode S = id.

Example 2. Let G be a finite groupoid (a category with finite many morphisms, such that each
morphism is invertible). Then, the groupoid algebra KG (generated by morphisms in G with the
product of two morphisms being equal to their composition if the latter is defined and 0 otherwise) is
a quantum groupoid (weak Hopf algebra) in [18] via

∆(g) = g⊗ g, ε(g) = 1, S(g) = g−1, g ∈ G.

2. Rota–Baxter Operators on Cocommutative Weak Hopf Algebras

In this section, we first mainly introduce the definition of a Rota–Baxter operator
on a cocommutative weak Hopf algebra. Then, we investigate its properties and present
some examples.

Definition 2. Let H be a cocommutative weak Hopf algebra. A map B : H → H that is both a left
HL-module map and a coalgebra map is called a Rota–Baxter operator on H, if for all h, g ∈ H,

B(h)B(g) = B(h1B(h2)gS(B(h3))). (7)

Here, H is a left HL-module via its multiplication.

Lemma 1. Let H be a cocommutative weak Hopf algebra and B : H → H a Rota–Baxter operator
on H. Then for all h ∈ H,

ΠL(B(h)) = ΠL(h), ΠR(B(h)) = ΠLΠR(B(h)). (8)

Moveover, if HL ⊆ C(H) (the center of H), then B is HL-invariant.
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Proof. Indeed, we have

ΠL(B(h)) = ε(11B(h))12 = ε(B(11h))12

= ε(11h)12 = ΠL(h),

ΠR(B(h)) = ΠR(ΠR(B(h))) = 11ε(ΠR(B(h))12)

= 11ε(12ΠR(B(h))) = ε(11ΠR(B(h)))12

= ΠL(ΠR(B(h))),

as required.
Now suppose that HL ⊆ C(H). Since B is a Rota–Baxter operator on H, on one

hand, we obtain that ∆(B(1H)) = ∆(1H)(B(1H)⊗ B(1H)) = (B(1H)⊗ B(1H))∆(1H) and
ΠL(B(1H)) = 1H = ΠR(B(1H)). Hence, B(1H) is a group-like element and invertible
by [20] (Corollary 5.2). On the other hand, by Equation (7), we obtain

B(1H)B(1H) = B(11B(12)S(B(13))) = B(11ΠL(B(12))) = B(1112) = B(1H).

Then, we have B(1H) = 1H . Hence, for all x ∈ HL, we have B(x) = xB(1H) = x.

A weak Hopf algebra H is called quantum commutative if h1gΠR(h2) = hg for any
h, g ∈ H. By [11,21], H is quantum commutative if and only if HR ⊆ C(H). Note that the
two weak Hopf algebras in Examples 1 and 2 are both quantum commutative.

Example 3. Let H be a quantum commutative cocommutative weak Hopf algebra. Then ΠL is a
Rota–Baxter operator on H.

In fact, for all h, g ∈ H, we have

ΠL(h1ΠL(h2)gS(ΠL(h3))) = ΠL(h1ΠR(h2)gS(ΠL(h3)))

= ΠL(h1gΠL(h2)) = ΠL(ΠL(h1)h2g)

= ΠL(hg) = ΠL(h)ΠL(g),

where the last equality holds by [1] (Equation (2.5a)).
Moreover, it is known from [1] that ΠL is left HL-linear. Meanwhile, for all h ∈ H,

∆(ΠL(h))
(1)
= 11ΠL(h)⊗ 12 = ΠL(11h)⊗ 12
(2)
= ΠL(h1)⊗ΠL(h2),

which implies that ΠL is a Rota–Baxter operator on H.

Example 4. Let H be a cocommutative weak Hopf algebra. If H is also a quantum commutative,
then S : H → H is a Rota–Baxter operator on H.

Indeed, since H is cocommutative, S is a coalgebra map. Furthermore, S is a left
HL-module map since S(xh) = S(hx) = S(x)S(h) = xS(h) for all x ∈ HL and h ∈ H.
Moreover, S satisfies Equation (7):

S(h1S(h2)gS(S(h3))) = S(ΠL(h1)gh2) = S(gΠL(h1)h2)

= S(gh) = S(h)S(g),

thus, S is a Rota–Baxter operator on H.

Definition 3. Let H be a weak Hopf algebra, and a left integral in H is an element ` ∈ H satisfying

h` = ΠL(h)`, f or all h ∈ H.
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A left integral ` is normalized if ΠL(`) = 1H .

Example 5. Let H be a quantum commutative cocommutative weak Hopf algebra and ` a normal-
ized left integral. Moreover, if ` satisfies

∆(`) = ∆(1H)(`⊗ `) = (`⊗ `)∆(1H),

then the map
B : H → H, B(h) = h`,

is a Rota–Baxter operator on H.

As a matter of fact, it is easy to see that B is a left HL-module map and a coalgebra
map. Meanwhile, for all h, g ∈ H, we have

B(h1B(h2)gS(B(h3))) = B(h1h2`gS(h3`)) = B(h1(h2`)1gS((h2`)2))

= B(h1(ΠL(h2)`)1gS((ΠL(h2)`)2))
(2)
= B(11h12`1gS(`2))

= B(11hΠL(12)`1gS(`2)) = h`1gS(`2)`

(5)
= h`1gΠL(ΠR(`2))`

(6)
= h`11gS(12)`

= h`g` = B(h)B(g).

Therefore, B satisfies Equation (7); that is, it is a Rota–Baxter operator on H.

Remark 1. Let H be a commutative and cocommutative weak Hopf algebra. Then, a coalgebra map
B : H → H is a Rota–Baxter operator on H if and only if B is an algebra map. In this case, B is a
weak bialgebra map. Indeed, for all h, g ∈ H, we have

B(h)B(g) = B(h1B(h2)gS(B(h3))) = B(h1gB(h2)S(B(h3)))

= B(h1gΠL(B(h2)))
(8)
= B(ΠL(h1)h2g) = B(hg).

Proposition 1. Let H be a quantum commutative cocommutative weak Hopf algebra and B a
Rota–Baxter operator on H. Then

B̃(h) = S(h1)B(S(h2)), f or all h ∈ H,

is also a Rota–Baxter operator on H.

Proof. Clearly, B̃ is a linear map. We prove that B is a coalgebra map. For all h ∈ H,

∆(B̃(h)) = ∆(S(h1)B(S(h2))) = ∆(S(h1))∆(B(S(h2)))

= (S(h2)⊗ S(h1))(B(S(h4))⊗ B(S(h3)))

= S(h1)B(S(h2))⊗ S(h3)B(S(h4))

= B̃(h1)⊗ B̃(h2),

ε(B̃(h)) = ε(S(h1)B(S(h2))) = ε(ΠR(S(h1))B(S(h2)))

(6)
= ε(12B(S(h)11)) = ε(B(12S(h)11))

= ε(12S(h)11) = ε(h).

Next, we show that B̃ is a left HL-module map. As a matter of fact, for all x ∈ HL and
h ∈ H, we obtain that

B̃(xh) = S(x1h1)B(S(x2h2))
(1)
= S(xh1)B(S(h2))

= xS(h1)B(S(h2)) = xB̃(h).
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As a consequence, we obtain the following equation that will be used next,

11S(h1)B(S(h2))⊗ 12h3 = S(h1)B(S(h2))⊗ h3. (9)

Finally, we notice again that B is left HL-linear and that S is an involution. For all
h, g ∈ H, we consider

B̃
(

h1B̃(h2)gS(B̃(h3))
)

= B̃
[

h1S(h2)B(S(h3))gS
(

S(h(4))B(S(h5))
)]

= B̃
[
ΠL(h1)B(S(h2))gS

(
B(S(h3))

)
h4

] (6)
= B̃

[
S(11)B(S(12h1))gS

(
B(S(h2))

)
h3

]
= B̃

[
B
(

S(12h111)
)

gS
(

B(S(h2))
)

h3

]
= B̃

[
B
(

S(h1)
)

gS
(

B(S(h2))
)

h3

]
= S(h31)B(S(h21))S(g1)S

(
B(S(h12))

)
B
[
S(h32)B(S(h22))S(g2)S

(
B(S(h11))

)]
= S(h1)B(S(h2))S(g1)S

(
B(S(h3))

)
B
[
S(h4)B(S(h5))S(g2)S

(
B(S(h6))

)]
(7)
= S(h1)B(S(h2))S(g1)S(B(S(h3)))B(S(h4))B(S(g2))

= S(h1)B(S(h2))S(g1)ΠR(B(S(h3)))B(S(g2))

(2)
= S(h1)B(S(h2))S(g1)B(S(g2))

= B̃(h)B̃(g).

Therefore, B̃ is a Rota–Baxter operator on H.

Remark 2. Let H be a quantum commutative cocommutative weak Hopf algebra and ` a normalized
left integral. Moreover, if ` satisfies

∆(`) = ∆(1H)(`⊗ `) = (`⊗ `)∆(1H),

then, according to Example 5 and Proposition 1, it is not difficult to prove that B̃`(h) is also a
Rota–Baxter operator on H.

Proposition 2. Let H be a quantum commutative cocommutative weak Hopf algebra. Suppose
that H1 and H2 are two weak Hopf subalgebras of H such that H = H1H2 as a weak Hopf algebra.
Define a map B on H by

B(∑
i

higi) = ∑
i

ΠL(hi)S(gi), f or all hi ∈ H1, gi ∈ H2.

Then B is a Rota–Baxter operator on H.

Proof. It is easy to see that B is left HL-linearity by [1] (Lemma 2.5). Taking t = ∑i higi,
where hi ∈ H1, gi ∈ H2, we compute that

B(t1)⊗ B(t2) = ∑
i

ΠL(hi
1)S(gi

2)⊗ΠL(hi
2)S(gi

1)
(2)
= ∑

i
ΠL(11hi)S(gi

2)⊗ 12S(gi
1)

= ∑
i

11ΠL(hi)S(gi
1)⊗ 12S(gi

2) = ∑
i

∆(ΠL(hi)S(gi)) = ∆(B(t)),

ε(B(t)) = ∑
i

ε(ΠL(hi)S(gi)) = ∑
i

ε(11hi)ε(12S(gi))

= ∑
i

ε(hi11)ε(12gi) = ∑
i

ε(higi) = ε(t).

Thus, B is a coalgebra map.
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For u = hg and v = h′g′, where h, h′ ∈ H1 and g, g′ ∈ H2, we have that

B
(

u1B(u2)vS(B(u3))
)
= B

(
h1g1B(h2g2)vS(B(h3g3))

)
= B

(
h1g1ΠL(h2)S(g2)vS(ΠL(h3)S(g3))

)
= B

(
h1ΠR(h2)ΠR(h3)g1S(g2)vg3)

)
= B

(
h1ΠR(h2)vΠL(g1)g2)

)
= B(hvg) = ΠL(hh′)S(g′g)

= ΠL(h)S(g)ΠL(h′)S(g′)

= B(hg)B(h′g′),

and since H1H2 is spanned by elements of the form hg, Equation (7) holds for all u, v ∈ H.
Hence, B is a Rota–Baxter operator on H.

At the end of this section, we construct a Rota–Baxter weak Hopf algebra from a Rota–
Baxter Hopf algebra. To do this, we need the following lemma (see [22] (Theorem 2.12)),
which provides us a way to extend an n-dimensional Hopf algebra to an (n+ 1)-dimensional
weak Hopf algebra.

Lemma 2. LetH be a Hopf algebra and e its unit. We consider the set H as a result of adjoining a
unit 1H toH with respect to the multiplication. We extend the comultiplication ∆, the counit ε and
the antipode S in the following way

∆(1H) = (1H − e)⊗ (1H − e) + e⊗ e, ε(1H) = 2, S(1H) = 1H .

Then H becomes a weak Hopf algebra.

Proposition 3. With the notions as in Lemma 2, a Rota–Baxter Hopf algebra (H,B) (see [13] for
the definition) gives rise to a Rota–Baxter weak Hopf algebra (H, B), where

B(h) =

{
B(h), h 6= 1H ;

1H , h = 1H .

Proof. Followed by Lemma 2, the cocommutativity ofH yields to that of H. Meanwhile,
we can easily obtain that

ΠL(h) =

{
ε(h)e, h ∈ H;

1H , h = 1H .

Then, obviously, HL ⊆ C(H), and the left HL-linearity of B follows from a direct
verification. Consequently, B : H → H is a coalgebra map since B : H → H is a coalgebra
map satisfying B(e) = e. Furthermore, it is easy to see that B satisfies Equation (7). Hence,
B is a Rota–Baxter operator on H.

By [13] (Theorem 2), the following corollary is straightforward.

Corollary 1. A Rota–Baxter operator of weight 1 on a Lie algebra gives rise to a Rota–Baxter
operator on a weak Hopf algebra.

3. A New Weak Hopf Algebra Constructed by Rota–Baxter Operators

In this section, we construct a new Rota–Baxter weak Hopf algebra by a given Rota–
Baxter weak Hopf algebra, which is called a descent weak Hopf algebra.
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Lemma 3. Let H be a quantum commutative cocommutative weak Hopf algebra and B a Rota–
Baxter operator on H. Define a new operation on H as follows:

h ∗ g = h1B(h2)gS(B(h3)), f or all h, g ∈ H.

Then (H, ∗, η, ∆, ε) is a weak bialgebra.

Proof. Taking x, y, z ∈ H, we have

(x ∗ y) ∗ z = (x1 ∗ y1)B(x2 ∗ y2)zS(B(x3 ∗ y3))

= x1B(x2)y1S(B(x3))B(x4)B(y2)zS(B(y3))S(B(x5))

= x1B(x2)y1ΠR(B(x3))B(y2)zS(B(y3))S(B(x4))

= x1B(x2)ΠR(B(x3))y1B(y2)zS(B(y3))S(B(x4))

= x1B(x2) y1B(y2)zS(B(y3))︸ ︷︷ ︸ S(B(x3))

= x1B(x2)(y ∗ z)S(B(x3)) = x ∗ (y ∗ z).

Thus, the operation “ ∗ ” is associative. Furthermore,

1H ∗ x = 11B(12)xS(B(13)) = 11xB(12)S(B(13)) = 11xΠL(B(12))

= 11xΠL(12) = 11ΠL(12)x = 11ΠR(12)x = x,

x ∗ 1H = x1B(x2)1S(B(x3)) = x1ΠL(B(x2)) = x1ΠL(x2) = x1ΠR(x2) = x.

Therefore, 1H is the unit respect to “ ∗ ”. Thus, (H, ∗) is an associative algebra.
Moreover,

∆(x ∗ y) = ∆(x1B(x2)yS(B(x3))) = ∆(x1)∆(B(x2))∆(y)∆(S(B(x3)))

= (x1 ⊗ x2)(B(x3)⊗ B(x4))(y1 ⊗ y2)(S(B(x6))⊗ S(B(x5)))

= (x1B(x2)y1S(B(x3)))⊗ (x4B(x5)y2S(B(x6)))

= (x1 ∗ y1)⊗ (x2 ∗ y2).

Hence, the comultiplication is multiplicative with respect to “ ∗ ”.
Next, we prove the weak multiplicativity of the counit ε. Since S and B are Rota–Baxter

operators on H, we have

ε(x ∗ y ∗ z) = ε(x1B(x2)(y ∗ z)S(B(x3))) = ε(x1B(x2)y1B(y2)zS(B(x3)B(y3)))

(3)
= ε(ΠR(x1)B(x2)y1B(y2)zS(B(y3))ΠL(S(B(y3))))

(2)
= ε(11B(x112)y1B(y2)zS(B(y3))ΠL(x2))

(2)
= ε(B(1

′
1x)y1B(y2)zS(B(y3))1

′
2))

= ε(xy1B(y2)zΠL(S(B(y3))))

= ε(xy1B(y2)zΠL(y3))

= ε(xy1B(y2)z) = ε(xy111)ε(12B(y2)z) = ε(xyz)

and

ε(x ∗ y1)ε(y2 ∗ z) = ε(x1B(x2)y1S(B(x3)))ε(y2B(y3)zS(B(y4)))

= ε(ΠR(x1)B(x2)y1ΠL(S(B(x3))))ε(ΠR(y2)B(y3)zΠL(S(B(y4))))

= ε(B(x1)y1ΠL(x2))ε(B(y2)zΠL(y3))

= ε(B(x)y1)ε(y2z)

= ε(xyz).
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Similarly, we can also prove

ε(x ∗ y ∗ z) = ε(x ∗ y2)ε(y1 ∗ z).

Last, we prove the weak comultiplicativity of the unit according to

∆2(1H) = (∆⊗ id) ◦ ∆(1H) = (∆⊗ id)(11 ⊗ 12) = 11 ⊗ 12 ⊗ 13

= 11 ⊗ 121
′
1 ⊗ 1

′
2 = 1

′
1 ⊗ 111

′
2 ⊗ 12,

we have

(∆(1H)⊗ 1H) ∗ (1H ⊗ ∆(1H)) = (11 ⊗ 12 ⊗ 1H) ∗ (1H ⊗ 1
′
1 ⊗ 1

′
2)

= 11 ⊗ 12 ∗ 1
′
1 ⊗ 1

′
2

= 11 ⊗ 121B(122)1
′
1S(B(123))⊗ 1

′
2

= 11 ⊗ 121B(122)S(B(123))1
′
1 ⊗ 1

′
2

= 11 ⊗ 121ΠL(B(122))1
′
1 ⊗ 1

′
2

= 11 ⊗ 121ΠR(122)1
′
1 ⊗ 1

′
2

= 11 ⊗ 121
′
1 ⊗ 1

′
2.

Thus, we have

(∆(1H)⊗ 1H) ∗ (1H ⊗ ∆(1H)) = 11 ⊗ 121
′
1 ⊗ 1

′
2 = 11 ⊗ 12 ⊗ 13.

Similarly, we can prove that

(1H ⊗ ∆(1H)) ∗ (∆(1H)⊗ 1H) = 1
′
1 ⊗ 111

′
2 ⊗ 12 = 11 ⊗ 12 ⊗ 13.

This completes the proof.

Theorem 1. Let H be a quantum commutative cocommutative weak Hopf algebra and B a Rota–
Baxter operator on H. Then HB = (H, ∗, η, ∆, ε, SB) is also a cocommutative weak Hopf algebra
called the descendent weak Hopf algebra of the Rota–Baxter weak Hopf algebra (H, B). Here, the
antipode is given by

SB : H → H, SB(h) = S(B(h1))S(h2)B(h3), for all h ∈ H.

Proof. Note that ΠL = ΠR by assumption. To prove HB is a cocommutative weak Hopf
algebra, we are only left to show that SB is indeed an antipode of H by Lemma 3. Before
doing this, we shall give the following useful equations.

ΠL(h) = B(h1)B(SB(h2)), ΠR(h) = B(SB(h1))B(h2), (10)

for all h ∈ H.
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As a matter of fact, by Lemma 1, we have

B(h1)B(SB(h2)) = B
(

h1B(h2)SB(h3)S(B(h4))
)

= B
(

h1B(h2)S(B(h3))S(h4)B(h5)S(B(h6))
)

= B
(

h1ΠL(B(h2))S(h3)ΠL(B(h4))
)

= B
(

h1ΠL(h2)S(h3)ΠL(h4)
)

= B
(

h1ΠR(h2)S(h3)
)

= B(h1S(h2)) = B(ΠL(h))

= ΠL(h),

and
B(SB(h1))B(h2) = B(SB(h1))B(h2)ΠR(B(h3))

= ΠR(B(h1))B(SB(h2))B(h3)

= S(B(h1)) B(h2)B(SB(h3))︸ ︷︷ ︸ B(h4)

= S(B(h1))ΠL(h2)B(h3)

= S(B(h1))B(h2ΠR(h3))

= S(B(h1))B(h2) = ΠRB(h)

= ΠR(h),

as required.
For all x ∈ HL and h ∈ H, we can easily obtain that x ∗ h = xh from the definition of

the operation “∗". Meanwhile, SB is left HL-linear since both S and B are HL-linear. Then,
according to Lemma 1, we have

h1 ∗ SB(h2) = h1B(h2)SB(h3)S(B(h4))

= h1B(h2)S(B(h3))S(h4)B(h5)S(B(h6))

= h1ΠL(h2)S(h3)ΠL(h4)

= h1S(h2) = ΠL(h),

SB(h1) ∗ h2 = SB(h1)B(SB(h2))h3S(B(SB(h4)))

= S(B(h1))S(h2)B(h3)B(SB(h4))h5S(B(SB(h6)))

(10)
= S(B(h1))S(h2)ΠL(h3)h4S(B(SB(h5)))

= S(B(h1))S(h2)h3S(B(SB(h4)))

= S(B(h1))ΠR(h2)S(B(SB(h3)))

= S(B(h1ΠR(h2)))S(B(SB(h3)))

= S(B(SB(h1))B(h2))

= S(ΠR(h)) = ΠR(h),

and so we have

SB(h1) ∗ h2 ∗ SB(h3) = ΠR(h1) ∗ SB(h2) = ΠR(h1)SB(h2)

= SB(ΠL(h1)h2) = SB(h).

Hence, HB is a cocommutative weak Hopf algebra.
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For an algebra A with a multiplication mA and a coalgebra C, we have the convolution
algebra Conv(C, A) = Hom(C, A) as spaces, with the multiplication given by

(α ? β)(c) = α(c1)β(c2),

for all α, β ∈ Hom(C, A) and c ∈ C.

Definition 4. Let H be a weak bialgebra and A an algebra. We define the following set:

WC(H, A) = {α ∈ Conv(H, A) | (α ? β)(h) = α(ΠL(h)), (β ? α)(h) = α(ΠR(h)),

∃β ∈ Conv(H, A), ∀h ∈ H}.

In this case, we say that β is a weak convolution invertible element of α in WC(H, A).

It is known from [23] that if a weak convolution inverse of an element in WC(H, A)
exists, then it is unique.

Proposition 4. Let H be a quantum commutative cocommutative weak Hopf algebra and B a
Rota–Baxter operator on H. Then, B is a weak Hopf algebra homomorphism from HB to H and a
Rota–Baxter operator on the weak Hopf algebra HB.

Proof. Since B : HB → H is an algebra map by Lemma 3 and a coalgebra map as well, B is
a weak bialgebra map. Thus, in order to prove that B is a weak Hopf algebra map, it is left
to prove that B ◦ SB = S ◦ B.

In fact, for all h ∈ H, on one hand, we have

S(B(h1))B(h2) = ΠR(B(h)) = ΠL(B(h)) = ΠL(h) = SB(ΠL(h)),

B(h1)S(B(h2)) = ΠL(B(h)) = ΠR(h) = SB(ΠR(h)).

This means that the map S ◦ B is the weak convolution inverse for the map B in
WC(H, H). On the other hand, we obtain

B(SB(h1))B(h2)
(10)
= B(ΠR(h)) = B(SB(ΠL(h))),

B(h1)B(SB(h2))
(10)
= B(ΠL(h)) = B(ΠR(h)).

Thus, B ◦ SB is also the weak convolution inverse for B in WC(H, H). So B ◦ SB = S ◦ B.
Clearly, B is both a coalgebra map and a left HL-module map. Meanwhile, B satisfies

Equation (7) since for all h, g ∈ H,

B(h1 ∗ B(h2) ∗ g ∗ SB(B(h3))) = B(h1)B(B(h2))B(g)B(SB(B(h3)) = B(h) ∗ B(g).

Thus, B is a Rota–Baxter operator on the weak Hopf algebra HB.

4. Rota–Baxter Operators on a Weak Hopf Algebra of a Matrix Algebra

In this section, we will give all Rota–Baxter operators on a weak Hopf algebra of an
n-dimensional matrix algebra.

Proposition 5. Let A be a weak Hopf algebra in Example 1 and B ∈EndK(A). Then, B is a
Rota–Baxter operator on A if and only if B is an identity map, that is to say,

B(e1) = e1, B(e2) = e2.

Proof. As {e1, e2} is a basis of the weak Hopf algebra A, we only need to prove for e1 and
e2 that B is a Rota–Baxter operator.
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Let B(e1) = ke1 + le2 =

(
k 0
0 l

)
, B(e2) = me1 + ne2 =

(
m 0
0 n

)
, k, l, m, n ∈ R. Then

B(e1)B(e1) = (ke1 + le2)(ke1 + le2) = k2e1 + l2e2 =

(
k2 0
0 l2

)
,

B(e1B(e1)e1S(B(e1))) = B(e1B(e1)e1B(e1)) = k2B(e1) =

(
k3 0
0 k2l

)
.

In order to let the map B satisfy Equation (7), we must make k3 = k2, k2l = l2.
Similarly,

B(e1)B(e2) = (ke1 + le2)(me1 + ne2) = kme1 + lne2 =

(
km 0
0 ln

)
,

B(e1B(e1)e2S(B(e1))) = B(e1B(e1)e2B(e1)) = B(ke1e2B(e1)) = B(0) = 0,

so km = ln = 0.

B(e2)B(e1) = (me1 + ne2)(ke1 + le2) = mke1 + nle2 =

(
mk 0
0 nl

)
,

B(e2B(e2)e1S(B(e2))) = B(ne2e1B(e2)) = B(0) = 0,

so mk = nl = 0.

B(e2)B(e2) = (me1 + ne2)(me1 + ne2) = m2e1 + n2e2 =

(
m2 0
0 n2

)
,

B(e2B(e2)e2S(B(e2))) = B(ne2e2B(e2)) = n2B(e2) =

(
n2m 0

0 n3

)
,

so n2m = m2, n3 = n2.
By calculation, we can obtain the following classification:

(1) k = l = 0; m = n = 0.
(2) k = l = 0; m = 0, n = 1.
(3) k = l = 0; m = n = 1.
(4) k = 1, l = 0; m = n = 0.
(5) k = 1, l = 0; m = 0, n = 1.
(6) k = l = 1; m = n = 0.

The corresponding Rota–Baxter operator forms are

(1) B(e1) = B(e2) = 0.
(2) B(e1) = 0, B(e2) = e2.
(3) B(e1) = 0,B(e2) = e1 + e2.
(4) B(e1) = e1, B(e2) = 0.
(5) B(e1) = e1, B(e2) = e2.
(6) B(e1) = e1 + e2, B(e2) = 0.

Because B needs to be a coalgebra map, we have the following cases .

• For (1), ε(B(e1)) = 0 6= 1 = ε(e1).
• For (2), ε(B(e1)) = 0 6= 1 = ε(e1).
• For (3), ε(B(e1)) = 0 6= 1 = ε(e1).
• For (4), ε(B(e2)) = 0 6= 1 = ε(e2).
• For (5), ε(B(e1)) = ε(e1), ε(B(e2)) = ε(e2).
• For (6), ε(B(e2)) = 0 6= 1 = ε(e2).

Only (5) satisfies the condition. Obviously, the map B in (5) is a AL-module map. At
the same time,

∆(B(e1)) = ∆(e1) = e1 ⊗ e1 = (B⊗ B)∆(e1),
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∆(B(e2)) = ∆(e2) = e2 ⊗ e2 = (B⊗ B)∆(e2).

Thus, B is a Rota–Baxter operator on A if and only if B = id.

Remark 3. Let R be the real field. We set

A =




a11 0 · · · 0 0
0 a22 · · · 0 0
...

...
. . .

...
...

0 0 · · · an−1,n−1 0
0 0 · · · 0 ann

| aii ∈ R, i = 1, 2, · · · , n


.

Then A is an algebra under matrix multiplication with the basis

e1 =


1 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 0

, e2 =


0 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 0

, · · · , en =


0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 1

.

Define its comultiplication and counit:

∆(e1) = e1 ⊗ e1, ∆(e2) = e2 ⊗ e2, · · · , ∆(en) = en ⊗ en, ε(e1) = ε(e2) = · · · = ε(en) = 1.

Then, A is a weak Hopf algebra with the antipode S = id. Using a similar method as in
Proposition 5 , we can prove that a map B : A→ A is a Rota–Baxter operator on A if and only if B
is an identity map.

5. Conclusions

In this paper, we proposed the notion of a Rota–Baxter weak Hopf algebra and studied
Rota–Baxter operators on weak Hopf algebras. A number of examples of Rota–Baxter weak
Hopf algebras were presented. From the algebraic perspective, we believe that Rota–Baxter
operators on weak Hopf algebras deserve to be studied further, and we think that it may
be possible to remove the condition of “cocommutative” on the title of this article .
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