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Abstract: Singular spectrum analysis (SSA) is a method of time series analysis and is used in various
fields, including medicine. A tremorogram is a biological signal that allows evaluation of a person’s
neuromotor reactions in order to infer the state of the motor parts of the central nervous system (CNS).
A tremorogram has a complex structure, and its analysis requires the use of advanced methods of
signal processing and intelligent analysis. The paper’s novelty lies in the application of the SSA
method to extract diagnostically significant features from tremorograms with subsequent evaluation
of the state of the motor parts of the CNS. The article presents the application of a method of singular
spectrum decomposition, comparison of known variants of classification, and grouping of principal
components for determining the components of the tremorogram corresponding to the trend, periodic
components, and noise. After analyzing the results of the SSA of tremorograms, we proposed a new
algorithm of grouping based on the analysis of singular values of the trajectory matrix. An example
of applying the SSA method to the analysis of tremorograms is shown. Comparison of known
clustering methods and the proposed algorithm showed that there is a reasonable correspondence
between the proposed algorithm and the traditional methods of classification and pairing in the set
of periodic components.

Keywords: time series analysis; singular spectrum analysis (SSA); principal component analysis;
time series classification

MSC: 37M10; 15A18

1. Introduction

The COVID-19 pandemic has shown that the development of remote medical care
technology is important [1–3]. First of all, the telemetric means that provide remote moni-
toring of the state of human organs and systems are relevant [4]. Important parameters
such as oxygen saturation, heart rate, respiration rate, and blood pressure can be trans-
mitted at an extremely low cost. These parameters can be measured by wearable devices
connected to an ordinary smartphone [5]. It is possible to implement more complex spe-
cially designed measuring devices, which allow obtaining data for monitoring of more
specific characteristics.

The next level of the telemedicine development concerns the additional interaction
between the patient and the physician through the available means of communication [6,7].
To optimize this, the development of specialized mathematical methods and algorithms for
primary information processing are required. Primary processing can provide data analysis
using artificial intelligence methods [8–10]. This can minimize the volume of transmitted
telemetry information and facilitate the work of a physician operating remotely [11].

The control of the state of the human central nervous system is of particular importance
now. The development of the pandemic has led to an increase in the number of people
under stress [12,13], and as a result, the number of patients with central nervous system
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disorders grows. This leads to the necessity to develop software and hardware for possible
detection and prediction of neurodegenerative diseases.

Recently, methods of estimation of the status of the human central nervous system
based on the analysis of its motor activity have been developed. One of the manifestations
of human motor activity is a tremor defined as involuntary, rhythmic, and oscillatory
movements of body parts. The tremor is caused by sequential or simultaneous contractions
of the agonist and antagonist muscles. There are two types of tremors: physiological and
pathological [14]. The physiological tremor appears as a low-amplitude tremor with the
frequency of 8–12 Hz and can be detected in any healthy person. The pathological tremor
is caused by various disorders in the central or peripheral parts of the nervous system [15].
The parameters of the tremor can be used to estimate the functional state of the central
nervous system (CNS) and diagnose human neurological pathologies.

There are various instrumental methods for recording and quantitative assessment of a
tremor. For example, biomechanical analysis of a tremor can be based on electromyography,
accelerometry, spirography, etc. [16]. However, these methods are focused on the analysis of
the visible tremor, i.e., when a tremor becomes visible. If there are no external manifestations
of a tremor, it is possible to stimulate its appearance. A tremor appears both in people with
CNS disorders and in healthy people during formation of the isometric effort, when there
is a strong muscle tension without movement. It can occur, for example, when clenching
the hand into a fist or holding a heavy object [17,18].

In [19], we proposed an original method of tremor stimulation against the background
of isometric effort and developed a device for measuring tremor parameters. The measure-
ment results are represented as tremorograms—time series composed of digitized values of
an involuntary force (tremor) arising when the hands are acting on the sensitive elements
of the device.

After the measurement, it is necessary to analyze the obtained time series. Spectral
analysis based on fast Fourier transformation can be used to solve these problems regardless
of the signal type and pathology [20]. However, the Fourier transform has a number of
disadvantages that narrow the area of its use in diagnostics. These disadvantages are
especially manifested in the analysis of multicomponent signals containing singularities,
such as jumps, changes of periods, amplitudes, and phases of harmonic components.
Therefore, there is a necessity to use other methods of time series analysis, significantly
different from the classical correlation-spectral analysis, which give more informative
results [21].

At present, the most commonly used methods to study the principal structural com-
ponents of time series are singular spectrum analysis (SSA) [22], wavelet transform [23,24],
and fractal methods [25,26]. The aim of our study was to offer a method of automatic
analysis, which can detect and identify the components of tremorograms, and on the basis
of the data obtained, diagnose nervous system disorders.

Wavelet analysis of time series is effective for studying local features of signals and for
filtering. Fractal analysis methods allow decomposition of diagnostic signals into sets of
periodic signals and chaotic components. Since the purpose of examining tremorograms is
to distinguish smoothly changing components, periodic components, and noise, we applied
SSA in our work. The SSA method allows decomposition of stationary and nonstationary
time series into principal components, and analyzing these components enables us to make
conclusions about the characteristics of the original time series [27]. This method is already
used when processing some biomedical signals to eliminate noise as well as to detect
anomalies in quasi-periodic biosignals such as electrocardiograms, oxygen levels, blood
pressure, and electroencephalograms [28,29].

The paper is organized as follows: Section 2 presents the basic method of singular
spectrum decomposition and considers the known variants of classification and grouping
of principal components. Section 3 is devoted to the application of the SSA method
for the analysis of tremorograms. An example of singular spectrum decomposition is
shown, different grouping methods are compared, and a grouping algorithm based on
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singular values of the trajectory matrix is proposed. It is also shown that the results of the
proposed method correspond to the results of the known methods. A general algorithm
for the analysis of tremorograms is formulated. Section 4 presents the interpretation of the
obtained results.

2. Materials and Methods

A tremorogram is a time series F (f0, f1, f2, . . . , fN−1) of length N with the regular
time step. This series consists of the components that characterize the smoothly varying
component Trend(t), harmonic signals Harmonic(t) characterizing involuntary contractions
of human muscles on the background of an isometric force, and noise Noise(t), which is
caused by the sensor noise and interference in the primary data processing channel:

F(t) = Trend(t) + Harmonic(t) + Noise(t).

To analyze the smoothly varying and harmonic constituents of the tremor, it is neces-
sary to extract the trend and periodic components of the series. For this purpose, we used
the singular spectrum decomposition method.

2.1. Singular Spectrum Decomposition Method

A trajectory matrix X was compiled from the original time series as follows. We chose
a window of length L, where 1 < L < N, and overlay the window on the time series forming
K vectors Xi having the following form:

Xi = (fi, fi+1, fi+2, . . . , fi+L−1)T,

where 0 ≤ i ≤ K − 1 and K = N − L+1.
As a result, we obtained the matrix:

X =


f0 f1 f2 . . . fK−1

f1 f2 f3 . . . fK
f2 f3 f4 . . . fK+1

...
...

... . . .
...

fL−1 fL fL+1 . . . fN−1


This is a Hankel matrix because the elements on the diagonals from bottom left to top

right are equal.
Then, we performed a singular value decomposition (SVD) of the trajectory matrix:

X = UΣVT

where U is a unitary matrix of size L × L containing an orthonormal set of left singular
vectors X as columns; Σ is a rectangular diagonal matrix of size L × K containing singular
values of X, ordered from largest to smallest; and V is a unitary matrix of size K × K
containing the orthonormal set of right singular vectors of X as columns.

The SVD of the trajectory matrix X can be written as

X =
d−1

∑
i=0

σiUiVT
i =

d−1

∑
i=0

Xi

where σi is the i-th singular value and d is the rank of the trajectory matrix X or the number
of singular values satisfying the inequality σi > 0.

The columns of the trajectory matrix are a sequence of K vectors that span the space of
the original time series. This space is at most L-dimensional. If the columns of the trajectory
matrix are linearly dependent, the dimensionality of the space decreases, that is, the part of
the matrix of singular values is zero, and the rank corresponds to the inequality d < L.
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However, the appearance of linearly dependent columns in the matrix X is practically
impossible because the tremorograms have a complex structure and are noisy, that is, the
trajectory space has dimension L.

As a result, the original time series F is represented as a set of elementary matrices
Xi, which constitute the trajectory matrix X. For the transition Xi to the time series, it is
necessary to perform the Hankelization of the matrices. Hankelization is performed by
diagonal averaging, which determines the values of the reconstructed time series Fi as the
average values of the corresponding antidiagonals of matrices Xi.

To convert a matrix Xi of size L × K into an antidiagonal matrix
∼
Xi, we calculated xm,n

as the mean value of the elements of the antidiagonal, which includes xm,n. The number
of elements of the antidiagonal to be summed depends on the arrangement of xm,n in the
matrix and is taken into account in the following equation:

∼
xm,n =



1
s+1

s
∑

l=0
xl,s−l 0 ≤ s ≤ L−1

1
L−1

L−1
∑

l=0
xl,s−l L ≤ s ≤ K−1

1
K+L−s−1

L
∑

l=s−K+1
xl,s−l K ≤ s ≤ K+L−2

Based on the Hankelized matrices
∼
Xi, we could reconstruct time series

∼
Fi.

2.2. Classification and Grouping

The next stage of the analysis is the classification of matrices
∼
Xi. It was necessary to

determine how many principal components are sufficient to describe the original series,
and determine the trend, periodic, and noise components.

According to the results of classification, the matrices
∼
Xi could be categorized into

non-intersecting sets trend, harmonic, and noise:

∼
X = ∑

t∈T

∼
Xt + ∑

h∈H

∼
Xh + ∑

n∈N

∼
Xn,

where T, H, and N are non-intersecting sets of indexes of elements of the sets trend,
harmonic, and noise.

Four sets of objects were obtained according to the results of the singular spectrum

decomposition. Any of them could be used to classify and group elementary matrices
∼
Xi or

time series
∼
Fi.

1. The singular values of the trajectory matrix of the L-dimensional representation of the
original one-dimensional series.

2. A set of singular vectors of the trajectory matrix. Since their elements are ordered by
the operator of the series matrix formation, they can be studied as functions of time.

3. The set of principal components
∼
Xi of the L-dimensional representation. They, as well

as their corresponding eigenvectors, form an orthogonal system and can be considered
as functions of the number i.

4. Time series
∼
Fi reconstructed from different sets of principal components

∼
Xi.

When classifying components, the components corresponding to the trend and pe-
riodic components of tremorograms are of particular interest. The classification of com-
ponents can be performed visually [30], as well as with the use of methods of intelligent
data analysis.
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2.2.1. Visual Analysis by Singular Values

When identifying periodic components, it is necessary to take into account the fact
that the singular values of the trajectory matrix corresponding to periodic constituents form
pairs. The authors in [31] showed that one sinusoidal component in an ideal situation corre-
sponds to two principal components with the same period (sine and cosine), corresponding
to one singular value. In a real situation, these two principal components correspond not
to one, but to two eigenvalues that are close in value. The analysis of the singular values to
determine the proximity of their values can be performed visually, for example, by graph.
For contrast, it is recommended to use graphs of logarithms or roots of singular values, as
such graphs clearly show the segments similar to the horizontal segments. The ends of

these segments correspond to a pair of principal components (
∼
Xi,
∼
Xi+1) with approximately

identical eigenvalues σi ≈ σi + 1. Their combination makes it possible to reveal the periodic
components of the initial series.

2.2.2. Visual Analysis by Eigenvectors

Classification by eigenvectors is based on the visual analysis of two-dimensional
graphs, when different pairs of eigenvectors are plotted along the x and y axes. If on the
x-and y-axis we plot the values of sines with the same frequency but with different phases,
we obtain an ellipse on the plane. From the orthogonality of the eigenvectors for the pair of
principal components corresponding to one periodic constituent, it follows that the phase
shift between such pairs is ±π/2, and the ellipse becomes a circle.

The harmonic component with an integer period is represented as a regular polygon
and the number of vertices of the polygon is determined by the value of the period. When
the amplitude of the harmonic component changes, the polygon transforms into a spiral.

The pair of principal components (
∼
Xi,
∼
Xi+1) determining the periodicity can be determined

by a visual analysis: the trajectory of such a pair should be approximately represented as a
spiral with a fixed center and an insignificantly varying radius.

The visual method can be used when analyzing short and simple time series based on
a small number of components.

2.2.3. Classification by Principal Components and Reconstructed Time Series

Clearly, it is necessary to perform a numerical evaluation in order to provide an
intelligent analysis of the tremorograms and make a decision about the grouping Xi. Various
grouping methods for the singular spectral analysis have been developed [32]. When
grouping by principal components or reconstructed time series, known clustering methods
can be used [33].

The metrics used in determining the similarity of time series can be divided into two
groups: based on a distance [34–36] and based on a shape [37,38]. In our research, we used
the estimation of distances between objects (time series and matrices). The distance metrics
p used in our study is shown in Table 1.

Table 1. Metrics used to determine the distance between time series A and B.

Metric Formula for Calculation

Euclidean distance p(A, B) =

√
n
∑
i
(a i − bi)

2

Manhattan distance p(A, B) =
n
∑
i
|a i − bi|

Cosine measure p(A, B) =arccos( 〈A,B〉
||A|| ||B|| )

Chebyshev distance p(A, B)= max|ai − bi|
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To group the principal components into pairs, it is necessary to construct a distance
matrix D = (d i,j)

d
i,j=1. Based on the values of the distance matrix D, we could estimate the

distance between pairs of matrices being compared and determine which of them can be
combined into pairs to form a periodic constituent.

For comparison, we used Hankelized matrices
∼
Xi. To do this, we formed the matrices

Ai= (a l,k)
L−1,K−1
l,k=0 as follows:

Ai =

∼
Xi∣∣∣∣∣∣∣∣∼Xi

∣∣∣∣∣∣∣∣ ,
where ‖

∼
Xi‖ is the Frobenius norm [39] defined by

||X||=

√√√√ L

∑
i=1

K

∑
j=1

xij
2.

The distance between the two components Xi and Xj, can be assessed through the
distance between the matrices Ai and Aj. The elements of the distance matrix D can be
defined, for example, as di,j =

∣∣∣∣Ai −Aj
∣∣∣∣.

Another method of similarity analysis of Hankelized matrices was proposed by the
authors in [34]. The method is based on the use of w-correlation matrix. This matrix
consists of weighted correlations between the reconstructed components of the time series
∼
Fi. The weights w reflect the number of occurrences of the components of the time series in
its trajectory matrix. Well-separated components have a small correlation, while poorly-
separated components have a large correlation. Therefore, considering the correlation
matrix, we could find pairs of correlated reconstructed series and use this information
for grouping.

For two reconstructed time series
∼
Fi and

∼
Fj of length N and window length L, we

could determine the weighted inner product:(∼
Fi,
∼
Fj

)
w
=

N−1

∑
k=0

wk
∼
f i,k
∼
f j,k,

where
∼
f i,k and

∼
f j,k are k-th value of

∼
Fi and

∼
Fj, respectively, and wk is determined as follows:

wk =


k + 1 0 ≤ k ≤ L− 1
L L ≤ k ≤ K− 1

N− k K ≤ k ≤ N− 1
.

If (
∼
Fi,
∼
Fj)w = 0, then

∼
Fi and

∼
Fj are w-orthogonal, and the components of the time series

are separable.
Clearly, the full w-orthogonality does not appear in the analysis of real signals, so we

could use the weighted correlation matrix Wcorr to analyze the matrices corresponding to
real signals. This matrix of dimension d × d determines the deviation of components Fi
and Fj from w-orthogonality. The elements of Wcorr are specified as follows:

Wi,j =

(∼
Fi,
∼
Fj

)
w

||
∼
Fi||w ||

∼
Fj

∣∣∣∣∣∣∣∣
w

,
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where ||
∼
Fk||w =

√( ∼
Fk,

∼
Fk

)
w

for k = i, j.

The interpretation of Wi,j is as follows: if
∼
Fi and

∼
Fj are close to each other (not identical),

then (
∼
Fi,
∼
Fj)w → ‖

∼
Fi‖w ‖

∼
Fj‖w and therefore, wi,j → 1. If

∼
Fi and

∼
Fj are w-orthogonal, then

wi,j = 0. Depending on the data set, some threshold d has to be defined, and if wi,j ≥ d, the

components
∼
Fi and

∼
Fj can be grouped.

3. Result

In this section, we apply SSA to the analysis of tremorograms, review the grouping
algorithm we developed, and compare the results of our algorithm with the results of
grouping by known methods.

3.1. Data Acquisition

To obtain data, we applied registration of an involuntary effort on the background
of a voluntary isometric effort [19]. The person under the test sat in front of the monitor
at the table, and on the table, a device with two strain gauges for the left and right arms’
effort measurement was also placed. With the fingers of the arms straightened forward,
the person acted on the corresponding support elements of the meters and observed the
value of the generated effort by the arms on displacement of the marks on the monitor. The
marks moved along the vertical axis of the screen in proportion to the applied effort. The
task of the test person was to hold a certain effort for a given time, combining the marks for
the right and left arms at the same level.

The effort of each arm was recorded during the continuous test duration of 10 s. The
effort was converted into a voltage, which was transmitted to a computer through an
analog-to-digital converter. The voluntary and involuntary force components were stored
for subsequent processing. The involuntary force was also used to control the displacement
of the marks on the monitor screen in real time. The quantization frequency of the analog
signal was 320 Hz. Such measurement settings allowed us to obtain a sufficient number of
measurements for statistically reliable estimation of the time series parameters.

Healthy people aged 25–70 years as well as patients with CNS disorders took part in
the study. All participants held different forces from 0.5 kg to 5 kg for several minutes with
control of efforts via visual feedback.

Figure 1 shows 2 s fragments of tremorograms of two persons under the test. The graph
in Figure 1a was obtained when studying the person without detected pathologies, while
the graph in Figure 1b is the result of measuring tremor in the patient with a detected CNS
pathology. The graphs show the complex structure of isometric force oscillations, which can
be decomposed into components correlated with different levels of motor system control.
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3.2. Singular Spectrum Decomposition of the Original Series

The singular spectrum decomposition given in Section 2.1 and various variants of
principal component classification were implemented using the Python language and
relevant libraries: numpy for matrix processing, matplotlib for visualization of arrays used,
csv for reading and writing data in the standard csv format.

For processing, we used an original time series consisting of 640 elements correspond-
ing to 2 s recordings. It was shown in [22] that when converting a series into a matrix, the
applied window should not be too small, since a more detailed decomposition is obtained
when the window is longer. It was shown in [40] that the window should not exceed half
of the time series under study. In our research, we used the window length L = 310.

Figure 2 shows the obtained trajectory matrices X1–X4. For the convenience of vi-
sual analysis, the matrices are represented by the color equivalents of the corresponding
element values.
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Figure 2. The trajectory matrices of tremorograms time series: (a) X1, patient without any pathology
detected, left arm; (b) X2, patient without any pathology detected, right arm; (c) X3, patient with CNS
pathology, left arm; and (d) X4, patient with CNS pathology, right arm.

The ranks d of the trajectory matrices are equal to the length of the window L:

Rank X1 = Rank X2 = Rank X3 = Rank X4 = 310.

Next, consider the process of analyzing the matrix X1. The results of similar operations
with matrices X2–X4 are shown in Appendix A.

Figure 3 shows the first 14 matrices X1i, obtained as a result of decomposition of the
trajectory matrix X1. For the convenience of visual analysis, the matrices are represented
by color equivalents of the corresponding element values.

From visual inspection of the matrices X1i, it is obvious that the elementary matrices
were not antidiagonal. However, the nature of the components could be determined by
their appearance. For example, the values of X10, X11, and X12 changed slowly throughout
the matrix, indicating that these components can be related to slowly changing constituents
of the time series. The patterns of matrices X13–X16 showed periodic changes. X17–X110
also characterized periodic components, but their frequencies were different from the
frequencies of the components corresponding to X13–X16. The remaining components refer
to noise.

Let us estimate the relative contribution (RC) of the decomposition matrices X1i to the
trajectory matrix X1 using the values of the singular values σi as follows:

RCi =
σ2

i
d−1
∑

k=0
σ2

k

.
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Figure 3. The first 14 matrices obtained as a result of singular spectrum decomposition of the
trajectory matrix X1.

The relative contribution for the first 20 values of σ is shown in Table 2.

Table 2. The relative contribution of the first 20 decomposition matrices X1i.

i RC i RC i RC i RC

0 0.5028 5 0.0064 10 0.0047 15 0.0015
1 0.3859 6 0.0063 11 0.0045 16 0.0013
2 0.0211 7 0.0052 12 0.0038 17 0.0010
3 0.0168 8 0.0051 13 0.0030 18 0.0010
4 0.0164 9 0.0048 14 0.0016 19 0.0008

Analysis of the data in the Table 2 showed that elementary matrices X10 and X11
contributed 50.28% and 38.59% to matrix X1, respectively. Together, the first 20 elementary
matrices contributed 99.39%:

19

∑
i=0

RCi = 0.9939.

For the following analysis, we used only the first 20 components of the series, consid-
ering the contribution of the others insignificant.

3.3. Classification of Principal Components

Elementary matrices with close singular values, i.e., when σi ≈ σi + 1, contributed
equally to the matrix X1 and could be grouped together when reconstructing of the time
series. For example, Table 2 shows that X13 and X14, as well as X15 and X16, should be
grouped together. The pairs X17 and X18 as well as X19 and X110 should be investigated
further, since they can refer to both periodic and noise. Similar data were obtained when
analyzing the graph of the singular values shown in Figure 4.
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Figure 4 shows that the singular values corresponding to the principal components
∼
X13 and

∼
X14,

∼
X15 and

∼
X16,

∼
X17 and

∼
X18, and

∼
X19 and

∼
X110 formed segments parallel to

the x-axis. These pairs of singular values probably determine harmonic components of
the series.

Let us focus on the problem of separating the signal components from the noise

components, e.g., the pair
∼
X17 and

∼
X18, and

∼
X19 and

∼
X110. Firstly, the irregular behavior of

singular vectors can indicate that they belong to the set generated by a noise component
(these cases should not be confused with mixing of components due to the absence of
strong separability of series). Secondly, a slow decrease of the singular values starting from
a certain number almost without jumps also points to this. Finally, the large set of singular
values generating correlated reconstructed components most likely refers to noise.

Starting from the value σ9, the graph decreased smoothly, which indicates the begin-
ning of the appearance of the noise components of the series, and therefore, the components
from σ9 should be referred to noise.

It is known from the SSA theory that singular values belonging to slowly varying
components have the highest weights, i.e., they are in the beginning of the list of singular
values (since the singular decomposition sorts by decreasing their weights). Harmonics
correspond to pairs of adjacent vectors that are on the same “step”, i.e., have similar eigen-
vectors. It is also noted that the distance between pairs of eigenvalues of interdependent
harmonics is many times greater than the distance in the pairs themselves between the
eigenvalues. Noise is defined as a slow decrease of singular values.

Such behavior of singular values is typical for tremorograms of healthy people. SVD
decomposition of tremorograms of patients with CNS pathologies shows a different pattern.
Single singular values are observed between explicit pairs corresponding to harmonic com-
ponents. In this case, we can attribute it to slowly changing components. There may appear
grouped pairs in the first singular values. Such cases are shown in Figures A2b and A3b in
Appendix A.

Using these observations, we could perform classification into trend, harmonic, and
noise components according to the following Algorithm 1.
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Algorithm 1 Principal component classification algorithm

Input: Set of singular values σi
Output: Trend, harmonic, and noise sets
STEP 1: Calculate the set of logarithms of the singular values σi.
STEP 2: Determine the threshold value dd for the distance between logarithms of neighboring
singular values considered as pairs, and the scaling factor c for determining the distances
between pairs.
STEP 3: Analyze sequentially the pairs of neighboring values from the set of logarithms of
singular values. If the distance between values in the pair is greater than dd, then the first point is
added to the trend set. Else, we assume that the points can form a pair; to identify the pair, go to
Step 4.
STEP 4: Calculate the distance between the second point of a pair and the one next to it. If the
distance is greater than dd*c, then the pair is found. Return to step 3. If the distance is less than
dd*c, we assume that the components corresponding to the analyzed singular values and all
subsequent ones are noisy.

When dd = 0.05 and c = 2 the proposed algorithm classified the singular values into
three groups:

Trend: σ0, σ1, σ2;
Harmonic: σ3, σ4; σ5, σ6; σ7, σ8;
Noise: σ9, and so on.

Another confirmation of the validity of the grouping are the two-dimensional scatter-
grams shown in Figure 5. A scattergram is a graphical representation of selected pairs of
eigenvectors Ui and Ui+1 obtained as a result of SVD. When the eigenvectors are orthogonal,
i.e., correspond to the same harmonic, the scattergram is a spiral (possibly fictitious).
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Clearly, the presented scattergrams of the principal components
∼
X13 −

∼
X18 are the

most informative. The subsequent components probably belong to the noise components of

the series and were excluded from the analysis. The first three components
∼
X10 −

∼
X12 were

also excluded from the analysis, as they belong to the smoothly changing components.
Thus, for the analysis of time series for its periodic components will be used three

pairs of components:
∼
X13 −

∼
X18.

A similar result was obtained by visual analysis of the Hankelized matrices (principal

components)
∼
Xi. According to the appearance of the color representation of the principal

components shown in Figure 6, the frequency components corresponded to matrices
∼
X13 −

∼
X18. They had a periodic antidiagonal pattern. The pairing was performed on the

basis of frequency.
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Generally, there are no recommendations on the number of components determining
the reconstructed series. In specific tasks, this number is chosen from compromise consid-
erations, based on the desire to filter out the series from the noise components as best as
possible and the need to preserve the informative components.

It is important to note that elementary matrices represent an optimal (perhaps not
unique) separation of components in the trajectory space: by definition, the rows and
columns of one elementary matrix are orthogonal to the rows and columns of other elemen-
tary matrices. However, this separation is not always interpretable. There are restrictions
on the types of components of the time series, which are exactly separated according to the
chosen formal representation.

Figure 7 shows the results of estimating the similarity of the principal components
based on the distances between the time series calculated using different metrics.
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The correlation between time series is clearly visible on the matrix formed on the

basis of the cosine distance. The following pairs {
∼
X13,

∼
X14}, {

∼
X15,

∼
X16}, {

∼
X17,

∼
X18}, and

{
∼
X19,

∼
X110} were distinguished.

Figure 8 shows the distances between the principal component matrices calculated
from the normalized matrices as well as from the w-correlation matrix. The analysis of
the matrices in Figure 8 showed a similar grouping result. We also observed correlations

between components of the time series, especially in the range for
∼
X19 −

∼
X110. These
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components were classified as noise by the proposed algorithm, so it is not surprising that
there were some correlations between them, but they were smaller than the correlations
between pairs of periodic components.
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components based on the Matrix Norm.

From the results above, we could see that there is a reasonable correspondence between
the proposed algorithm and the traditional methods of classification and pairing in the set
of periodic components, at least for the first most significant principal components. This
fact is illustrated in Table 3, which shows the results of the time series analysis obtained by
analyzing a tremorogram of the left arm of a patient without detectable pathology.

Table 3. Comparison of the results of component grouping by the considered methods.

Method Component Grouping Result

Visual analysis of singular values
(Figure 4)

Trend: {σ0, σ1, σ2}
Harmonic: {σ3, σ4; σ5, σ6; σ7, σ8; σ9, σ10}
Noise: {σ11–σ19}

Visual analysis of scattergrams of pairs of
eigenvectors (Figure 5) Harmonic: {σ3, σ4; σ5, σ6; σ7, σ8}

Classification based on reconstructed time
series using cosine measure (Figure 7)

Trend: {σ0, σ1, σ2}
Harmonic: {σ3, σ4; σ5, σ6; σ7, σ8; σ9, σ10}
Noise: {σ11–σ19}

Classification based on the w-correlation
matrices of the principal components
(Figure 8a)

Trend: {σ0, σ1, σ2}
Harmonic: {σ3, σ4; σ5, σ6; σ7, σ8; σ9, σ10}
Noise: {σ11–σ19}

Classification based on the correlation of the
principal component matrices using the
Frobenius norm (Figure 8b)

Trend: {σ0, σ1, σ2}
Harmonic: {σ3, σ4; σ5, σ6; σ7, σ8; σ9, σ10}
Noise: {σ11–σ19}

Proposed algorithm
Trend: {σ0, σ1, σ2}
Harmonic: {σ3, σ4; σ5, σ6; σ7, σ8; σ9, σ10}
Noise: {σ11–σ19}

When performing a grouping of components based on distances between time series
using metrics, we used the cosine measure, because it is difficult to conclude confidently
using other variants (Euclidean distance, Manhattan distance, and Chebyshev distance).

Table 4 shows the results of comparison of the proposed algorithm and the most
representative methods: visual analysis of singular values [31]; classification using the
w-correlation principal component matrices [32]; and classification based on correlation by
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principal component matrices using the Frobenius norm [34]. In the analysis of matrix X1,
we used Figures 4 and 8a,b, and in the analysis of matrices X2, X3, and X4 we analyzed the
Figures A1–A3 of Appendix A, respectively.

Table 4. Comparison of the results of component grouping by the considered methods for different tests.

Method
Hankelized Principal
Components Matrices

X1

Hankelized Principal
Components Matrices

X2 (Figure A1)

Hankelized Principal
Components Matrices

X3 (Figure A2)

Hankelized Principal
Components Matrices

X4 (Figure A3)

Visual analysis of
singular values

{σ0, σ1, σ2}
{σ3, σ4; σ5, σ6; σ7, σ8;

σ9, σ10}
{σ11–σ19}

{σ0, σ1, σ2, σ3}
{σ4, σ5}

{σ6–σ19}

{σ6, σ7}
{σ0, σ1; σ2, σ3; σ4, σ5;

σ8, σ9; σ10, σ11}
{σ12–σ19}

{σ4}
{σ0, σ1; σ2, σ3; σ5, σ6}

{σ7–σ19}

Classification based on
the w-correlation

matrices of the
principal components

{σ0, σ1, σ2}
{σ3, σ4; σ5, σ6; σ7, σ8;

σ9, σ10}
{σ11–σ19}

{σ0, σ1, σ2, σ3, σ6, σ7}
{σ4, σ5; σ8, σ9}

{σ10–σ19}

{σ6, σ7}
{σ0, σ1; σ2, σ3; σ4, σ5;

σ8, σ9}
{σ10–σ19}

{σ4}
{σ0, σ1; σ2, σ3; σ5, σ6}

{σ7–σ19}

Classification based on
the correlation of the
principal component

matrices using the
Frobenius norm

{σ0, σ1, σ2}
{σ3, σ4; σ5, σ6; σ7, σ8;

σ9, σ10}
{σ11–σ19}

{σ0, σ1, σ2, σ3, σ6, σ7}
{σ4, σ5; σ8, σ9}

{σ10–σ19}

{σ6, σ7}
{σ0, σ1; σ2, σ3; σ4, σ5;

σ8, σ9}
{σ10–σ19}

{σ4}
{σ0, σ1; σ2, σ3; σ5, σ6}

{σ7–σ19}

Proposed algorithm

{σ0, σ1, σ2}
{σ3, σ4; σ5, σ6; σ7, σ8;

σ9, σ10}
{σ11–σ19}

{σ0, σ1, σ2, σ3}
{σ4, σ5}

{σ6–σ19}

{σ6, σ7}
{σ0, σ1; σ2, σ3; σ4, σ5;

σ8, σ9; σ10, σ11}
{σ12–σ19}

{σ4}
{σ0, σ1; σ2, σ3; σ5, σ6}

{σ7–σ19}

3.4. Generalized Algorithm for the Analysis of Tremorograms

Based on the results of the studies, we propose a general algorithm for analyzing
tremorograms, and its block diagram is shown in Figure 9.
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The input data for the algorithm are tremorograms. They are a time series of ampli-
tudes of involuntary human efforts formed against the background of isometric efforts
under the control of biofeedback.

At the first stage, a trajectory matrix is formed. We know [39] that the SSA method is
stable in relation to changes of the window length, and the decomposition effect appears not
so much in a numerical as in a qualitative sense. To obtain the most accurate decomposition,
we recommend choosing a window length equal to half of the time series length.

At the second stage, the trajectory matrix is decomposed by singular values and a
vector of singular values is formed. The singular values are ordered from the largest to
the smallest.

At the third stage, the singular values are analyzed using the proposed algorithm. As
a result, the values related to trend, harmonic components, and noise are determined.

As a result of the analysis, we obtained three sets trend, harmonic and noise, which
contain indexes of singular values. Hankelized matrices with such indices correspond
to the principal components that determine the trend and periodic components of the
time series.

4. Discussion

The classification of singular spectrum decomposition components based on singular
values of the trajectory matrix gave results comparable to those obtained by other methods.
It was determined that the classification by singular numbers is easy to implement, the
analysis algorithm has low complexity, and it gives the correct result for the interpretation.
An important advantage is that the algorithm does not require prior information about the
number of pairs of singular numbers belonging to the harmonic components.

To test the proposed method, we used 60 tremorograms obtained from healthy people
and patients with CNS pathologies using the device [19], as well as sets of specially
prepared synthetic data. The testing was performed for two purposes. The first purpose
was checking the quality of selection of components in the initial time series (robustness
of the proposed algorithm). The second purpose was to assess the quality of medical
diagnosis (application of SSA method in combination with the proposed algorithm). In
both cases, synthetic data were additionally used for more complete testing. Such data are
often applied when testing software products and it gives good results when test suites are
adequately formed [41].

To test the robustness of the proposed algorithm, values corresponding to decreasing
singular numbers were used as input data. Both sets with paired values and sets consisting
only of single points were generated. Testing on such sets showed the performance of the
proposed algorithm.

When assessing the quality of diagnosis, the test data were generated in the form of
initial time series as a combination of smoothly changing components corresponding to
isometric effort, frequency components with certain amplitude–frequency characteristics of
functional or pathological tremor according to [16,17], and noise components. In this case,
the possibility of detecting the components indicative of CNS pathology was evaluated
and the diagnostic value of the proposed analytical method was verified.

Analysis of real tremorograms obtained from healthy people and patients with CNS
pathologies revealed some peculiarities. The tremorograms of healthy persons were char-
acterized by the following distribution of singular values, arranged in descending order:
several numbers, corresponding to slowly changing components; some number of pairs,
corresponding to harmonic signals; and singular values of noise components. The appear-
ance of unpaired singular values between pairs corresponding to harmonic components, as
well as the localization of harmonic components in the initial positions of the set of singular
values arranged in descending order, indicated a CNS pathology in the test person.

Such a result is medically justified. In healthy people, involuntary oscillations formed
against the background of isometric effort have a small amplitude and do not interfere
with movement performance [42]. Functional tremor occurring in healthy persons makes a
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contribution to the tremorogram no greater than that of the smoothly varying force. At the
same time, the contribution of periodic components decreases with increasing frequency.
In patients with CNS pathologies, the contribution of frequency components is significant;
they begin to manifest themselves more actively than the smoothly varying effort. At the
same time, the singular values of trend components and pairs corresponding to periodic
components are intermixed. Thus, based on the results of the classification of singular
values, we can determine the pathological states of the human CNS.

As the analysis of publications related to the application of the SSA method has
shown, SSA-based methods of time series analysis in most cases involve visual analysis
at one or more stages [30,32–35]. A variant of automation was shown in [34], where
agglomerative hierarchical clustering methods were used to perform operations on matrices.
In our algorithm, the analysis was performed on vectors, as it is simpler and requires less
computational resources.

In some cases, automatic identification of pairs of singular values gives worse results
than visual identification performed by a specialist. Moreover, the proposed algorithm, as
well as other known methods of automatic identification, is not fully automated, because
they require the definition of thresholds. A number of problems arise in selecting the
threshold. First of all, we must be sure that there exist such optimal thresholds that provide
component recovery accuracy no worse than visual analysis. Secondly, we need to develop
an approach for automatic threshold determination that allows us to clearly classify pairs
of singular values belonging to the same periodic component.

The coefficients, which are constants for this algorithm, were selected by hand, based
on the results of manual testing. These coefficients will not change significantly during
the study of new results, and their possible insignificant correction will only improve the
classification accuracy. We plan to solve these problems in future studies. Additionally, in
the future, we plan to form the rules of differential diagnosis, when not only the presence
of a functional disorder of the central nervous system is detected, but also the type of
pathology is determined.

5. Conclusions

The paper showed that the method of singular spectral analysis allows us to qualita-
tively determine the composition of the tremorogram for the analysis of its components.

The practical result is demonstration of an opportunity for the use of singular spectral
analysis for the investigation of various elements of tremorograms and detection of a
number of physiologically significant phenomena by tremorography. Their further study is
important in the analysis of human neuromotor reactions.

At the current stage, the prepared general algorithm of the tremorogram analysis can
be used together with some additional method of visual identification, for example, with
w-correlation matrix. On the one hand, this allows additional control of the result of the
algorithm to have maximal confidence in the correctness of the decision about grouping.
On the other hand, we obtain sets of singular values and the results of their analysis. These
data can be further used as marked sets, for example, in clustering singular values with
neural networks.
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Figure A1. The result of matrix X2 decomposition and principal components analysis: (a) Hankelized
principal components matrices; (b) the first 14 singular values of the trajectory matrix X2; (c) w-
correlation matrix of distances between pairs of principal components; (d) matrix of distances
between pairs of principal components based on the Frobenius norm; and (e) the result of the
proposed algorithm, where Mtrend is the list of indexes of the singular numbers corresponding to the
trend, Mharmonic is the set of indexes of the first elements from the pair, and Mnoise is the index of
the singular number from which the noise components begin.
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Hankelized principal components matrices; (b) the first 14 singular values of the trajectory matrix 
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Figure A2. The result of matrix X3 decomposition and principal components analysis: (a) Hankelized
principal components matrices; (b) the first 14 singular values of the trajectory matrix X3; (c) w-
correlation matrix of distances between pairs of principal components; (d) matrix of distances
between pairs of principal components based on the Frobenius norm; and (e) the result of the
proposed algorithm, where Mtrend is the list of indexes of the singular numbers corresponding to the
trend, Mharmonic is the set of indexes of the first elements from the pair, and Mnoise is the index of
the singular number from which the noise components begin.
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