Sufficient Conditions for a Graph to Be ℓ-Connected, ℓ-Deficient, ℓ-Hamiltonian and ℓ−-Independent in Terms of the Forgotten Topological Index
Abstract
:1. Introduction
2. Sufficient Conditions for ℓ-Connected Graphs
- Case 1. is even.
- Subcase 1.1..
- Subcase 1.2..
- Case 2. is odd.
- Subcase 2.1..
- Subcase 2.2..
3. Sufficient Conditions for ℓ-Deficient Graphs
4. Sufficient Conditions for ℓ-Hamiltonian Graphs
- Case 1. is odd.
- Subcase 1.1..
- Subcase 1.2..
- Subcase 1.3..
- Case 2. is even.
- Subcase 2.1..
- Subcase 2.2..
5. Sufficient Conditions for -Independent Graphs
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bondy, J.A.; Murty, U.S.R. Graph Theory with Application; Macmillan Press: New York, NY, USA, 1976. [Google Scholar]
- Wiener, H. Structural determination of paraffin boiling points. J. Amer. Chem. Soc. 1947, 69, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Ivanciuc, O.; Balaban, T.S.; Balaban, A.T. Reciprocal distance matrix, related local vertex invariants and topological indices. J. Math. Chem. 1993, 12, 309–318. [Google Scholar] [CrossRef]
- Plavšić, D.; Nikolić, S.; Trinajstić, N.; Mihalić, Z. On the Harary index for the characterization of chemical graphs. J. Math. Chem. 1993, 12, 235–250. [Google Scholar] [CrossRef]
- Gutman, I.; Das, K.C. The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 2004, 50, 83–92. [Google Scholar]
- Su, G.; Xiong, L.; Su, X. Maximally edge-connected graphs and zeroth-order general Randić index for 0 < α < 1. Discret. Appl. Math. 2014, 167, 261–268. [Google Scholar]
- Su, G.; Xiong, L.; Su, X.; Li, G. Maximally edge-connected graphs and zeroth-order general Randić index for α≤-1. J. Comb. Optim. 2016, 31, 182–195. [Google Scholar] [CrossRef]
- Gutman, I.; Trinajstić, N. Graph theory and molecular orbitals, Total π-energy of alternant hydrocarbons. Chem. Phys. Lett. 1972, 17, 535–538. [Google Scholar] [CrossRef]
- Goubko, M.; Réti, T. Note on minimizing degree-based topological indices of trees with given number of pendent vertices. MATCH Commun. Math. Comput. Chem. 2014, 72, 633–639. [Google Scholar]
- Kazemi, R. Probabilistic analysis of the first Zagreb index. Trans. Comb. 2013, 2, 35–40. [Google Scholar]
- Nikolić, S.; Kovačević, G.; Trinajstić, N. The Zagreb indices 30 years after. Croat. Chem. Acta 2003, 76, 113–124. [Google Scholar]
- Abdo, H.; Dimitrov, D.; Gutman, I. On extremal trees with respect to the F-index. arXiv 2015, arXiv:1509.03574. [Google Scholar]
- Elumalai, S.; Mansour, T.; Rostami, M.A. On the bounds of the forgotten topological index. Turk. J. Math. 2017, 41, 1687–1702. [Google Scholar] [CrossRef]
- Furtula, B.; Gutman, I. A forgotten topological index. J. Math. Chem. 2015, 53, 1184–1190. [Google Scholar] [CrossRef]
- Gao, W.; Siddiqui, M.K.; Imran, M.; Jamil, M.K.; Farahani, M.R. Forgotten topological index of chemical structure in drugs. Saudi Pharm. J. 2016, 24, 258–264. [Google Scholar] [CrossRef] [Green Version]
- Karimi, A. Extermal forgotten topological index of quasi-unicyclic graphs. Asian-Eur. J. Math. 2022, 15, 2250041. [Google Scholar] [CrossRef]
- Karp, R.M. Reducibility among combinatorial problems. In Complexity of Computer Computations; Miller, R.E., Thatcher, J.M., Eds.; Plenum Press: New York, NY, USA, 1972; pp. 85–103. [Google Scholar]
- Hua, H.; Wang, M. On Harary index and traceable graphs. MATCH Commun. Math. Comput. Chem. 2013, 70, 297–300. [Google Scholar]
- Yang, L. Wiener index and traceable graphs. Bull. Aust. Math. Soc. 2013, 8, 380–383. [Google Scholar] [CrossRef]
- Hong, Z.; Xia, Z.; Chen, F.; Volkmann, L. Sufficient conditions for graphs to be k-connected, maximally onnected and super-connected. Complexity 2021, 2021, 5588146. [Google Scholar] [CrossRef]
- Liu, R.; Du, X.; Jia, H. Wiener index on traceable and Hamiltonian graphs. Bull. Aust. Math. Soc. 2016, 94, 362–372. [Google Scholar] [CrossRef]
- Liu, R.; Du, X.; Jia, H. Some observations on Harary index and traceable graphs. MATCH Commun. Math. Comput. Chem. 2017, 7, 195–208. [Google Scholar]
- Su, G.; Li, Z.; Shi, H. Sufficient conditions for a graph to be k-edge-Hamiltonian, k-path-coverable, traceable and Hamilton-connected. Australas. J. Comb. 2020, 7, 269–284. [Google Scholar]
- Zhou, Q.; Wang, L.; Lu, Y. Wiener-type invariants and Hamiltonian properties of graphs. Filomat 2019, 33, 4045–4058. [Google Scholar] [CrossRef]
- An, M.; Das, K.C. First Zagreb index, k-connectivity, β-deficiency and k-hamiltonicity of graphs. MATCH Commun. Math. Comput. Chem. 2018, 80, 141–151. [Google Scholar]
- Bollobas, B. Extremal Graph Theory; Academic Press: London, UK, 1978. [Google Scholar]
- Feng, L.; Zhu, X.; Liu, W. Wiener index, Harary index and graph properties. Discr. Appl. Math. 2017, 223, 72–83. [Google Scholar] [CrossRef]
- Bondy, J.A. Properties of graphs with constraints on degrees. Stud. Sci. Math. Hung. 1969, 4, 473–475. [Google Scholar]
- Las Vergnas, M. Problèmes de Couplages et Problèmes Hamiltoniens en Thèorie des Graphes. Ph.D. Thesis, Université Paris VI CPierre et Marie Curie, Paris, France, 1972. [Google Scholar]
- Chartrand, G.; Kapoor, S.; Lick, D. n-Hamiltonian graphs. J. Comb. Theory 1970, 9, 308–312. [Google Scholar] [CrossRef] [Green Version]
- Shang, Y. On the hamiltonicity of random bipartite graphs. Indian J. Pure Appl. Math. 2015, 46, 163–173. [Google Scholar] [CrossRef]
- Chvátal, V. On Hamiltons ideals. J. Comb. Theory Ser. B 1972, 12, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Bauer, D.; Broersma, H.J.; van den Heuvel, J.; Kahl, N.; Nevo, A.E.; Schmeichel, D.; Woodall, R.; Yatauro, M. Best monotone degree conditions for graph properties: A Survey. Graphs Comb. 2015, 31, 1–22. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, G.; Wang, S.; Du, J.; Gao, M.; Das, K.C.; Shang, Y. Sufficient Conditions for a Graph to Be ℓ-Connected, ℓ-Deficient, ℓ-Hamiltonian and ℓ−-Independent in Terms of the Forgotten Topological Index. Mathematics 2022, 10, 1802. https://doi.org/10.3390/math10111802
Su G, Wang S, Du J, Gao M, Das KC, Shang Y. Sufficient Conditions for a Graph to Be ℓ-Connected, ℓ-Deficient, ℓ-Hamiltonian and ℓ−-Independent in Terms of the Forgotten Topological Index. Mathematics. 2022; 10(11):1802. https://doi.org/10.3390/math10111802
Chicago/Turabian StyleSu, Guifu, Shuai Wang, Junfeng Du, Mingjing Gao, Kinkar Chandra Das, and Yilun Shang. 2022. "Sufficient Conditions for a Graph to Be ℓ-Connected, ℓ-Deficient, ℓ-Hamiltonian and ℓ−-Independent in Terms of the Forgotten Topological Index" Mathematics 10, no. 11: 1802. https://doi.org/10.3390/math10111802
APA StyleSu, G., Wang, S., Du, J., Gao, M., Das, K. C., & Shang, Y. (2022). Sufficient Conditions for a Graph to Be ℓ-Connected, ℓ-Deficient, ℓ-Hamiltonian and ℓ−-Independent in Terms of the Forgotten Topological Index. Mathematics, 10(11), 1802. https://doi.org/10.3390/math10111802