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Abstract: Graphs of order n with fault-tolerant metric dimension n have recently been character-
ized.This paper points out an error in the proof of this characterization. We show that the complete
multipartite graphs also have the fault-tolerant metric dimension n, which provides an infinite family
of counterexamples to the characterization. Furthermore, we find exact values of the metric, edge
metric, mixed-metric dimensions, the domination number, locating-dominating number, and metric-
locating-dominating number for the complete multipartite graphs. These results generalize various
results in the literature from complete bipartite to complete multipartite graphs.
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1. Introduction

This paper takes only finite, connected and simple graphs into account. The reader is
referred to Section 2 for undefined notations and terminologies.

The concept of metric dimension was first defined independently by Slater in 1975 [1],
and later, it was discussed in 1976 by Harary and Melter [2]. It has been studied widely since
then. Metric dimension has diverse applications in fields such as graph theory [3,4], robot
navigation [5], chemistry [6], telecommunication networks [7], combinatorial optimization [8],
geographical routing protocols [9], sociology [10] and many more.

The metric dimension has been studied extensively since it has been introduced. For
instance, in [11–21], the authors studied the metric dimension of certain infinite families
of graphs. Other variants of metric dimension such as the edge metric and the mixed-
metric dimension of graphs have been defined by Kelenc et al. [22] and Kelenc et al. [23],
respectively. The edge metric dimension for various families of graphs has been studied
in [24–27], among others. The mixed metric dimension for various families of graphs has
been investigated in [28–30], among others. The fault-tolerant metric dimension of graphs
has been introduced by Hernando et al. [31] back in 2008 as a natural extension of the
metric dimension. The reader is referred to [32–35] for various mathematical properties of
fault-tolerant resolvability in graphs.

We refer the interested readers to the book by Henning et al. [36], which provides, until
1980, a brief overview of the results regarding domination in graphs. Haynes et al. [37]
considered trees for their total domination and the binary location-domination numbers.
Minimum `-locating-dominating as well as `-identifying sets/representations in chains and
cyclic graphs have been constructed by Charon et al. [38]. Sharp upper and lower bounds
on the minimality of `-locating-dominating sets for general graph were also found. For
further reading on these contemporary domination-related parameters, we refer to [39,40].
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Salter [41] and Seo et al. [42,43] introduced the concepts of the open-neighborhood
location-domination number and the fault-tolerant location-domination number, respectively,
and found results on these parameters for trees. The location-domination number for certain
classes of convex polytopes was investigated recently by Raza et al. [8] and Simić et al. [44].
They found its exact values for some families of convex polytopes and tight upper bounds
were found for other families. The reader is suggested to read [40,45–47] for more details on
these domination-related graph-theoretic parameters. Generalized Petersen graphs are of
prime importance in graph theory and they provide counterexamples to many graph-theoretic
conjectures. They were considered by a number of researchers in [48–52] for their parameters
related to domination in graphs.

Taking the extensive literature on the resolvability- and domination-related parameters of
graphs into account, in this paper, we find exact values of the metric, edge metric, fault-tolerant
metric, and mixed metric dimensions of complete multipartite graphs. We also compute
the domination number, locating-dominating number, and the metric-locating-dominating
number of the complete multipartite graphs. In particular, we show that the fault-tolerant
metric dimension of n-vertex complete multipartite graphs is n. This, in turn, provides an
infinite family of counterexamples to Theorem 7 [53] by Raza et al., who showed that the
complete graphs are the only graphs with fault-tolerant metric dimension n. Section 3.2 points
out an error in the proof of Theorem 7 [53] by Raza et al. Other results generalize various
results in the literature from complete bipartite to complete multipartite graphs.

2. Preliminaries

A graph is an ordered pair Γ(VΓ, EΓ), where VΓ denotes the point/vertex set and EΓ
the line/edge set. Let the non-adjacency (resp. adjacency) of a pair of vertices y, z ∈ VΓ
be denoted by y � z (resp. y ∼ z), implying that yz /∈ EΓ (resp. yz ∈ EΓ). A graph
Γ(VΓ, EΓ) is said to be finite if VΓ is a finite set. An edge is called a loop if its end-vertices
are the same. Two edges are said to be multiedges if they have the same end-vertices. For
y ∈ VΓ, the open (resp. close) neighborhood of y is N (y) = {z ∈ VΓ | yz ∈ EΓ} (resp.
N [y] = {y} ∪ {z ∈ VΓ | yz ∈ EΓ}). The number | N (y) |:= degΓ(y) is known to be the
degree of y. Contextual understanding of Γ in the text tends to omit Γ from notations VΓ,
degΓ(y) and EΓ. A graph is said to be connected if every pair of vertices are connected by a
path. It is called undirected if none of its edges has some orientation. Therefore, the binary
relation on vertices ‘being adjacent’ in an undirected graph is symmetric. A graph is said to
be simple if it has no loops or multiedges.

A complete graph Kn is an n-vertex graph whose vertices are pairwise adjacent. An
independent set I ⊂ VΓ in a graph Γ, is a set of mutually disjoint non-adjacent vertices
in Γ. A r-partite graph is a graph whose vertices are or can be partitioned into r different
independent sets. A complete r-partite graph is an r-partite graph in which there is an edge
between every pair of vertices from different independent sets. A complete r-partite graph
is usually denoted by Kt1,t2,...,tr . Let Tr be the rth partite set of Kt1,t2,...,tr such that ti :=| Ti |
(1 ≤ i ≤ r). Thus, alternatively, a complete r-partite graph is an r-partite graph such that
∀x ∈ Ti, ∃j 6= i, ∃y ∈ Tj, xy ∈ EΓ is satisfied. Note that if ti = 1 for 1 ≤ i ≤ r, then

Kt1,t2,...,tr = Kn such that
r
∑

i=1
ti = n. Thus, if we consider non-complete graphs, then we may

assume that 1 ≤ t1 ≤ t2 ≤ . . . ≤ tr such that t1 ≥ 1 and ti ≥ 2 for 2 ≤ i ≤ r. For more
notations and terminologies, we refer the book on molecular topology by Diudea et al. [54].
Note that simple graphs have important connection with mathematical chemistry, as described
by Joiţa and Jäntschi [55]. More rich literature on mathematical chemistry and chemical graph
theory can be found in [56,57].

The length of the shortest path between a pair y, z ∈ VΓ is said to be the distance d(y, z)
between them. Let Y = {yk}`k=1 ⊆ V(Γ) and x ∈ V(Γ). The distance representation rY(x)
is the vector

(
d(x, y1) . . . , d(x, y`)

)
of distances from x to yk (1 ≤ k ≤ `). If all vertices

of Γ have distinct distance representations corresponding to Y, the set Y is said to be a
resolving set. The metric dimension β(Γ) (or simply md) is the smallest cardinality of
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such a resolving set in Γ [1]. A resolving set of cardinality β(Γ) in Γ is said to be a metric
generator of Γ.

In order to explain the concept of a resolving set, let us take the example of the well-
known Petersen graph P, see Figure 1. The set S = {v1, v2, u3, u4} is a resolving set of P,
since all distance representations of vertices in V(P) \ S, i.e.,

rS(u1) = (1, 2, 2, 2); rS(u2) = (2, 1, 1, 2);

rS(u5) = (2, 2, 2, 1); rS(v3) = (1, 2, 1, 2);

rS(v4) = (1, 1, 2, 1); rS(v5) = (2, 1, 2, 2),

are all unique. However, if you observe the distance representations, then we can see that
removing the last component from each vector would also keep the representations unique.
This implies that the set R = S \ {u4} is also a resolving set. It can be shown that there
exists no resolving set of cardinality 2 in P. Thus, β(P) = 3.

Figure 1. The Petersen graph P.

Let Y be a resolving set. If Y′ = Y \ {y} is also a resolving set for any y ∈ Y, then Y
is called a fault-tolerant resolving set of Γ. Symbolized as β′(Γ), the fault-tolerant metric
dimension (or ftmd) [31] of Γ is the smallest cardinality of such kind of resolving set of Γ.
A fault-tolerant resolving set of cardinality β′(Γ) in Γ is said to be a fault-tolerant metric
generator of Γ. See more on distances in graphs in a book on this title by Buckley and
Harary [3].

The tree T in Figure 2 has β(T) = 10 and β′(T) = 14. The set P = (1, 2, 3, 4, . . . , 10) (resp.
Q = P ∪ {y, v, r, s}) forms the metric generator (resp. fault-tolerant metric generator) of T.
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Figure 2. The tree example T with β(T) = 10 and β′(T) = 14.

For y ∈ VΓ and f = ab ∈ EΓ, the vertex-edge metric/distance is determined as
d(y, f ) := min{d(a, y), d(b, y)}. A vertex y ∈ VΓ is known to resolve two edges f , g ∈ E(Γ)
if we have d(y, f ) 6= d(y, g). An edge-resolving set is a set Y = {yk}`k=1 ⊆ VΓ if all pairwise
edges are resolved by some yk ∈ Y (1 ≤ k ≤ `). Symbolized as βe(Γ), the edge metric
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dimension (or emd) [22] is the smallest cardinality of such a resolving set of Γ. An edge
resolving set of cardinality βe(Γ) in Γ is said to be an edge metric generator of Γ. On
the other hand, a vertex w ∈ VΓ is known to resolve y, z ∈ V ∪ E if d(w, y) 6= d(w, z) is
satisfied. A mixed-resolving set is a subset Y = {yk}`k=1 ⊆ V(Γ) for which a pair of two
elements of V ∪ E is resolved by some vertex of Y. Minimum cardinality βm(Γ) of such a
mixed-resolving set is known as the mixed-metric dimension (or mmd) [23] of Γ. A mixed
resolving set of cardinality βm(Γ) in Γ is said to be a mixed metric generator of Γ.

From the definition of an edge resolving set, we obtain that:

βm(Γ) ≥ max{β(Γ), βe(Γ)}. (1)

A vertex z ∈ N (y) for an arbitrary y ∈ VΓ is known as a maximal neighbor of y, if
N [y] ⊆ N [z]. Kelenc et al. [23] proved a result as follows:

Theorem 1. [23] For an n-vertex graph Γ, we have βm(Γ) = n if and only if every vertex of Γ has
a maximal neighbor.

A set L ⊂ VΓ satisfying L ∩N (y) 6= ∅ for every y ∈ VΓ \ L is known to dominate (i.e.,
a dominating set of) Γ. The smallest cardinality γ(Γ) of such a dominating set is known to
be the domination number of Γ. A dominating generator is simply a dominating set having
cardinality γ(Γ). For T ⊂ VΓ, a vertex y ∈ VΓ is known to dominate T if T ⊆ N (y). If, in
addition to being a dominating set, a set L has distinct distance representation respective to
vertices in L, it is known as a metric-locating-dominating (mld) set. Smallest cardinality
γmld(Γ) of an mld set is known to be the metric-location-domination number (mldn) [41].
Note that an mld set is both a resolving and a dominating set. Therefore, the mld number
creates an interconnection between resolvability and domination in graph. See the book by
Henning et al. [36] for more on the domination theory of graphs.

An alternative way of investigating a dominating set is by allocating 1 (resp. 0) to
y ∈ L (resp. y ∈ VΓ \ L). Given this, L is a dominating set of Γ if for any y ∈ VΓ the
sum of weights for closed neighborhoods is at least 1, i.e., | N [x] ∩ L |≥ 1. For L being
a dominating set, if in addition, it holds N (y) ∩ L 6= N (z) ∩ L for any pair y, z ∈ VΓ \ L,
we call L a locating-dominating (LD) set. The smallest cardinality of such an LD set is
symbolized as γl−d(Γ) and known as the LD number of Γ. An LD generator is an LD set of
cardinality γl−d(Γ). Note that we have γ(Γ) ≤ γl−d(Γ).

Next, the main results of this paper have been shown.

3. Resolvability-Related Parameters

This first section computes certain resolvability parameters, such as the metric dimen-
sion, the fault-tolerant metric dimension, the edge metric dimension, and the mixed metric
dimension of complete multipartite graphs.

3.1. Metric Dimension

This section computes the metric dimension of complete multipartite graphs.

Theorem 2. Let Kt1,t2,...,tr be the complete r-partite graph with 1 ≤ t1 ≤ t2 ≤ . . . ≤ tr and
r
∑

i=1
ti = n. Then:

β(Kt1,t2,...,tr ) =
r

∑
i=1

ti − r = n− r. (2)

Proof. First, we show the following two claims.

Claim 1. If r = 2, then β(Kt1,t2) = t1 + t2 − 2.

Proof of Claim 1. Assume T1 and T2 are partite sets of Kt1,t2 , having | T1 |= t1 and | T2 |= t2.
For any y ∈ T1 and z ∈ T2, we assume S = T1 ∪ T2 \ {y, z}. Note that S is a resolving
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set of Kt1,t2 , since rS(y) = (2, 2, . . . , 2︸ ︷︷ ︸
t1−1 times

, 1, 1, . . . , 1︸ ︷︷ ︸
t2−1 times

) and rS(z) = (1, 1, . . . , 1︸ ︷︷ ︸
t1−1 times

, 2, 2, . . . , 2︸ ︷︷ ︸
t2−1 times

). Since

rS(y) 6= rS(z), therefore, S is a resolving set. This implies that β ≤| S |= t1 + t2 − 2.

On the other hand, let x ∈ S such that x /∈ {y, z}. Let S′ = T1 ∪ T2 \ {x, y, z}. Assume,
without loss of generality, that x ∈ T2. Then rS′(z) = rS′(x) = (1, 1, . . . , 1︸ ︷︷ ︸

t1−1 times

, 2, 2, . . . , 2︸ ︷︷ ︸
t2−2 times

). Since

x was arbitrary and S′ is not a resolving set, we obtain that x must belong to S′. This
implies that there is no resolving set of cardinality t1 + t2 − 3 in Kt1,t2 , and thus, we have
β(Kt1,t2) ≥ t1 + t2 − 2. This complete the proof.

Claim 2. If r = 3, then β(Kt1,t2,t3) = t1 + t2 + t3 − 2.

Proof of Claim 2. Let T1, T2 and T3 be three partite sets such that |T1| = t1 and |T2| = t2
and |T3| = t3. Assume that R = T1 ∪ T2 ∪ T3 \ {x, y, z}, for arbitrary x ∈ T1, y ∈ T2
and z ∈ T3. Note that R is a resolving set as rR(x) 6= rR(y) 6= rR(z), where rR(x) =
( 2, . . . , 2︸ ︷︷ ︸

t1−1 times

, 1, . . . , 1︸ ︷︷ ︸
t2−1 times

, 1, . . . , 1︸ ︷︷ ︸
t3−1 times

), rR(y)= ( 1, . . . , 1︸ ︷︷ ︸
t1−1 times

, 2, . . . , 2︸ ︷︷ ︸
t2−1 times

, 1, . . . , 1︸ ︷︷ ︸
t3−1 times

) and rR(y)

= ( 1, . . . , 1︸ ︷︷ ︸
t1−1 times

, 1, . . . , 1︸ ︷︷ ︸
t2−1 times

, 2, . . . , 2︸ ︷︷ ︸
t3−1 times

). Thus, we have β ≤ |R| = t1 + t2 + t3 − 3.

For arbitrary vertex w ∈ R where w /∈ {x, y, z}, let R′ = T1 ∪ T2 ∪ T3 \
{w, x, y, z}. Without loss of generality, we assume that w ∈ T1, then rR′(x) = rR′(w) =
( 2, . . . , 2︸ ︷︷ ︸

t1−2 times

, 1, . . . , 1︸ ︷︷ ︸
t2−1 times

, 1, . . . , 1︸ ︷︷ ︸
t3−1 times

). This shows that R′ is not a resolving set. Since w was arbi-

trary, we see that there is no resolving set of cardinality t1 + t2 + t3 − 4. This implies that
β(Kt1,t2,t3) ≥ t1 + t2 + t3 − 3. Combining both inequalities, we obtain the result.

For general r, we apply induction on r. By Claims 3.1 and 3.1, the result is true for
r = 2 and r = 3, respectively. For the induction step, assume that (2) holds for r = k. Now,
we show that this is true for r = k + 1.

Let Ti (1 ≤ i ≤ r) be the ith partite set with |Ti| = ti. Since Equation (2) holds for r = k,
we obtain that:

β(Kt1,t2,...,tk ) =
k

∑
i=1

ti − k,

and that there exists a minimum resolving set R with | R |=
k
∑

i=1
ti − k. Note that R must

contain ti − 1 vertices from Ti for every 1 ≤ i ≤ k; otherwise, if R would contain two
vertices from the same partite set, then they would have the same distance representations.
Furthermore, this would contradict the fact that R is a resolving set. For i = 1, . . . , k, let
Ti \ R = {xi} such that V(Kt1,t2,...,tk ) \ R = {x1, . . . , xk}. Note that for every i = 1, . . . , k,
we have:

rR(xi) = (c1, c2, . . . , ci, . . . , ck) where

cj = (1, 1, . . . , 1︸ ︷︷ ︸
tj−1 times

) for i 6= j = 1, . . . , k and (3)

ci = (2, 2, . . . , 2︸ ︷︷ ︸
ti−1 times

).

Clearly, rR(xi) 6= rR(xj), where 1 ≤ i, j ≤ k and i 6= j.
Now by adding (k + 1)th partite set, say, Tk+1 to Kt1,...,tk , we obtain Kt1,...,tk ,tk+1 . Let R′

be the union of R and any of the tk+1 − 1 vertices of Tk+1. Assume that Tk+1 \ R′ = {xk+1}.
Then, we have rR′(xi) = (c1, c2, . . . , ci, . . . , ck, ck+1), where cj = (1, 1, . . . , 1︸ ︷︷ ︸

tj−1 times

) for i 6= j =



Mathematics 2022, 10, 1815 6 of 16

1, . . . , k + 1 and ci = (2, 2, . . . , 2︸ ︷︷ ︸
ti−1 times

). Then, with (3), we obtain that rR′(xi) 6= rR′(xj), where

1 ≤ i, j ≤ k + 1 and i 6= j. This shows that R′ is a resolving set and its minimum since R is
minimum. Thus:

β(Kt1,t2,...,tk+1) =
k+1

∑
i=1

ti − (k + 1).

By the induction hypothesis, the proof is finished.

The following example illustrates an application of Theorem 2.

Example 1. Let K2,3,5 be the complete multipartite graph as depicted in Figure 3. Then, its seven
black vertices form a metric generator. By Theorem 2, we obtain that β(K2,3,5) = 10− 3 = 7.

Figure 3. The complete multipartite graph K2,3,5 with a metric generator (black vertices).

It is important to remark the following:

Remark 1. Note that Theorem 2 generalizes a result of Saputro et al. [58], who computed bounds
on the metric dimension of complete multipartite graphs.

3.2. Fault-Tolerant Metric Dimension

In Theorem 7 [53], Raza et al. characterized n-vertex graphs with β′(Γ) = n. In
particular, they showed the complete graphs are the only graphs satisfying β′(Γ) = n. They
used the classification of n-ordered graphs with β(Γ) = n− 1, together with

β′(Γ) ≥ β(Γ) + 1, (4)

to show Theorem 7 [53]. However, relationship in β(Γ) ≤ n− 1 does not ensure a relation-
ship in (4). This fact makes the proof of Theorem 7 [53] invalid.

The next theorem proves that the complete multipartite graphs has β′(Γ) = n, and
thus, providing an infinite family of counterexamples to Theorem 7 [53].

Theorem 3. Let Kt1,t2,...,tr be the complete r-partite graph with 1 ≤ t1 ≤ t2 ≤ . . . ≤ tr and
r
∑

i=1
ti = n. Then:

β′(Kt1,t2,...,tr ) =
r

∑
i=1

ti = n.
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Proof. By definition of the fault-tolerant metric dimension, we know that 2 ≤ β′(Γ) ≤ n
for any connected graph Γ on n vertices. Thus, we only need to show that:

β′(Kt1,t2,...,tr ) ≥ n =
r

∑
i=1

ti.

On the contrary, we assume that this is not true. This implies that there exists a
fault-tolerant resolving set, say F, on n − 1 vertices. Then, let us assume that we have
V(Kt1,t2,...,tr ) \ F = {x}. By definition of a fault-tolerant resolving set, the deletion of an
arbitrary vertex in F leaves a set which is also a resolving set. Without loss of generality, we
assume that x ∈ T, i.e., an arbitrary partite set. Then, we delete any other vertex from T, say
y, such that x 6= y and let F′ = F \ {y} = V(Kt1,t2,...,tr ) \ {x, y}. Note that rF′(x) = rF′(y).
This shows that F′ is not a resolving set. Then, it implies that F is not a fault-tolerant
resolving set, which causes a contradiction. Thus, there exists no fault-tolerant resolving
set of cardinality n− 1. This completes the proof.

The following example illustrates an application of Theorem 3.

Example 2. Let K2,3,5 be the complete multipartite graph as given in Figure 4. Then, by Theorem 3,
all of its vertices form a fault-tolerant metric generator and we obtain that β(K2,3,5) = 10.

Figure 4. The complete multipartite graph K2,3,5 with the fault-tolerant metric generator (all vertices).

The following remark provides additional importance of Theorem 3.

Remark 2. Note that Proposition 3 provides a counter example to Theorem 7 [53]. This shows that
the characterization in Theorem 7 [53] is incorrect.

Based on this remark, we raise the following open problem.

Problem 1. Let Γ be a connected graph on n vertices such that:

β′(Γ) = n. (5)

Are the complete graphs and the complete multipartite graphs the only graphs for which (5) holds? If
yes, then characterize this extremal case, and if no, then provide additional examples satisfying (5).

3.3. Edge Metric Dimension

In this subsection, we determine the exact value of the edge metric dimension of the
complete multipartite graphs.
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Theorem 4. Let Kt1,t2,...,tr be the complete r-partite graph with 1 ≤ t1 ≤ t2 ≤ . . . ≤ tr and
r
∑

i=1
ti = n. Then:

βe(Kt1,t2,...,tr ) =
r

∑
i=1

ti − r = n− r.

Proof. Let Ti (1 ≤ i ≤ r) be the ith partite set with |Ti| = ti. First, we show that

βe(Kt1,t2,...,tr ) ≥
r
∑

i=1
ti − r. In order to show that, first, we need to prove that there ex-

ists an edge resolving set of cardinality
r
∑

i=1
ti − r in Kt1,t2,...,tr . Let xi ∈ Ti be an arbitrary

vertex in Ti, where 2 ≤ i ≤ r. Assume S = V(Kt1,t2,...,tr ) \ {x1, x2, . . . , xr} such that

| S |=
r
∑

i=1
ti − r. We show that S is an edge resolving set in Kt1,t2,...,tr . Note that we have

V(Kt1,t2,...,tr ) \ S = {x1, x2, . . . , xr}.
Next, we assume that one of the partite sets contains at least two elements of xi (1 ≤

i ≤ r). Without loss of generality, we assume Y to be that set and x1, x2 ∈ Y. Let A be
another partite set different from Y. For any x ∈ A such that x ∈ S, consider the edges
e = xx1 and f = xx2. Note that both e and f have distances 0 from x and one from any
other element in S. Thus, both e and f have the same edge distance representations and
this causes a contradiction to the fact that S is an edge resolving set. We may proceed with
other partite sets in a similar way and it follows that any edge resolving set must contain
all but (maybe) one element of every partite set. Since there exactly r number of partite sets,

we obtain that βe(Kt1,t2,...,tr ) ≥
r
∑

i=1
ti − r.

On the contrary, let xi ∈ Ti where 1 ≤ i ≤ r and let S = V(Kt1,t2,...,tr ) \ {x1, x2, . . . , xr}.
It can easily be checked that S is an edge resolving set as any two edges in Kt1,t2,...,tr have

different edge distance representations. Therefore, we obtain that βe(Kt1,t2,...,tr ) ≤
r
∑

i=1
ti − r.

The two inequalities complete the proof.

The following example explains an application of Theorem 4.

Example 3. Let K2,3,5 be the complete multipartite graph as given in Figure 3. Then, its seven black
vertices form an edge metric generator, i.e., a minimum edge resolving set of K2,3,5. By Theorem 2,
we obtain that βe(K2,3,5) = 10− 3 = 7.

The following remark gives additional importance of Theorem 4.

Remark 3. It is worthy to mention that Theorem 4 generalizes Kelenc et al. (Remark 2 [22]) from
the complete bipartite graphs to the complete multipartite graphs.

3.4. Mixed Metric Dimension

This section provides a formula for the mmd of complete multipartite graphs. It gener-
alizes a result of Kelenc et al. [23], who computed the mmd of the complete bipartite case.

The following result calculates the mmd of the complete r-partite graph.

Theorem 5. Let Kt1,t2,...,tr be the complete r-partite graph with 1 ≤ t1 ≤ t2 ≤ . . . ≤ tr and
r
∑

i=1
ti = n. Then:

βm(Kt1,t2,...,tr ) =


r
∑

i=1
ti − 1, if ti = 2 for some i;

r
∑

i=1
ti − r, Otherwise.
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Proof. By Theorems 2 and 4 and Equation (1), We obtain that βm(Kt1,t2,...,tr ) ≥
r
∑

i=1
ti − r.

Let Ti (1 ≤ i ≤ r) be the ith partite set with |Ti| = ti. First, we assume that t1 = 2.

Suppose βe(K2=t1,t2,...,tr ) =
r
∑

i=1
ti − 1 and assume L is the mixed resolving set of the smallest

cardinality of K2,t2,...,tr . Notice that any edge resolving or simply resolving sets have to
comprise ti − 1 elements of Ti, where 1 ≤ i ≤ r. We deduce that | T1 ∩ L |= 1 and
|Ti ∩ L| = ti − 1 for i ∈ {2, 3, . . . , r}. Let y ∈ T1 ∩ L and z ∈ Ti ∩ L for i ∈ {2, 3, . . . , r}. Then,
d(y, y) = 0 and d(y, z) = 1. In addition, since g = yz ∈ EKt1,t2,...,tr

, we have the vertex-edge
distance d(g, y) = 0 and d(g, z) = 0. This shows that both y and g are not distinguished by
L, which then leads to a contradiction to the minimality of L. A similar argument holds if
any of the ti = 2 for 2 ≤ i ≤ r. This shows first part of the result by using Theorem 1.

Next, we assume that ti ≥ 3 for 1 ≤ i ≤ r. Assume L to be a minimum set comprising

the
r
∑

i=1
ti − r element in a way it considers all elements of Kt1,t2,...,tr except one from every

partite set. Note that L must distinguish all vertices/edges pairs of Kt1,t2,...,tr , since, by
assumption, L is a minimum resolving and edge-resolving set. However, as d(g, y) = {0, 1}
for any g ∈ EKt1,t2,...,tr

and y ∈ Kt1,t2,...,tr , and there exists at least one element in L which is
at distance 2 from other vertices of Kt1,t2,...,tr since ti ≥ 3 for 1 ≤ i ≤ r, it is convenient to
see that L distinguishes all vertex-edge pair of Kt1,t2,...,tr . This implies the minimality of L

with cardinality
r
∑

i=1
ti − r and this completes the result.

The following example illustrates an application of Theorem 5.

Example 4. Let K3,3,5 be the complete multipartite graph as depicted in Figure 5. Then, its eight
black vertices form a mixed metric generator. By Theorem 5, we obtain that β(K3,3,5) = 11− 3 = 8.

Figure 5. The complete multipartite graph K3,3,5 with a mixed metric generator (black vertices).

It is important to remark the following:

Remark 4. It is worth noting that Theorem 5 generalizes Proposition 4.2 [23] by Kelenc et al. [23].

4. Domination-Related Parameters

This section computes certain domination-related parameters, such as the domination
number and the locating-dominating number of complete multipartite graphs.

4.1. Domination Number

The main purpose of this subsection is to calculate the domination number of complete
multipartite graphs. The following theorem provides the exact value of the domination number.



Mathematics 2022, 10, 1815 10 of 16

Theorem 6. Let Kt1,t2,...,tr be the complete r-partite graph with 1 ≤ t1 ≤ t2 ≤ . . . ≤ tr and
r
∑

i=1
ti = n. Then

γ(Kt1,t2,...,tr ) =

{
1, if t1 = 1;
2, Otherwise.

Proof. Let Ti be the ith partite set having size ti, i.e., |Ti| := ti.

Case 1: Assume that t1 = 1.
This implies that T1 has only one vertex, say, x. Then, D = {x} is a dominating set,

as x is adjacent to all the vertices in Ti (2 ≤ i ≤ r) i.e., |D⋂
N(x)| ≥ 1. This implies that

γ(K1,t2,...,tr ) ≤ 1. By definition, for any connected graph Γ, γ(Γ) ≥ 1. This shows that
γ(K1,t2,...,tr ) = 1.

Case 2: Assume that 2 ≤ t1 ≤ t2 ≤ . . . ≤ tr.
This implies that every partite set has at least two vertices. Choose a vertex x from

any partite set. Without loss of generality, we may take x ∈ T1, such that D = {x}. Since
|T1| ≥ 2, it contains at least one other vertex, say y ∈ T1. Then |D⋂

N(y)| = 0 as y � x
in T1. This implies that D is not a dominating set of Kt1,t2,...,tr . Since T1 was an arbitrary
choice, we obtain that γ(Kt1,t2,...,tr ) ≥ 2.

On the other hand, let us take two elements from different partite sets in Kt1,t2,...,tr

in D. Without loss of generality, we assume that D = {x, y} where x ∈ T1 and y ∈ T2.
Then, all the vertices in Ti (3 ≤ i ≤ r) are adjacent to both x and y, i.e., |D⋂

N(u)| ≥ 1 for
any u ∈ Ti (3 ≤ i ≤ r). Moreover, open neighborhoods of vertices other then x and y in
T1 and T2, respectively, also have common elements with D which are either x or y. This
implies that |D⋂

N(x′)| = 1 for arbitrary x′ ∈ T1 such that x 6= x′ and |D⋂
N(y′)| = 1

for any y′ ∈ T2 such that y 6= y′. This shows that D is a dominating set of Kt1,t2,...,tr and
γ(Kt1,t2,...,tr ) ≤ 2. Combining it with other inequality, we obtain γ(Kt1,t2,...,tr ) = 2. This
completes the proof.

The following example illustrates an application of Theorem 6.

Example 5. Let K2,3,5 be the complete multipartite graph as depicted in Figure 6. Then, its two red
vertices form a minimum dominating set. By Theorem 6, we obtain that γ(K3,3,5) = 2.

Figure 6. The complete multipartite graph K2,3,5 with a minimum dominating set (red vertices).

The next subsection studies the locating-dominating number of graphs.

4.2. Locating-Dominating Number

First, we give the following characterization.
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Theorem 7. Let Γ be an n-vertex connected graph with n ≥ 2. Then, Γ = Kn if and only if
γl−d(Γ) = n− 1.

Proof. First, we assume that γl−d(Γ) = n− 1 and show that Γ is a complete graph. Since
γl−d(Γ) = n− 1, it implies that there exists a locating-dominating set of cardinality n−
1. Let V(Γ) = {x1, x2, . . . , xn}. Without loss of generality, we may assume that S =
{x1, x2, . . . , xn−1}. Then, we have that xn ∈ V \ S.

We will show that S
⋂

N[xn] = S. On the contrary, we suppose that S
⋂

N[xn] 6= S.
This implies that N[xn] 6= S such that |N[xn]| < n− 1. Then, it implies that there exists
an x′ ∈ V(Γ) such that x′ 6= xn and x′ � xn. In that case, S \ {x}, where x ∈ {xi : 1 ≤
i ≤ n − 1} is a locating-dominating set of Γ, as we have S

⋂
N[xn] 6= S

⋂
N[x], since

S
⋂

N[xn] = S \ {x} and S
⋂

N[x] = S. This contradicts the minimality of S. Therefore,
S
⋂

N[xn] = S, which implies that xn is adjacent to all the xi, where 1 ≤ i ≤ n− 1. Since xn
was an arbitrary choice, we obtain that Γ = Kn.

For necessity, we assume that Γ = Kn. Then, any subset of V(Kn) on n− 1 vertices
is a locating-dominating set of Kn. This gives γl−d(Kn) ≤ n− 1. On the other hand, note
that any subset of V(Kn) on n− 2 elements can never be a binary locating-dominating set,
as the two elements in S \ V(Kn) would have the same intersections. This implies that
γl−d(Kn) ≥ n− 1. This shows that γl−d(Kn) = n− 1, which completes the proof.

The next proposition computes the exact value of the locating-dominating number of
the complete bipartite graphs.

Proposition 1. Let Ka,b be the complete bipartite graph, where 1 ≤ a ≤ b. Then γl−d(Ka,b) =
a + b− 2.

Proof. Let (A, B) be the bipartition of the vertex set of Ka,b such that |A| = a and |B| = b.
Note that the induced subgraphs on A and B are the empty graphs Ka and Kb, respectively.
Let x ∈ A and y ∈ B be the arbitrary vertices in A and B, respectively. Note that the set
S = A \ {x}⋃ B \ {y} is a binary locating-dominating set of Ka,b as for both vertices x
and y, the sets S ∩ N[x] = B \ {y} and S ∩ N[y] = A \ {x} are mutually disjoint. Since
|S| = a + b− 2, we obtain that γl−d(Ka,b) ≤ a + b− 2.

Next, we prove the lower bound γl−d(Ka,b) ≥ a+ b− 2. We will prove this by showing
that γl−d(Ka,b) cannot be a + b− 3. On contrary, we suppose that γl−d(Ka,b) = a + b− 3.
This implies that there exists a locating-dominating set S of cardinality a + b− 3. Let x, y,
and z be the three vertices in V \ S. We distinguish the following possible cases for the
vertices x, y and z:

Case 1: All the three vertices, x, y, and z, belong to one partite set.
Without loss of generality, we may assume that x, y, and z, belong to A. Note that

S ∩ N[x] = S ∩ N[y] = S ∩ N[z] = B, which causes a contradiction to the fact any two such
intersections must be disjointed. This suggests the following case:

Case 2: Either x, y, or z belongs to a partite set different from the other two vertices.
Without loss of generality, we may assume that x ∈ A and y, z ∈ B. Then, S ∩

N[y] = S ∩ N[z] = A, which again causes a contradiction that S preserves to be a locating-
dominating set.

Altogether, we obtain that S must contain exactly a + b− 2 vertices, which completes
the proof.

The next proposition computes the exact value of the locating-dominating number of
the complete tripartite graphs.

Proposition 2. Let Ka,b,c be the complete tripartite graph with 1 ≤ a ≤ b ≤ c. Then, γl−d(Ka,b,c) =
a + b + c− 3.
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Proof. Let (A, B, C) be the tripartition of V(Ka,b,c), such that |A| = a, |B| = b and |C| = c.
For arbitrary vertices x ∈ A, y ∈ B and z ∈ C, let S = A \ {x}⋃ B \ {y}⋃C \ {z}. Note
that S is a locating-dominating set of Ka,b,c, since S

⋂
N[x] = B \ {y}⋃C \ {z}, S

⋂
N[y] =

A \ {x}⋃C \ {z} and S
⋂

N[z] = A \ {x}⋃ B \ {y} are non-empty and mutually disjoint.
Thus, we obtain that γl−d(Ka,b,c) ≤ |S| = a + b + c− 3.

In order to complete the proof, we need to show that γl−d(Ka,b,c) ≥ a + b + c − 3.
We show it by proving that γl−d(Ka,b,c) > a + b + c − 4. On contrary, we assume that
γl−d(Ka,b,c) = a + b + c− 4. Thus, there exists a locating-dominating set of cardinality four
and let S be that set. Let V(Ka,b,c) \ S = {w, x, y, z}. We distinguish the following possible
cases for the vertices w, x, y, and z as follows:

Case 1: All w, x, y, and z belong to one partite set.
Without loss of generality, we may assume that {w, x, y, z} ⊂ A. Assuming it would

generate S
⋂

N[w] = S
⋂

N[x] = S
⋂

N[y] = S
⋂

N[z] = B
⋃

C, which causes a contradic-
tion to the fact that S is a locating-dominating set of Ka,b,c.

Case 2: All w, x, y, and z belong to exactly two partite sets.
Subcase 2.1: One partite set is singleton.
Without loss of generality, we may assume that {w, x, y} ⊂ A and z ∈ B. Then, the

same intersections S
⋂

N[w] = S
⋂

N[x] = S
⋂

N[y] = C
⋃

B \ {z} cause a contradiction
that S is a binary-locating dominating set.

Subcase 2.2: Both partite sets have cardinality 2.
Similar to the previous cases, without loss of generality, we may assume that {w, x} ⊂

A and {y, z} ⊂ B. In this case, we obtain that S
⋂

N[w] = S
⋂

N[x] = C
⋃

B \ {y, z} and
S
⋂

N[y] = S
⋂

N[z] = C
⋃

A \ {w, x}, which is a contradiction again.
Case 3: All w, x, y, and z belong to exactly three partite sets.
Without loss of generality, we may assume that w ∈ A, x ∈ B, and {y, z} ∈ C.

Assuming this would generate S
⋂

N[z] = A \ {w}⋃ B \ {x} = S
⋂

N[y]. Thus, the two
intersections are not mutually disjoint which causes a contradiction.

Combining all the possible case, we find that S is not a locating-dominating set of Ka,b,c.
Since S was an arbitrary set of cardinality four, we obtain that γl−d(Ka,b,c) > a+ b+ c− 4 ≥
a + b + c− 3. This completes the proof.

Next, we show the main result of this subsection.

Theorem 8. Let Kt1,t2,...,tr be the complete r-partite graph with 1 ≤ t1 ≤ t2 ≤ . . . ≤ tr and
r
∑

i=1
ti = n. Then:

γl−d(Kt1,t2,...,tr ) =
r

∑
i=1

ti − r. (6)

Proof. We prove the result by applying induction on r, which is the number of partite sets
in Kt1,t2,...,tr . By Propositions 1 and 2, the result is true for r = 2 and r = 3, respectively.
Now, let the assertion be valid for r = k as an induction step. We show that the result is
true for r = k + 1 to complete the proof.

Let Ti (1 ≤ i ≤ r) be the ith partite set of Kt1,t2,...,tr , where |Ti| := ti. Since (8) holds for
r = k, we obtain that:

γl−d(Kt1,t2,...,tk ) =
k

∑
i=1

ti − k. (7)

This implies that there exists a minimum locating-dominating set of cardinality
k
∑

i=1
ti − k

in Kt1,t2,...,tk . Let S be the minimum locating-dominating set of cardinality
k
∑

i=1
ti − k. in

Kt1,t2,...,tk . Let U = {xi ∈ Ti : 1 ≤ i ≤ k} and S = V(Kt1,t2,...,tk ) \U, then S comprises ti − 1
elements from every Ti where 1 ≤ i ≤ r. Note that S is a locating-dominating set of Kt1,t2,...,tk ,
since S

⋂
N[xi] 6= S

⋂
N[xj] for 1 ≤ i < j ≤ k and S

⋂
N[xi] = S \ Ti 1 ≤ i ≤ k. Moreover,
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S is minimum as the inclusion of more than one vertices from any partite set Ti in S would
cause a contradiction, as the two vertices from the same partite set would have the same
intersections. Moreover, the minimality of S follows from (7), as S is a locating-dominating set.

Now, we add (k + 1)th partite set, say Tk+1, to Kt1,t2,...,tk to obtain Kt1,t2,...,tk ,tk+1 . For any
x′ ∈ Tk+1, let S′ = S

⋃{x′}. Note that S′ is a locating-dominating set of Kt1,t2,...,tk+1 since
S′
⋂

N[x′] 6= S′
⋂

N[xi] for 1 ≤ i ≤ k and S′
⋂

N[x′] = S′ \ Tk+1. Moreover, S′ is minimum

as S is minimum in Kt1,t2,...,tk . Since |S| =
k+1
∑

i=1
ti − (k + 1), we obtain that:

γl−d(Kt1,t2,...,tk+1) =
k+1

∑
i=1

ti − (k + 1).

By applying the induction hypothesis on r, the proof is finished.

The following example illustrates an application of Theorem 8.

Example 6. Let K2,3,5 be the complete multipartite graph as depicted in Figure 3. Then, its
seven black vertices form a minimum locating-dominating set. By Theorem 8, we obtain that
γl−d(K2,3,5) = 10− 3 = 7.

The next section studies an interaction between resolvability and domination of graphs.

5. An Interaction between Resolvability and Domination

The main purpose of this section is to study the metric-locating-dominating number of
complete multipartite graphs by using their locating-dominating and the resolvability structures.

Metric-Locating-Dominating Number

In this section, we compute the metric-locating-dominating number of complete
multipartite graphs.

First, we show the following lemma.

Lemma 1. Let Γ be a connected graph such that either β(Γ) = r = γ(Γ) or β(Γ) = r = γl−d(Γ).
Then, γmld(Γ) = r.

Proof. We divide our discussion into the following two cases:
Case 1: Assume β(Γ) = r = γ(Γ).
This implies that there exists a metric-locating-dominating set on r number of vertices,

since both the metric dimension and domination number equal to r. Moreover, such a
metric-locating-dominating number is minimum because there exists a minimum resolving
set and a minimum dominating set, both having cardinality r. This implies that γmld(Γ) = r.

Case 2: Assume β(Γ) = r = γl−d(Γ).
There exists a dominating set of cardinality r, since γl−d(Γ) = r. Moreover, Γ has a

minimum resolving set of cardinality r, since β(Γ) = r. Thus, there exists a metric-locating-
dominating set of cardinality r, say M. Note that M is minimum as the resolving set of
cardinality r is minimum in Γ. This shows that γmld(Γ) = r, which completes the proof.

By Lemma 1 and Theorems 8 and 2, we have the following corollary.

Theorem 9. Let Kt1,t2,...,tr be the complete r-partite graph with 1 ≤ t1 ≤ t2 ≤ . . . ≤ tr and
r
∑

i=1
ti = n. Then:

γmld(Kt1,t2,...,tr ) =
r

∑
i=1

ti − r.

The following example illustrates an application of Theorem 9.



Mathematics 2022, 10, 1815 14 of 16

Example 7. Let K2,3,5 be the complete multipartite graph as depicted in Figure 3. Then, its seven
black vertices form a minimum metric locating-dominating set. By Theorem 9, we obtain that
γmld(K2,3,5) = 10− 3 = 7.

Theorem 9 computes the metric-locating-dominating number of complete multipartite
graphs, which is the first result of its kind in the theory of metric-locating-dominating
number of graphs.

6. Conclusions

This paper studied the metric, fault-tolerant metric, edge metric, mixed-metric di-
mensions, the domination number, locating-dominating number, and metric-locating-
dominating number for complete multipartite graphs. These results generalize various
results in the literature from complete bipartite to complete multipartite graphs. Especially,
we showed that the fault-tolerant metric dimension of n-vertex complete multipartite
graphs is n. This, in turn, provides an infinite family of counterexamples to Theorem 7 [53]
by Raza et al., who showed that the complete graphs are the only graphs with fault-tolerant
metric dimension n. Section 3.2 points out an error in the proof of Theorem 7 [53] by
Raza et al.

In the future, the authors intend to study the following open problems on the fault-
tolerant resolvability of graphs:

Problem 2. Study graphs whose mixed metric dimension is smaller than the metric dimension.

Problem 3. Are there graphs whose fault-tolerant metric dimension is smaller than or equal to their
metric dimension?
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