
Citation: Wang, Y.; Wang, K.; Wang,

G. Neural Network Algorithm with

Dropout Using Elite Selection.

Mathematics 2022, 10, 1827. https://

doi.org/10.3390/math10111827

Academic Editor: Ezequiel

López-Rubio

Received: 26 April 2022

Accepted: 22 May 2022

Published: 26 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Neural Network Algorithm with Dropout Using Elite Selection
Yong Wang, Kunzhao Wang and Gaige Wang *

School of Computer Science and Technology, Ocean University of China, Qingdao 266100, China;
wangyong@ouc.edu.cn (Y.W.); wangkunzhao@stu.ouc.edu.cn (K.W.)
* Correspondence: wgg@ouc.edu.cn

Abstract: A neural network algorithm is a meta-heuristic algorithm inspired by an artificial neural
network, which has a strong global search ability and can be used to solve global optimization
problems. However, a neural network algorithm sometimes shows the disadvantage of slow con-
vergence speed when solving some complex problems. In order to improve the convergence speed,
this paper proposes the neural network algorithm with dropout using elite selection. In the neural
network algorithm with dropout using elite selection, the neural network algorithm is viewed from
the perspective of an evolutionary algorithm. In the crossover phase, the dropout strategy in the
neural network is introduced: a certain proportion of the individuals who do not perform well are
dropped and they do not participate in the crossover process to ensure the outstanding performance
of the population. Additionally, in the selection stage, a certain proportion of the individuals of the
previous generation with the best performance are retained and directly enter the next generation.
In order to verify the effectiveness of the improved strategy, the neural network algorithm with
dropout using elite selection is used on 18 well-known benchmark functions. The experimental
results show that the introduced dropout strategy improves the optimization performance of the
neural network algorithm. Moreover, the neural network algorithm with dropout using elite selection
is compared with other meta-heuristic algorithms to illustrate it is a powerful algorithm in solving
optimization problems.

Keywords: neural network algorithm; meta-heuristics; artificial neural network; global optimization;
dropout; elite selection

MSC: 92B20

1. Introduction

Optimization algorithms are applied to many fields to obtain the optimal results to
improve performance or reduce cost. Deterministic approaches need to use a large amount
of gradient information and are highly dependent on the selected initial point, which is
easy to fall into a local minimum [1–3]. However, meta-heuristic algorithms do not rely on
gradient information and are not easy to fall into local optimization [3–5], which shows
strong search-ability.

The meta-heuristic algorithm is the product of the combination of a random algorithm
and a local search algorithm. It mainly solves the global optimization problem by simulating
the evolution law of nature or the wisdom of the group [6,7]. To a certain extent, it can search
globally and find the approximate solution of the optimal solution. The process of a meta-
heuristic algorithm is mainly divided into the following steps [8,9]. (1) Randomly generate
candidate solutions as initial values. (2) Calculate the objective function values of the
initial values. (3) According to the existing information, update the candidate solutions by
crossover, mutation, and other methods to generate a new generation of candidate solutions.
(4) The new candidate solutions enter the next iteration until the shutdown criterion is
met. It is an iterative generation process. Through random initialization and crossover

Mathematics 2022, 10, 1827. https://doi.org/10.3390/math10111827 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10111827
https://doi.org/10.3390/math10111827
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3295-8972
https://doi.org/10.3390/math10111827
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10111827?type=check_update&version=1

Mathematics 2022, 10, 1827 2 of 17

and mutation of candidate solutions, the exploration and development of the whole search
space can be realized, and the optimal solution can be gradually searched [10,11].

Classical meta-heuristic algorithms include genetic algorithm (GA) [12], simulated
annealing (SA) [13], particle swarm optimization (PSO) [14–16], harmony search (HS) [17],
differential evolution (DE) [18,19], ant colony optimization (ACO) [20], and artificial bee
colony optimization (ABC) [21]. These algorithms follow the principle of a meta-heuristic
algorithm. For example, in a genetic algorithm, each independent variable is represented by
a gene, and each individual is represented by a chromosome. Starting from an initial popu-
lation, new chromosomes are generated through the process of chromosome crossover and
mutation. After calculating the fitness, the individuals with poor fitness are eliminated, so
as to promote the population evolution to produce better and better approximate solutions.

No meta-heuristic algorithm can be suitable for all types of optimization problems,
so new meta-heuristic algorithms are constantly proposed, such as the neural network
algorithm (NNA) [22], spotted hyena optimizer (SHO) [23], seagull optimization algorithm
(SOA) [24], tunicate swarm algorithm (TSA) [25], elephant herding optimization (EHO) [26],
sooty tern optimization algorithm (STOA) [27], chaotic neural network algorithm with
competitive learning (CCLNNA) [28], monarch butterfly optimization (MBO) [29,30], earth-
worm optimization algorithm (EWA) [31], and moth search algorithm (MSA) [32]. Fur-
thermore, in the literature [33], the Forest Optimization Algorithm (FOA) is proposed,
inspired by nature’s process in the forest and it shows quite good accuracy compared with
GA and PSO on the path generating four-bar mechanism in [34]. Additionally, the virus
optimization algorithm (VOA) is an iteratively population-based algorithm inspired by
the behavior of viruses attacking a living cell [35] and it is applied to the identification
of elastoplastic properties of materials [36]. All the algorithms provide new solutions for
solving different types of optimization problems.

Based on NNA, several improved algorithms are proposed and they are also applied
to the practical problems. NNA is applied to improve the overall competitiveness of the
single mixed refrigerant (SMR) process for synthetic natural gas (SNG) liquefaction, which
saves energy and cost [37] and it is used to optimize parameters of the Fractional-Order-
Proportional-Integral-Derivative (FOPID) controller [38]. An effective hybrid method
named TLNNA, based on teaching–learning-based optimization (TLBO) is proposed to
solve engineering optimization problems [39]. Grey wolf optimization with neural network
algorithm (GNNA) is proposed by combining the improved grey wolf optimizer (GWO)
and NNA, which significantly improves the performance [40]. A modified neural network
algorithm (M-NNA) is adopted as the optimization algorithm in the Complex Fracture
Network (CFN) optimization framework, with an optimization searching accuracy far
better than the original algorithm [41]. A new methodology based on the combination of
symbiosis organism search (SOS) and NNA is proposed for the optimal planning and oper-
ation of distributed generations (DGs) and capacitor banks (CBs) in the radial distribution
networks (RDNs), with the results obtained helping to improve the annual energy loss
mitigation and cost savings [42]. In the literature [43], a quasi-oppositional chaotic neural
network algorithm (QOCNNA) is developed by combining NNA with chaotic local search
(CLS) and quasi-oppositional-based learning (QOBL) approaches and it is more effective in
improving the performance of RDNs.

This paper proposes a global optimization algorithm called the neural network algo-
rithm with dropout using elite selection (DESNNA), which is a variant of NNA. NNA is an
algorithm inspired by an artificial neural network. In NNA, each individual is regarded
as a pattern solution. Firstly, the initial pattern solution and initial coefficient matrix are
generated, and the coefficient matrix is applied to all pattern solutions each time, which is
equivalent to the crossover operation between pattern solutions. However, the convergence
speed of NNA is slow and sometimes falls into local optimization in complex situations.
Therefore, the DESNNA is proposed to improve the convergence speed and performance
of NNA. The main contributions of this paper are as follows:

Mathematics 2022, 10, 1827 3 of 17

(1) NNA is analyzed from the perspective of an evolutionary algorithm, including
crossover, mutation, and selection processes, which correspond to every step of
NNA. It shows that NNA belongs to an evolutionary algorithm.

(2) In the crossover stage of the DESNNA, similar to dropout in the neural network,
the dropout strategy is applied to NNA: a certain proportion of the individuals are
dropped and do not participate in the crossover process, which ensures the superiority
of the individuals participating in the crossover process.

(3) In the selection process of the DESNNA, some individuals who performed well in
the previous generation are directly retained when updating the population, which
increases the optimization ability of the algorithm without losing the diversity of
the population.

The rest of this paper is organized as follows. The neural network algorithm is
introduced in Section 2. The proposed DESNNA is introduced in detail in Section 3. The
experiment and results of the DESNNA on the benchmark functions are presented in
Section 4 and the conclusion and future work are stated in Section 5.

2. Neural Network Algorithm
2.1. Artificial Neural Network

The artificial neural network (ANN) is a complex structure based on biological neurons.
ANN consists of neurons, which are simple processing units and weighted connections
between these neurons. A typical structure is a multilayer perceptron (MLP), as shown in
Figure 1. ANN receives a data set, starts the training process, and adjusts the connection
weights between neurons [44]. The artificial neural network with dropout makes the
activation value of a neuron stop working with a certain probability during the forward
propagation, which can make the model more generalized because it does not rely too
much on some local features [45–47]. The artificial neural network with dropout is shown
in Figure 2, in which the dotted circle represents the dropped neurons. ANN has many
advantages in the fields of medicine, robot, image processing, and so on [48–51]. The NNA
draws on the idea of ANN forward propagation and its weight matrix is updated in each
iteration [52,53].

Mathematics 2022, 10, x FOR PEER REVIEW 3 of 18

gence speed of NNA is slow and sometimes falls into local optimization in complex situ-
ations. Therefore, the DESNNA is proposed to improve the convergence speed and per-
formance of NNA. The main contributions of this paper are as follows:
(1) NNA is analyzed from the perspective of an evolutionary algorithm, including cross-

over, mutation, and selection processes, which correspond to every step of NNA. It
shows that NNA belongs to an evolutionary algorithm.

(2) In the crossover stage of the DESNNA, similar to dropout in the neural network, the
dropout strategy is applied to NNA: a certain proportion of the individuals are
dropped and do not participate in the crossover process, which ensures the superi-
ority of the individuals participating in the crossover process.

(3) In the selection process of the DESNNA, some individuals who performed well in
the previous generation are directly retained when updating the population, which
increases the optimization ability of the algorithm without losing the diversity of the
population.
The rest of this paper is organized as follows. The neural network algorithm is intro-

duced in Section 2. The proposed DESNNA is introduced in detail in Section 3. The ex-
periment and results of the DESNNA on the benchmark functions are presented in Section
4 and the conclusion and future work are stated in Section 5.

2. Neural Network Algorithm
2.1. Artificial Neural Network

The artificial neural network (ANN) is a complex structure based on biological neu-
rons. ANN consists of neurons, which are simple processing units and weighted connec-
tions between these neurons. A typical structure is a multilayer perceptron (MLP), as
shown in Figure 1. ANN receives a data set, starts the training process, and adjusts the
connection weights between neurons [44]. The artificial neural network with dropout
makes the activation value of a neuron stop working with a certain probability during the
forward propagation, which can make the model more generalized because it does not
rely too much on some local features [45–47]. The artificial neural network with dropout
is shown in Figure 2, in which the dotted circle represents the dropped neurons. ANN has
many advantages in the fields of medicine, robot, image processing, and so on [48–51].
The NNA draws on the idea of ANN forward propagation and its weight matrix is up-
dated in each iteration [52,53].

Input

Hidden

Output

Figure 1. Structure of an Artificial Neural Network. Figure 1. Structure of an Artificial Neural Network.

Mathematics 2022, 10, 1827 4 of 17Mathematics 2022, 10, x FOR PEER REVIEW 4 of 18

Input

Hidden

Output

Figure 2. Structure of an Artificial Neural Network with dropout.

2.2. The Introduction of Neural Network Algorithm
According to the NNA [22], a pattern solution is an array of 1 × D defined as

1 2[, , ,]Dx x x x= . The population of pattern solutions is a matrix with a size N × D,
which can be defined as

1 1 1
1 2
2 2 2
1 2

1 2

.

D

D

N N N
D

x x x
x x x

X

x x x

 =

(1)

The cost of each pattern solution can be obtained by a fitness function. For example,
the cost of the ith pattern solution is

1 2(, ,).i i i
i DC f x x x= (2)

In NNA, weights are a square matrix with the size N × N, defined as
1 2

11 21 11 1 1
1 2

12 22 22 2 2
1 2

1 2
1 2

[, , ,] .
pop

N
N

N
N

N

N
N N NNN N N

w w ww w w
w w ww w w

W W W W

w w ww w w

 = = =

(3)

NNA is described in two stages as the following.
(1) Initialization stage

Firstly, the number of the pattern solutions (N) and the maximum number of itera-
tions are set. Then the initial population containing N pattern solutions is randomly gen-
erated between LB and UB. The cost of each individual in the population is obtained by
the fitness function. The weight matrix is generated randomly, which satisfies the con-
straints:

1
1 1,2, , .

N

ij
j
w i N

=

= = ， (4)

(0,1) , 1, 2, , .ijw U i j N∈ = ， (5)

Figure 2. Structure of an Artificial Neural Network with dropout.

2.2. The Introduction of Neural Network Algorithm

According to the NNA [22], a pattern solution is an array of 1 × D defined as
x = [x1, x2, · · · , xD]. The population of pattern solutions is a matrix with a size N × D,
which can be defined as

X =

x1

1 x1
2 · · · x1

D
x2

1 x2
2 · · · x2

D
...

...
...

...
xN

1 xN
2 · · · xN

D

. (1)

The cost of each pattern solution can be obtained by a fitness function. For example,
the cost of the ith pattern solution is

Ci = f (xi
1, xi

2, · · · , xi
D). (2)

In NNA, weights are a square matrix with the size N × N, defined as

W = [W1, W2, · · · , WNpop] =

w1

1 w2
1 · · · wN

1
w1

2 w2
2 · · · wN

2
...

...
...

...
w1

N w2
N · · · wN

N

 =

w11 w21 · · · wN1
w12 w22 · · · wN2

...
...

...
...

w1N w2N · · · wNN

. (3)

NNA is described in two stages as the following.

(1) Initialization stage

Firstly, the number of the pattern solutions (N) and the maximum number of iterations
are set. Then the initial population containing N pattern solutions is randomly generated
between LB and UB. The cost of each individual in the population is obtained by the fitness
function. The weight matrix is generated randomly, which satisfies the constraints:

N

∑
j=1

wij = 1, i = 1, 2, · · · , N. (4)

wij ∈ U(0, 1), i, j = 1, 2, · · · , N. (5)

According to the cost, the target solution (XTarget) and the corresponding target weight
(WTarget) should be set.

Mathematics 2022, 10, 1827 5 of 17

(2) Cycle stage

Similar to the crossover process, the weight matrix multiplying pattern solutions
generates the new pattern solutions using the following equation:

XNew
j (t + 1) =

N

∑
i=1

wij(t)×Xi(t), j = 1, 2, · · · , N. (6)

Xi(t + 1) = Xi(t) + XNew
i (t + 1), i = 1, 2, · · · , N. (7)

where t is an iteration index. Then the weight matrix should be updated, following Equation (8):

Wi(t + 1) = Wi(t) + 2× rand× (WTarget(t)−Wi(t)), i = 1, 2, · · · , N. (8)

where the weight matrix (W) should always satisfy the constraints (4) and (5).
After the updating process, according to the modification factor β, check the bias con-

dition and choose to either perform the bias operator according to Equations (9) and (10) or
perform the transfer function operator by Equation (10). The Equation (9) is given below:

X(i, j) = LB + (UB− LB)× rand, i = 1, 2, · · · , Nb. (9)

where Nb = round(D × β) is the number of biased variables in the population of the new
pattern solution and j is a random integer between 0 and D. The Equation (10) is given below:

W(i, j) = U(0, 1), i = 1, 2, · · · , Nwb. (10)

where Nwb = round(N × β) is the number of biased variables in the updated weight matrix.
The transfer function operator makes new pattern solutions transfer from their positions
to another position to generate better solutions. The transfer function operator on pattern
solutions is defined as:

X∗i (t + 1) = Xi(t + 1) + 2× rand× (XTarget(t)− Xi(t)), i = 1, 2, · · · , N. (11)

The bias operator is similar to the mutation operator, which can prevent premature
convergence.

The cost of every pattern solution for the population is calculated and the minimum
is chosen as the optimal value. The target solution (XTarget) and the target weight (WTarget)
corresponding to the optimal value should be updated. Finally, β is reduced according to
Equation (12):

β(t + 1) = 0.99× β(t), t = 1, 2, · · · ,Max_iteration. (12)

If the stopping condition is satisfied, the NNA will stop. Otherwise, go back to the
beginning of the cycle stage. The process of NNA is as following Algorithm 1:

Algorithm 1. The implementation of the neural network algorithm (NNA).

01 Create random initial population X and weights W with constraints by Equations (4) and (5)
02 Calculate the cost of every pattern solution and set the target solution and target weight
03 For i = 1:max_iteration
04 Generate new pattern solutions Xt+1 by Equations (6) and (7)
05 Update the weights by Equation (8)
06 If rand ≤ β

07 Perform the bias operator for pattern solutions Xt+1 and weights Wt+1 by
Equations (9) and (10)
08 Else
09 Perform the transfer function operator on Xt+1 by Equation (11)
10 End if
11 Calculate the cost of every pattern solution and find the optimal solution and weight
12 Reduce the modification factor β by Equation (12)
13 End for

Mathematics 2022, 10, 1827 6 of 17

3. The Neural Network Algorithm with Dropout Using Elite Selection

In order to improve the convergence performance of NNA, the DESNNA is proposed.
This section is divided into three subsections, including viewing NNA from the perspective
of an evolutionary algorithm, the introduced dropout strategy in the DESNNA, and the
elite selection in the DESNNA.

3.1. NNA from the Perspective of Evolutionary Algorithm

Firstly, we view NNA from the perspective of an evolutionary algorithm. The main
steps of an evolutionary algorithm include initialization, crossover, mutation, and selection.
In NNA, each pattern solution is viewed as an individual of the population and, therefore,
the pattern solution matrix is seen as a population.

Similar to the crossover process, when generating new pattern solutions, the weight
matrix multiplies pattern solutions by Equation (6), which ties each pattern solution to-
gether. For instance, four pattern solutions generating the first new pattern solution can be
expressed as:

XNew
1 (t + 1) = w11X1(t) + w21X2(t) + w31X3(t) + w41X4(t). (13)

What can be seen from Equation (13) is that when the new pattern solution is generated,
the process of linear combination between individuals using the values of the weight matrix
is regarded as a crossover process. Figure 3 presents how NNA generates its new population
of pattern solutions.

Mathematics 2022, 10, x FOR PEER REVIEW 7 of 18

∑

∑

∑

∑

Pattern Solutions

1 11 12 1[, , ,]DX x x x=

2 21 22 2[, , ,]DX x x x=

3 31 32 3[, , ,]DX x x x=

4 41 42 4[, , ,]DX x x x=

11w

21w

31w

41w

2
newX

3
newX

4
newX

11 11 11 21 21 31 31 41 41
newx w x w x w x w x= + + +

Neurons

1
newX

Figure 3. Schematic view of generating new pattern solutions.

3.2. The Introduced Dropout Strategy in the DESNNA
In order to overcome the low convergence speed problem, the idea of dropout in the

neural network is applied to the crossover process. The principle of dropout in deep learn-
ing is to set a probability when samples are input into the neural network for training so
that each neuron has a certain probability of death and does not participate in the network
training. Dropout is similar to sexual reproduction in biological evolution. The power of
genes lies in the ability to mix rather than the ability of a single gene. Sexual reproduction
can not only pass down excellent genes but also reduce the joint adaptability between
genes.

Inspired by dropout in the neural network, in the crossover process of the DESNNA,
when calculating and generating new pattern solutions, the linear combination of differ-
ent individuals in the population confirms new pattern solutions. Then, 10% of individu-
als who do not perform well are dropped and do not participate in the process. In order
to achieve this, the pattern solutions that do not participate in the crossover process are
set to zero. The implementation of concrete details is reflected in the following Equations
(14) and (15):

() 0.dropX t = (14)

1
(1) () () , 1,2, , .

N
New
j ij i

i
X t w t X t j N

=

+ = × = (15)

where X1, X2, …, XN includes 10% of Xdrop. Therefore, after applying the dropout strategy
to NNA, the crossover process is improved from Equation (6) to Equations (14) and (15).
In this way, the individuals with poor performance corresponding to the pattern solutions
are set to zero, which is equivalent to them not participating in the crossover process. This
ensures the superiority of individuals in the crossover process and then ensures the supe-
riority of the whole population. Consequently, introducing the dropout strategy can im-
prove the convergence speed of the algorithm.

3.3. The Elite Selection in the DESNNA
To improve the convergence speed, the elite selection strategy is applied to the selec-

tion process. When calculating and generating new pattern solutions, the linear combina-
tion of different individuals in the population confirms new pattern solutions. Adding
new pattern solutions to the old pattern solutions obtains a new population. Then the cost
of every pattern solution of the new population is calculated, and then they are sorted. In
the selection process, the top 15% of individuals with the highest fitness are saved for the

Figure 3. Schematic view of generating new pattern solutions.

Resembling the mutation process, after checking the bias condition, the bias operator
for the new pattern solution or updated weight matrix by Equation (9) or Equation (10)
and the transfer function operator for pattern solution by Equation (11) perform random
offset operation, which is regarded as a mutation process. Similar to the selection process,
after calculating the cost of each pattern solution, the minimum is chosen as the optimal
value. In conclusion, the whole process of NNA corresponds to the framework of the
evolutionary algorithm.

3.2. The Introduced Dropout Strategy in the DESNNA

In order to overcome the low convergence speed problem, the idea of dropout in
the neural network is applied to the crossover process. The principle of dropout in deep
learning is to set a probability when samples are input into the neural network for training
so that each neuron has a certain probability of death and does not participate in the
network training. Dropout is similar to sexual reproduction in biological evolution. The
power of genes lies in the ability to mix rather than the ability of a single gene. Sexual

Mathematics 2022, 10, 1827 7 of 17

reproduction can not only pass down excellent genes but also reduce the joint adaptability
between genes.

Inspired by dropout in the neural network, in the crossover process of the DESNNA,
when calculating and generating new pattern solutions, the linear combination of different
individuals in the population confirms new pattern solutions. Then, 10% of individuals who
do not perform well are dropped and do not participate in the process. In order to achieve
this, the pattern solutions that do not participate in the crossover process are set to zero.
The implementation of concrete details is reflected in the following Equations (14) and (15):

Xdrop(t) = 0. (14)

XNew
j (t + 1) =

N

∑
i=1

wij(t)× Xi(t), j = 1, 2, · · · , N. (15)

where X1, X2, . . . , XN includes 10% of Xdrop. Therefore, after applying the dropout strategy
to NNA, the crossover process is improved from Equation (6) to Equations (14) and (15). In
this way, the individuals with poor performance corresponding to the pattern solutions
are set to zero, which is equivalent to them not participating in the crossover process.
This ensures the superiority of individuals in the crossover process and then ensures the
superiority of the whole population. Consequently, introducing the dropout strategy can
improve the convergence speed of the algorithm.

3.3. The Elite Selection in the DESNNA

To improve the convergence speed, the elite selection strategy is applied to the selection
process. When calculating and generating new pattern solutions, the linear combination
of different individuals in the population confirms new pattern solutions. Adding new
pattern solutions to the old pattern solutions obtains a new population. Then the cost
of every pattern solution of the new population is calculated, and then they are sorted.
In the selection process, the top 15% of individuals with the highest fitness are saved
for the next generation. Therefore, some of the better individuals are preserved in every
evolutionary process, which makes the level of the whole population higher. In this way,
the convergence performance of the algorithm is better. Meanwhile, the bias operator
and the transfer function operator are performed as usual without losing the diversity of
the population.

The process of the DESNNA is as following Algorithm 2:

Algorithm 2. The implementation of the neural network algorithm with dropout using elite
selection (DES-NNA).

01 Create random initial population X and weights W with constraints by Equations (4) and (5)
02 Calculate the cost of every pattern solution and set the target solution and target weight
03 For i = 1:max_iteration
04 10% of individuals with the worst fitness corresponding pattern solution Xworst is set 0
Generate new pattern solutions Xt+1 by Equations (14), (15) and (7)
05 Update the weights by Equation (8)
06 If rand ≤ β

07 Perform the bias operator for pattern solutions Xt+1 and weights Wt+1 by
Equations (9) and (10)
08 Else
09 Perform the transfer function operator on Xt+1 by Equation (11)
10 End if
11 Calculate the cost of every pattern solution and find the optimal solution and weight
12 Sort the cost of each pattern solution in the new population
13 Save the top 15% of individuals with the highest fitness to the next generation
14 Reduce the modification factor β by Equation (12)
15 End for

Mathematics 2022, 10, 1827 8 of 17

4. DESNNA for Global Optimization

In order to verify the performance of the DESNNA in solving numerical optimization,
18 benchmark functions extracted from the literature [54] are used for the experiment. The
experimental results from the DESNNA are compared with those from NNA, which reflects
the effectiveness of our improved strategy. Additionally, the results are compared with
other meta-heuristics optimization algorithms.

4.1. Benchmark Functions

The test functions provided in the literature [54,55] have been applied to the experi-
mental research of meta-heuristic algorithms. The definitions of benchmark functions F1 to
F11 are shown in Table 1 and the definitions of hybrid composition functions F12 to F18
are presented in Table 2, which have higher complexity compared to the functions F1 to
F11. The detailed procedure used to hybridize the first function with the second function
is shown in the literature [54]. The properties of the benchmark functions are shown in
Table 3, and the optimal solutions of all benchmark functions are known.

Table 1. Benchmark functions F1 to F11.

Function Name Definition

F1 Shifted Sphere Function D
∑

i=1
z2

i + f _bias, z = x− o

F2 Shifted Schwefel Problem 2.21 maxi{|zi|, 1 ≤ i ≤ D}+ f _bias, z = x− o

F3 Shifted Rosenbrock’s Function D−1
∑

i=1
(100(z2

i + zi+1)
2 + (zi − 1)2) + f _bias, z = x− o

F4 Shifted Rastrigin’s Function D
∑

i=1
(z2

i − 10 cos(2πzi) + 10) + f _bias, z = x− o

F5 Shifted Griewank’s Function D
∑

i=1

z2
i

4000 −
D
∏
i=1

cos(zi√
i
) + 1 + f _bias, z = x− o

F6 Shifted Ackley’s Function −20 exp(−0.2

√
1
D

D
∑

i=1
z2

i − exp(1
D

D
∑

i=1
cos(2πzi) + 20 + e + f _bias

F7 Schwefel’s Problem 2.22 D
∑

i=1
|xi|+

D
∏
i=1
|xi|

F8 Schwefel’s Problem 1.2 D
∑

i=1
(

i
∑

j=1
xj)

2

F9 Extended f10
(

D−1
∑

i=1
f10(xi, xi+1)

)
+ f10(xD, x1)

f10 = (x2 + y2)
0.25 · (sin2(50 · (x2 + y2)

0.1
) + 1)

F10 Bohachevsky D
∑

i=1
(x2

i + 2x2
i+1 − 0.3 cos(3πxi)− 0.4 cos(4πxi+1) + 0.7

F11 Schaffffer D
∑

i=1
(x2

i + x2
i+1)

0.25
(sin2(50 · (x2

i + x2
i+1)

0.1
) + 1)

Table 2. Hybrid composition functions.

Function First Function Second Function Weight Factor

F12 F9 F1 0.25
F13 F9 F4 0.25
F14 F5 F1 0.5
F15 F3 F4 0.5
F16 F9 F1 0.75
F17 F9 F3 0.75
F18 F9 F4 0.75

Mathematics 2022, 10, 1827 9 of 17

Table 3. Properties of F1 to F18.

Function Range Optimum Unimodal/
Multimodal Separable Shifted f_bias

F1 [−100, 100]D 0 U Y Y −450
F2 [−100, 100]D 0 U N Y −450
F3 [−100, 100]D 0 M Y Y 390
F4 [−5, 5]D 0 M Y Y −330
F5 [−600, 600]D 0 M N Y −180
F6 [−32, 32]D 0 M Y Y −140
F7 [−10, 10]D 0 U Y N −
F8 [−65.536, 65.536]D 0 U N N −
F9 [−100, 100]D 0 U N N −
F10 [−15, 15]D 0 U Y N −
F11 [−100, 100]D 0 U Y N −
F12 [−100, 100]D 0 U N Y −450
F13 [−5, 5]D 0 M N Y −330
F14 [−100, 100]D 0 U N Y −630
F15 [−10, 10]D 0 M Y Y 60
F16 [−100, 100]D 0 U N Y −450
F17 [−100, 100]D 0 M N Y 390
F18 [−5, 5]D 0 M N Y −330

In order to verify the performance of the DESNNA, we compare the DESNNA with the
other six algorithms on these functions, including the NNA, CCLNNA, TSA, PSO, GA, and
HS. The parameters of these applied algorithms are listed in Table 4. For a fair comparison,
the dimension of the benchmark function is set to 50 in this experiment. The maximum
number of function evaluations (NFES) is used as the shutdown condition, which is set to
5000 times the dimension (D). Each algorithm runs independently of benchmark functions
30 times, taking the best error, the average error, the worst error, and the error standard
deviation. The population size is uniformly set to 50. All the optimizers in this paper are
coded in MATLAB R2019b.

Table 4. Optimal values of user parameters used in the reported optimizers.

Methods Parameters Optimal Values

GA
N 50
Pc 0.8
Pm 0.2

PSO
N 50

C1, C2 2
w 0.9

HS
N 50

HMCR 0.95
PAR 0.3

CCLNNA N 50
N N 50

N
N 50

rateOfSelect 0.15
rateOfDropt 0.10

4.2. Comparison between Improved DESNNA and NNA

In order to verify the effectiveness of the improvement strategy, this section focuses on
comparing optimization results between the NNA and DESNNA. The experimental results
of the NNA and DESNNA running on benchmark functions are shown in Table 5. The better
results are highlighted in bold type. From Table 5, in terms of the best error, the average
error, the worst error, and the error standard deviation, the DESNNA is superior to the
NNA on all 18 benchmark functions. That is to say, the DESNNA has better search-ability
and stability than the NNA, which means the applied improvement strategy improves the
performance of the NNA.

Mathematics 2022, 10, 1827 10 of 17

Table 5. Experimental results obtained by the NNA and DESNNA.

Function Methods Best Error Average Error Worst Error Error Standard
Deviation

F1
NNA

DESNNA
5.684 × 10−14 5.684 × 10−14 3.411 × 10−13 1.339 × 10−13

0 0 1.137 × 10−13 5.971 × 10−14

F2
NNA

DESNNA
7.209 × 10−2 3.251 × 10−1 1.425 × 100 2.901 × 10−1

2.626 × 10−2 3.152 × 10−1 1.010 × 100 2.389 × 10−1

F3 NNA
DESNNA

4.822 × 101 5.860 × 101 2.094 × 102 3.953 × 101

4.822 × 101 4.822 × 101 4.822 × 101 3.493 × 10−13

F4
NNA

DESNNA
4.547 × 10−13 1.825 × 100 7.960 × 100 2.653 × 100

0 5.978 × 10−1 4.975 × 100 1.470 × 100

F5 NNA
DESNNA

5.684 × 10−14 5.754 × 10−4 9.865 × 10−3 2.213 × 10−3

0 0 5.684 × 10−14 3.077 × 10−14

F6 NNA
DESNNA

2.154 × 10−11 7.012 × 10−11 1.863 × 10−10 3.857 × 10−11

5.684 × 10−14 2.842 × 10−14 1.705 × 10−13 5.853 × 10−14

F7
NNA

DESNNA
3.132 × 10−12 3.177 × 10−11 1.101 × 10−10 3.063 × 10−11

6.335 × 10−15 6.297 × 10−14 5.688 × 10−13 1.072 × 10−13

F8 NNA
DESNNA

9.448 × 10−4 5.364 × 10−3 2.151 × 10−2 5.002 × 10−3

7.039 × 10−5 1.794 × 10−3 1.380 × 10−2 2.701 × 10−3

F9 NNA
DESNNA

3.105 × 10−1 4.330 × 100 2.096 × 101 4.678 × 100

1.418 × 10−2 3.460 × 100 1.369 × 101 4.206 × 100

F10 NNA
DESNNA

0 3.701 × 10−17 2.220 × 10−16 8.417 × 10−17

0 0 0 0

F11
NNA

DESNNA
2.143 × 10−1 5.928 × 100 2.416 × 101 6.384 × 100

1.787 × 10−2 2.126 × 100 1.356 × 101 3.941 × 100

F12
NNA

DESNNA
4.151 × 10−5 2.217 × 10−2 6.596 × 10−1 1.204 × 10−1

5.449 × 10−10 1.710 × 10−8 8.094 × 10−8 1.962 × 10−8

F13 NNA
DESNNA

1.906 × 10−5 1.727 × 100 9.720 × 100 2.649 × 100

2.314 × 10−8 1.017 × 100 7.469 × 100 2.367 × 100

F14
NNA

DESNNA
2.274 × 10−13 8.102 × 10−3 2.061 × 10−1 3.772 × 10−2

0 3.196 × 10−3 5.157 × 10−2 1.120 × 10−2

F15 NNA
DESNNA

2.346 × 101 2.356 × 101 2.645 × 101 5.449 × 10−1

2.346 × 101 2.346 × 101 2.346 × 101 5.357 × 10−10

F16 NNA
DESNNA

3.345 × 10−2 2.657 × 100 8.910 × 100 2.854 × 100

1.699 × 10−5 2.869 × 10−1 4.255 × 100 8.419 × 10−1

F17
NNA

DESNNA
1.096 × 101 4.957 × 101 2.714 × 102 5.833 × 101

1.061 × 101 2.680 × 101 1.434 × 102 3.733 × 101

F18 NNA
DESNNA

1.152 × 10−2 2.101 × 100 1.293 × 101 3.218 × 100

7.856 × 10−6 1.070 × 100 1.092 × 101 2.881 × 100

In addition, the convergence performance between the DESNNA and NNA is com-
pared. Several typical curves of the convergence process on the functions F2, F9, F11,
and F14 are provided in Figure 4 to show the convergence performance. From Figure 4,
the DESNNA converges faster than the NNA on functions. It can be seen from the char-
acteristics of these curves that in the initial stage, the DESNNA has better convergence
performance than the NNA and in fewer iterations, the DESNNA tends to find the value
closer to the optimal value. With the increase of iterations, the DESNNA tends to con-
verge to the optimal value. Therefore, the DESNNA has better convergence performance
compared to the NNA.

Mathematics 2022, 10, 1827 11 of 17

Mathematics 2022, 10, x FOR PEER REVIEW 12 of 18

(a) (b)

(c) (d)

Figure 4. Several typical convergence curves obtained by the NNA and DESNNA. (a) F2. (b) F9.
(c) F11. (d) F14.

4.3. Comparisons between the Improved DESNNA and Other Algorithms
The optimization performance between the DESNNA and five other algorithms con-

taining the CCLNNA, TSA, PSO, GA, and HS are compared in this section. Table 6 shows
the experimental results obtained by the DESNNA and other methods.

From Table 6, in terms of the best error, the DESNNA outperforms CCLNNA on all
functions except for F2. The DESNNA is superior to the TSA on functions F1, F3, F4, F5,
F6, F9, F10, F11, F13, F14, F15, F16, F17, and F18. The DESNNA beats the PSO, GA, and
HS on all functions. From Table 6, in terms of the average error, the DESNNA performs
better than the CCLNNA on all functions except for F2, F4, and F13. TSA beats the DES-
NNA only on functions F2, F7, and F8. The DESNNA is superior to the PSO, GA, and HS
on all functions. As for the worst error, the DESNNA outperforms CCLNNA on functions
F1, F3, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, and F16 and outperforms TSA on
functions F1, F3, F4, F5, F6, F9, F10, F11, F12, F13, F14, F15, F16, F17, and F18. The DES-
NNA is superior to the PSO, GA, and HS on all functions. In terms of error standard de-
viation, the DESNNA outperforms CCLNNA on functions F1, F3, F5, F6, F7, F8, F9, F10,
F11, F12, F14, F15, and F16. TSA beats the DESNNA only on functions F1, F2, F7, and F8,
and GA beats the DESNNA only on F17. The DESNNA is superior to the PSO and HS on
all functions. Clearly, the DESNNA shows better performance than other compared meth-
ods.

Figure 4. Several typical convergence curves obtained by the NNA and DESNNA. (a) F2. (b) F9.
(c) F11. (d) F14.

4.3. Comparisons between the Improved DESNNA and Other Algorithms

The optimization performance between the DESNNA and five other algorithms con-
taining the CCLNNA, TSA, PSO, GA, and HS are compared in this section. Table 6 shows
the experimental results obtained by the DESNNA and other methods.

From Table 6, in terms of the best error, the DESNNA outperforms CCLNNA on all
functions except for F2. The DESNNA is superior to the TSA on functions F1, F3, F4, F5, F6,
F9, F10, F11, F13, F14, F15, F16, F17, and F18. The DESNNA beats the PSO, GA, and HS
on all functions. From Table 6, in terms of the average error, the DESNNA performs better
than the CCLNNA on all functions except for F2, F4, and F13. TSA beats the DESNNA
only on functions F2, F7, and F8. The DESNNA is superior to the PSO, GA, and HS on all
functions. As for the worst error, the DESNNA outperforms CCLNNA on functions F1, F3,
F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, and F16 and outperforms TSA on functions
F1, F3, F4, F5, F6, F9, F10, F11, F12, F13, F14, F15, F16, F17, and F18. The DESNNA is
superior to the PSO, GA, and HS on all functions. In terms of error standard deviation, the
DESNNA outperforms CCLNNA on functions F1, F3, F5, F6, F7, F8, F9, F10, F11, F12, F14,
F15, and F16. TSA beats the DESNNA only on functions F1, F2, F7, and F8, and GA beats
the DESNNA only on F17. The DESNNA is superior to the PSO and HS on all functions.
Clearly, the DESNNA shows better performance than other compared methods.

Mathematics 2022, 10, 1827 12 of 17

Table 6. Experimental results obtained by the DESNNA and other methods.

Methods Best Error Average Error Worst Error Error Standard
Deviation

F1
DESNNA 0 0 1.137 × 10−13 5.971 × 10−14

CCLNNA 7.135 × 10−9 3.697 × 10−8 1.215 × 10−7 2.172 × 10−8

TSA 5.684 × 10−14 5.684 × 10−14 1.137 × 10−13 5.382 × 10−14

PSO 1.137 × 10−13 1.137 × 10−13 5.116 × 10−13 2.635 × 10−13

GA 1.503 × 10−8 3.612 × 10−8 1.002 × 10−7 1.858 × 10−8

HS 1.694 × 103 2.893 × 103 3.857 × 103 5.336 × 102

F2
DESNNA 2.626 × 10−2 3.152 × 10−1 1.010 × 100 2.389 × 10−1

CCLNNA 8.691 × 10−3 2.016 × 10−2 3.789 × 10−2 6.979 × 10−3

TSA 1.070 × 10−8 1.568 × 10−6 7.838 × 10−6 2.323 × 10−6

PSO 2.019 × 101 2.019 × 101 2.696 × 101 3.218 × 100

GA 1.367 × 100 2.145 × 100 3.068 × 100 3.789 × 10−1

HS 4.165 × 101 4.724 × 101 5.265 × 101 2.566 × 100

F3
DESNNA 4.822 × 101 4.822 × 101 4.822 × 101 3.493 × 10−13

CCLNNA 4.822 × 101 5.123 × 101 1.308 × 102 1.507 × 101

TSA 4.841 × 101 4.863 × 101 4.882 × 101 1.484 × 10−1

PSO 2.430 × 1010 2.430 × 1010 3.757 × 1010 7.454 × 109

GA 4.822 × 101 4.825 × 101 4.861 × 101 8.374 × 10−2

HS 8.008 × 107 1.502 × 108 2.711 × 108 4.366 × 107

F4
DESNNA 0 5.978 × 10−1 4.975 × 100 1.470 × 100

CCLNNA 1.020 × 10−8 3.317 × 10−2 9.950 × 10−1 1.817 × 10−1

TSA 2.270 × 102 3.014 × 102 3.827 × 102 4.299 × 101

PSO 5.530 × 102 5.530 × 102 6.947 × 102 5.642 × 101

GA 8.955 × 100 2.030 × 101 5.373 × 101 9.087 × 100

HS 2.478 × 102 2.783 × 102 3.106 × 102 1.740 × 101

F5
DESNNA 0 0 5.684 × 10−14 3.077 × 10−14

CCLNNA 3.530 × 10−8 7.538 × 10−3 5.867 × 10−2 1.363 × 10−2

TSA 2.842 × 10−14 3.489 × 10−3 2.495 × 10−2 6.073 × 10−3

PSO 2.170 × 10−1 2.170 × 10−1 9.131 × 10−1 3.363 × 10−1

GA 3.800 × 10−10 1.802 × 10−3 3.680 × 10−2 6.969 × 10−3

HS 1.897 × 101 3.000 × 101 3.834 × 101 4.877 × 100

F6
DESNNA 5.684 × 10−14 2.842 × 10−14 1.705 × 10−13 5.853 × 10−14

CCLNNA 1.605 × 10−5 3.366 × 10−5 5.397 × 10−5 7.631 × 10−6

TSA 8.527 × 10−14 1.060 × 100 3.385 × 100 1.436 × 100

PSO 1.919 × 10−7 1.919 × 10−7 1.809 × 10−6 3.368 × 10−7

GA 9.199 × 10−5 1.027 × 100 1.945 × 100 6.774 × 10−1

HS 7.334 × 100 9.207 × 100 1.034 × 101 6.722 × 10−1

F7
DESNNA 6.335 × 10−15 6.297 × 10−14 5.688 × 10−13 1.072 × 10−13

CCLNNA 6.837 × 10−5 1.053 × 10−4 1.493 × 10−4 2.521 × 10−5

TSA 1.162 × 10−132 2.264 × 10−127 6.129 × 10−126 1.117 × 10−126

PSO 1.097 × 10−10 1.097 × 10−10 1.058 × 10−9 1.998 × 10−10

GA 4.951 × 10−1 2.597 × 100 4.642 × 100 1.114 × 100

HS 1.917 × 101 2.156 × 101 2.353 × 101 1.276 × 100

F8
DESNNA 7.039 × 10−5 1.794 × 10−3 1.380 × 10−2 2.701 × 10−3

CCLNNA 3.661 × 10−2 8.557 × 10−2 1.540 × 10−1 2.742 × 10−2

TSA 6.565 × 10−58 1.529 × 10−34 3.362 × 10−33 6.436 × 10−34

PSO 3.630 × 104 3.630 × 104 4.899 × 104 5.672 × 103

GA 9.505 × 10−1 9.095 × 100 4.847 × 101 1.405 × 101

HS 3.420 × 104 5.157 × 104 6.727 × 104 9.005 × 103

Mathematics 2022, 10, 1827 13 of 17

Table 6. Cont.

Methods Best Error Average Error Worst Error Error Standard
Deviation

F9
DESNNA 1.418 × 10−2 3.460 × 100 1.369 × 101 4.206 × 100

CCLNNA 7.099 × 100 1.795 × 101 3.166 × 101 4.477 × 100

TSA 2.168 × 101 5.648 × 101 1.543 × 102 2.840 × 101

PSO 4.944 × 102 4.944 × 102 5.464 × 102 3.333 × 101

GA 2.670 × 101 3.818 × 101 4.814 × 101 4.947 × 100

HS 1.469 × 102 1.863 × 102 2.114 × 102 1.564 × 101

F10
DESNNA 0 0 0 0
CCLNNA 1.485 × 10−8 4.157 × 10−8 1.051 × 10−7 2.222 × 10−8

TSA 0 4.246 × 100 3.191 × 101 9.976 × 100

PSO 3.892 × 103 3.892 × 103 5.628 × 103 7.097 × 102

GA 5.249 × 100 8.968 × 100 1.727 × 101 2.900 × 100

HS 1.519 × 102 1.987 × 102 2.723 × 102 3.068 × 101

F11
DESNNA 1.787 × 10−2 2.126 × 100 1.356 × 101 3.941 × 100

CCLNNA 8.918 × 100 1.739 × 101 3.008 × 101 4.385 × 100

TSA 1.440 × 101 5.089 × 101 1.683 × 102 3.334 × 101

PSO 4.653 × 102 4.653 × 102 5.113 × 102 2.339 × 101

GA 2.475 × 101 3.564 × 101 4.380 × 101 4.903 × 100

HS 1.603 × 102 1.807 × 102 2.132 × 102 1.307 × 101

F12
DESNNA 5.449 × 10−10 1.710 × 10−8 8.094 × 10−8 1.962 × 10−8

CCLNNA 8.100 × 10−2 2.453 × 10−1 1.333 × 100 2.410 × 10−1

TSA 1.137 × 10−13 2.020 × 100 1.651 × 101 4.570 × 100

PSO 3.922 × 104 3.922 × 104 7.287 × 104 1.119 × 104

GA 7.491 × 10−2 4.669 × 100 1.343 × 101 3.597 × 100

HS 7.270 × 102 1.231 × 103 2.018 × 103 3.087 × 102

F13
DESNNA 2.314 × 10−8 1.017 × 100 7.469 × 100 2.367 × 100

CCLNNA 1.724 × 10−2 3.492 × 10−1 2.526 × 100 6.498 × 10−1

TSA 1.577 × 102 2.325 × 102 3.012 × 102 3.723 × 101

PSO 4.077 × 102 4.077 × 102 5.031 × 102 4.723 × 101

GA 1.084 × 101 2.201 × 101 3.664 × 101 5.255 × 100

HS 1.602 × 102 1.989 × 102 2.269 × 102 1.666 × 101

F14
DESNNA 0 3.196 × 10−3 5.157 × 10−2 1.120 × 10−2

CCLNNA 6.372 × 10−8 2.275 × 10−2 9.816 × 10−2 2.461 × 10−2

TSA 2.274 × 10−13 7.897 × 10−3 4.276 × 10−2 1.055 × 10−2

PSO 2.045 × 104 2.045 × 104 3.515 × 104 7.255 × 103

GA 2.863 × 10−7 1.402 × 10−2 5.987 × 10−2 1.993 × 10−2

HS 7.064 × 101 1.534 × 102 2.943 × 102 6.223 × 101

F15
DESNNA 2.346 × 101 2.346 × 101 2.346 × 101 5.357 × 10−10

CCLNNA 2.346 × 101 2.347 × 101 2.356 × 101 1.750 × 10−2

TSA 8.121 × 101 1.363 × 102 2.428 × 102 3.715 × 101

PSO 6.650 × 105 6.650 × 105 1.519 × 106 3.700 × 105

GA 2.546 × 101 4.732 × 101 1.409 × 102 2.594 × 101

HS 1.258 × 103 1.565 × 103 1.953 × 103 2.054 × 102

F16
DESNNA 1.699 × 10−5 2.869 × 10−1 4.255 × 100 8.419 × 10−1

CCLNNA 5.691 × 100 1.168 × 101 2.231 × 101 4.565 × 100

TSA 8.421 × 100 4.459 × 101 1.386 × 102 2.386 × 101

PSO 6.533 × 103 6.533 × 103 1.763 × 104 4.735 × 103

GA 1.568 × 101 2.582 × 101 3.621 × 101 5.827 × 100

HS 1.653 × 102 2.057 × 102 2.295 × 102 1.711 × 101

Mathematics 2022, 10, 1827 14 of 17

Table 6. Cont.

Methods Best Error Average Error Worst Error Error Standard
Deviation

F17
DESNNA 1.061 × 101 2.680 × 101 1.434 × 102 3.733 × 101

CCLNNA 1.610 × 101 3.373 × 101 8.777 × 101 1.650 × 101

TSA 2.165 × 101 6.243 × 101 4.272 × 102 7.386 × 101

PSO 2.160 × 109 2.160 × 109 9.648 × 109 2.406 × 109

GA 3.540 × 101 5.233 × 101 9.555 × 101 1.336 × 101

HS 5.139 × 102 2.355 × 103 9.487 × 103 2.902 × 103

F18
DESNNA 7.856 × 10−6 1.070 × 100 1.092 × 101 2.881 × 100

CCLNNA 5.046 × 10−1 2.065 × 100 4.341 × 100 1.014 × 100

TSA 8.064 × 101 1.093 × 102 1.443 × 102 1.659 × 101

PSO 1.737 × 102 1.737 × 102 2.260 × 102 1.931 × 101

GA 2.264 × 101 3.461 × 101 4.626 × 101 6.337 × 100

HS 8.716 × 101 9.495 × 101 1.038 × 102 4.256 × 100

5. Conclusions and Future Work

In this paper, a new meta-heuristic algorithm called the neural network algorithm with
dropout using elite selection strategy (DESNNA) is proposed, which is a new variant of the
neural network algorithm (NNA). In the DESNNA, when a new population is generated
from the previous population, a certain percentage of individuals who perform the worst
are dropped and a certain proportion of the individuals of the previous generation with
the best performance are retained and directly enter the next generation to ensure the
outstanding performance of the population. In order to verify the effectiveness of the
improved strategy, the DESNNA is used on 18 well-known benchmark functions. The
experimental results showed that the DESNNA outperforms the NNA on all 18 benchmark
functions and the DESNNA beats each other compared algorithm on more than 80%
of benchmark functions. Therefore, the introduced dropout and elite selection strategy
improved the optimization performance of the NNA, and the DESNNA is a powerful
algorithm for solving optimization problems. This work can advance the state-of-the-art.
The improved DESNNA can be applied to the single mixed refrigerant process for synthetic
natural gas liquefaction or the optimal planning and operation of distributed generations
and capacitor banks in the radial distribution networks, which can help to improve the
annual energy loss mitigation and cost savings.

As for future research, because the NNA is inspired by the neural network, it can be
optimized from the perspective of a neural network. Other new variants of the NNA should
be proposed in future research, such as introducing back-propagation and gradient descent
to update the weight matrix. The hybridization of the NNA with other meta-heuristic
algorithms may form a better optimization algorithm. What is more, the DESNNA can
be applied to solve real-world optimization problems in engineering, such as constrained
engineering design problems.

Author Contributions: Conceptualization, investigation, G.W. and Y.W.; methodology K.W.; soft-
ware, Y.W.; validation, G.W. and Y.W.; data curation, K.W.; writing—original draft preparation, K.W.;
writing—review and editing, Y.W. and G.W.; supervision, G.W. and Y.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Mathematics 2022, 10, 1827 15 of 17

Acknowledgments: The authors are thankful to the anonymous for their valuable suggestions during
the review process.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

D The dimension of optimization problem
N Population size
LB The lower limit of variables
UB The upper limit of variables
Max_iteration The maximum number of iterations

References
1. Sergeyev, Y.D.; Kvasov, D.E. A deterministic global optimization using smooth diagonal auxiliary functions. Commun. Nonlinear

Sci. Numer. Simul. 2015, 21, 99–111. [CrossRef]
2. Magoulas, G.D.; Vrahatis, M.N. Adaptive algorithms for neural network supervised learning: A deterministic optimization

approach. Int. J. Bifurc. Chaos 2006, 16, 1929–1950. [CrossRef]
3. Kvasov, D.E.; Mukhametzhanov, M.S. Metaheuristic vs. deterministic global optimization algorithms: The univariate case. Appl.

Math. Comput. 2018, 318, 245–259. [CrossRef]
4. Sergeyev, Y.D.; Kvasov, D.E.; Mukhametzhanov, M.S. Operational zones for comparing metaheuristic and deterministic one-

dimensional global optimization algorithms. Math. Comput. Simul. 2017, 141, 96–109. [CrossRef]
5. Ma, Y.; Wang, Z.; Yang, H.; Yang, L. Artificial intelligence applications in the development of autonomous vehicles: A survey.

IEEE/CAA J. Autom. Sin. 2020, 7, 315–329. [CrossRef]
6. Zhao, Z.; Liu, S.; Zhou, M.; Abusorrah, A. Dual-objective mixed integer linear program and memetic algorithm for an industrial

group scheduling problem. IEEE/CAA J. Autom. Sin. 2020, 8, 1199–1209. [CrossRef]
7. Zhang, Z.; Cao, Y.; Cui, Z.; Zhang, W.; Chen, J. A Many-Objective Optimization Based Intelligent Intrusion Detection Algorithm

for Enhancing Security of Vehicular Networks in 6G. IEEE Trans. Veh. Technol. 2021, 70, 5234–5243. [CrossRef]
8. Dokeroglu, T.; Sevinc, E.; Kucukyilmaz, T.; Cosar, A. A survey on new generation metaheuristic algorithms. Comput. Ind. Eng.

2019, 137, 106040. [CrossRef]
9. Wang, G.-G.; Cai, X.; Cui, Z.; Min, G.; Chen, J. High performance computing for cyber physical social systems by using

evolutionary multi-objective optimization algorithm. IEEE Trans. Emerg. Top. Comput. 2020, 8, 20–30. [CrossRef]
10. Wang, G.-G.; Tan, Y. Improving metaheuristic algorithms with information feedback models. IEEE Trans. Cybern. 2019, 49,

542–555. [CrossRef]
11. Wang, G.-G.; Gao, D.; Pedrycz, W. Solving multi-objective fuzzy job-shop scheduling problem by a hybrid adaptive differential

evolution algorithm. IEEE Trans. Ind. Inform. 2022, 1. [CrossRef]
12. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
13. Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef]
14. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural

Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.
15. Cui, Z.; Zhang, J.; Wu, D.; Cai, X.; Wang, H.; Zhang, W.; Chen, J. Hybrid many-objective particle swarm optimization algorithm

for green coal production problem. Inf. Sci. 2020, 518, 256–271. [CrossRef]
16. Zhang, W.; Hou, W.; Li, C.; Yang, W.; Gen, M. Multidirection Update-Based Multiobjective Particle Swarm Optimization for

Mixed No-Idle Flow-Shop Scheduling Problem. Complex Syst. Model. Simul. 2021, 1, 176–197. [CrossRef]
17. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68.

[CrossRef]
18. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob.

Optim. 1997, 11, 341–359. [CrossRef]
19. Gao, D.; Wang, G.-G.; Pedrycz, W. Solving fuzzy job-shop scheduling problem using DE algorithm improved by a selection

mechanism. IEEE Trans. Fuzzy Syst. 2020, 28, 3265–3275. [CrossRef]
20. Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern.

Part B (Cybern.) 1996, 26, 29–41. [CrossRef]
21. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC)

algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]
22. Sadollah, A.; Sayyaadi, H.; Yadav, A. A dynamic metaheuristic optimization model inspired by biological nervous systems:

Neural network algorithm. Appl. Soft Comput. 2018, 71, 747–782. [CrossRef]
23. Dhiman, G.; Kumar, V. Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications.

Adv. Eng. Softw. 2017, 114, 48–70. [CrossRef]

http://doi.org/10.1016/j.cnsns.2014.08.026
http://doi.org/10.1142/S0218127406015805
http://doi.org/10.1016/j.amc.2017.05.014
http://doi.org/10.1016/j.matcom.2016.05.006
http://doi.org/10.1109/JAS.2020.1003021
http://doi.org/10.1109/JAS.2020.1003539
http://doi.org/10.1109/TVT.2021.3057074
http://doi.org/10.1016/j.cie.2019.106040
http://doi.org/10.1109/TETC.2017.2703784
http://doi.org/10.1109/TCYB.2017.2780274
http://doi.org/10.1109/TII.2022.3165636
http://doi.org/10.1038/scientificamerican0792-66
http://doi.org/10.1126/science.220.4598.671
http://doi.org/10.1016/j.ins.2020.01.018
http://doi.org/10.23919/CSMS.2021.0017
http://doi.org/10.1177/003754970107600201
http://doi.org/10.1023/A:1008202821328
http://doi.org/10.1109/TFUZZ.2020.3003506
http://doi.org/10.1109/3477.484436
http://doi.org/10.1007/s10898-007-9149-x
http://doi.org/10.1016/j.asoc.2018.07.039
http://doi.org/10.1016/j.advengsoft.2017.05.014

Mathematics 2022, 10, 1827 16 of 17

24. Dhiman, G.; Kumar, V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems.
Knowl.-Based Syst. 2019, 165, 169–196. [CrossRef]

25. Kaur, S.; Awasthi, L.K.; Sangal, A.; Dhiman, G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for
global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [CrossRef]

26. Wang, G.-G.; Deb, S.; Coelho, L.d.S. Elephant herding optimization. In Proceedings of the 2015 3rd International Symposium on
Computational and Business Intelligence (ISCBI), Bali, Indonesia, 7–9 December 2015; pp. 1–5.

27. Dhiman, G.; Kaur, A. STOA: A bio-inspired based optimization algorithm for industrial engineering problems. Eng. Appl. Artif.
Intell. 2019, 82, 148–174. [CrossRef]

28. Zhang, Y. Chaotic neural network algorithm with competitive learning for global optimization. Knowl.-Based Syst. 2021, 231, 107405.
[CrossRef]

29. Wang, G.-G.; Deb, S.; Cui, Z. Monarch butterfly optimization. Neural Comput. Appl. 2019, 31, 1995–2014. [CrossRef]
30. Lakshminarayanan, S.; Abdulgader, M.; Kaur, D. Scheduling energy storage unit with GWO for smart home integrated with

renewable energy. Int. J. Artif. Intell. Soft Comput. 2020, 7, 146–163.
31. Wang, G.-G.; Deb, S.; Coelho, L.D.S. Earthworm optimisation algorithm: A bio-inspired metaheuristic algorithm for global

optimisation problems. Int. J. Bio-Inspired Comput. 2018, 12, 1–22. [CrossRef]
32. Wang, G.-G. Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput.

2018, 10, 151–164. [CrossRef]
33. Ghaemi, M.; Feizi-Derakhshi, M.-R. Forest optimization algorithm. Expert Syst. Appl. 2014, 41, 6676–6687. [CrossRef]
34. Grabski, J.K.; Walczak, T.; Buśkiewicz, J.; Michałowska, M. Comparison of some evolutionary algorithms for optimization of the

path synthesis problem. In Proceedings of the AIP Conference Proceedings, Lublin, Poland, 13–16 September 2017; p. 020006.
35. Liang, Y.-C.; Cuevas Juarez, J.R. A novel metaheuristic for continuous optimization problems: Virus optimization algorithm. Eng.

Optim. 2016, 48, 73–93. [CrossRef]
36. Grabski, J.K.; Mrozek, A. Identification of elastoplastic properties of rods from torsion test using meshless methods and a

metaheuristic. Comput. Math. Appl. 2021, 92, 149–158. [CrossRef]
37. Qadeer, K.; Ahmad, A.; Naquash, A.; Qyyum, M.A.; Majeed, K.; Zhou, Z.; He, T.; Nizami, A.-S.; Lee, M. Neural network-inspired

performance enhancement of synthetic natural gas liquefaction plant with different minimum approach temperatures. Fuel 2022,
308, 121858. [CrossRef]

38. Bhullar, A.K.; Kaur, R.; Sondhi, S. Design and Comparative Analysis of Optimized Fopid Controller Using Neural Network
Algorithm. In Proceedings of the 2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS),
Rupnagar, India, 26–28 November 2020; pp. 91–96.

39. Zhang, Y.; Jin, Z.; Chen, Y. Hybrid teaching–learning-based optimization and neural network algorithm for engineering design
optimization problems. Knowl.-Based Syst. 2020, 187, 104836. [CrossRef]

40. Zhang, Y.; Jin, Z.; Chen, Y. Hybridizing grey wolf optimization with neural network algorithm for global numerical optimization
problems. Neural Comput. Appl. 2020, 32, 10451–10470. [CrossRef]

41. Zhang, H.; Sheng, J.J. Complex fracture network simulation and optimization in naturally fractured shale reservoir based on
modified neural network algorithm. J. Nat. Gas Sci. Eng. 2021, 95, 104232. [CrossRef]

42. Nguyen, T.P.; Nguyen, T.A.; Phan, T.V.-H.; Vo, D.N. A comprehensive analysis for multi-objective distributed generations and
capacitor banks placement in radial distribution networks using hybrid neural network algorithm. Knowl.-Based Syst. 2021,
231, 107387. [CrossRef]

43. Van Tran, T.; Truong, B.-H.; Nguyen, T.P.; Nguyen, T.A.; Duong, T.L.; Vo, D.N. Reconfiguration of Distribution Networks With
Distributed Generations Using an Improved Neural Network Algorithm. IEEE Access 2021, 9, 165618–165647. [CrossRef]

44. Marugán, A.P.; Márquez, F.P.G.; Perez, J.M.P.; Ruiz-Hernández, D. A survey of artificial neural network in wind energy systems.
Appl. Energy 2018, 228, 1822–1836. [CrossRef]

45. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

46. Bhandari, D.; Paul, S.; Narayan, A. Deep neural networks for multimodal data fusion and affect recognition. Int. J. Artif. Intell.
Soft Comput. 2020, 7, 130–145.

47. Agrawal, A.; Barratt, S.; Boyd, S. Learning Convex Optimization Models. IEEE/CAA J. Autom. Sin. 2021, 8, 1355–1364. [CrossRef]
48. Hirasawa, T.; Aoyama, K.; Tanimoto, T.; Ishihara, S.; Shichijo, S.; Ozawa, T.; Ohnishi, T.; Fujishiro, M.; Matsuo, K.; Fujisaki, J.

Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images.
Gastric Cancer 2018, 21, 653–660. [CrossRef] [PubMed]

49. Paoletti, M.; Haut, J.; Plaza, J.; Plaza, A. A new deep convolutional neural network for fast hyperspectral image classification.
ISPRS J. Photogramm. Remote Sens. 2018, 145, 120–147. [CrossRef]

50. Devin, C.; Gupta, A.; Darrell, T.; Abbeel, P.; Levine, S. Learning modular neural network policies for multi-task and multi-
robot transfer. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore,
29 May–3 June 2017; pp. 2169–2176.

51. Parashar, S.; Senthilnath, J.; Yang, X.-S. A novel bat algorithm fuzzy classifier approach for classification problems. Int. J. Artif.
Intell. Soft Comput. 2017, 6, 108–128. [CrossRef]

http://doi.org/10.1016/j.knosys.2018.11.024
http://doi.org/10.1016/j.engappai.2020.103541
http://doi.org/10.1016/j.engappai.2019.03.021
http://doi.org/10.1016/j.knosys.2021.107405
http://doi.org/10.1007/s00521-015-1923-y
http://doi.org/10.1504/IJBIC.2018.093328
http://doi.org/10.1007/s12293-016-0212-3
http://doi.org/10.1016/j.eswa.2014.05.009
http://doi.org/10.1080/0305215X.2014.994868
http://doi.org/10.1016/j.camwa.2021.03.024
http://doi.org/10.1016/j.fuel.2021.121858
http://doi.org/10.1016/j.knosys.2019.07.007
http://doi.org/10.1007/s00521-019-04580-4
http://doi.org/10.1016/j.jngse.2021.104232
http://doi.org/10.1016/j.knosys.2021.107387
http://doi.org/10.1109/ACCESS.2021.3134872
http://doi.org/10.1016/j.apenergy.2018.07.084
http://doi.org/10.1109/JAS.2021.1004075
http://doi.org/10.1007/s10120-018-0793-2
http://www.ncbi.nlm.nih.gov/pubmed/29335825
http://doi.org/10.1016/j.isprsjprs.2017.11.021
http://doi.org/10.1504/IJAISC.2017.084579

Mathematics 2022, 10, 1827 17 of 17

52. Laudani, A.; Lozito, G.M.; Riganti Fulginei, F.; Salvini, A. On training efficiency and computational costs of a feed forward neural
network: A review. Comput. Intell. Neurosci. 2015, 2015, 818243. [CrossRef]

53. Cui, Z.; Xue, F.; Cai, X.; Cao, Y.; Wang, G.-G.; Chen, J. Detection of malicious code variants based on deep learning. IEEE Trans.
Ind. Inform. 2018, 14, 3187–3196. [CrossRef]

54. Herrera, F.; Lozano, M.; Molina, D. Test Suite for the Special Issue of Soft Computing on Scalability of Evolutionary Algorithms
and Other Metaheuristics for Large Scale Continuous Optimization Problems. Available online: http://150.214.190.154/sites/
default/files/files/TematicWebSites/EAMHCO/functions1-19.pdf (accessed on 25 April 2022).

55. Liang, J.J.; Qu, B.Y.; Suganthan, P.N. Problem definitions and evaluation criteria for the CEC 2014 special session and competition
on single objective real-parameter numerical optimization. Comput. Intell. Lab. Zhengzhou Univ. Zhengzhou China Technol. Rep.
Nanyang Technol. Univ. Singap. 2013, 635, 490.

http://doi.org/10.1155/2015/818243
http://doi.org/10.1109/TII.2018.2822680
http://150.214.190.154/sites/default/files/files/TematicWebSites/EAMHCO/functions1-19.pdf
http://150.214.190.154/sites/default/files/files/TematicWebSites/EAMHCO/functions1-19.pdf

	Introduction
	Neural Network Algorithm
	Artificial Neural Network
	The Introduction of Neural Network Algorithm

	The Neural Network Algorithm with Dropout Using Elite Selection
	NNA from the Perspective of Evolutionary Algorithm
	The Introduced Dropout Strategy in the DESNNA
	The Elite Selection in the DESNNA

	DESNNA for Global Optimization
	Benchmark Functions
	Comparison between Improved DESNNA and NNA
	Comparisons between the Improved DESNNA and Other Algorithms

	Conclusions and Future Work
	References

