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Abstract: The high-speed operation of unbalanced machines may cause vibrations that lead to noise,
wear, and fatigue that will eventually limit their efficiency and operating life. To restrain such
vibrations, a complete balancing must be performed. This paper presents the complete balancing
optimization of a six-bar mechanism with the use of counterweights. A novel method based on fully
Cartesian coordinates (FCC) is proposed to represent such a balanced mechanism. A multiobjective
optimization problem was solved using the Differential Evolution (DE) algorithm to minimize the
shaking force (ShF) and the shaking moment (ShM) and thus balance the system. The Pareto front is
used to determine the best solutions according to three optimization criteria: only the ShF, only the
ShM, and both the ShF and ShM. The dimensions of the counterweights are further fine-tuned with
an analysis of their partial derivatives, volumes, and area–thickness relations. Numerical results show
that the ShF and ShM can be reduced by 76.82% and 77.21%, respectively, when importance is given
to either of them and by 45.69% and 46.81%, respectively, when equal importance is given to both. A
comparison of these results with others previously reported in the literature shows that the use of
FCC in conjunction with DE is a suitable methodology for the complete balancing of mechanisms.

Keywords: six-bar mechanism; dynamic balancing; fully Cartesian coordinates; multiobjective
optimization; differential evolution; Pareto front

MSC: 91B03; 70B15

1. Introduction

The high-speed motion of the links of a mechanism generates dynamic reactions that
are transmitted as vibrations to the fixed frame producing undesirable effects such as noise,
wear, fatigue, and energy losses that will eventually limit the mechanism’s performance and
operating life. In addition to these technical problems, vibrations may induce a constant
machine maintenance involving wastes that have an environmental impact and noise
pollution that can lead to health problems [1].

The dynamic reactions under discussion are produced by both external and inertial
forces. The former are naturally forces generated outside the mechanism such as those
induced by an actuator. The latter are due to the large accelerations of the links. Some
representative methods for calculating dynamic reactions in mechanisms are those of
Uicker [2] and Waldron [3].
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The force and the moment that occur at the mechanism’s fixed frame are typically
known as shaking force (ShF) and shaking moment (ShM), respectively. Thus, a traditional
but still open challenge in machine theory is how to effectively remove or minimize the
dynamic reactions, i.e., the ShF and ShM, derived from the mechanism’s motion. This
process is known as complete (or dynamic) balancing.

The dynamic balancing of mechanisms has been widely studied in mechanical engi-
neering. Some recent historical reviews addressing the topic can be found in [1,4–6].

Among the first publications, we can find the work of Fischer introducing in 1902 a
method called principal vectors [7]. This method allows for the balancing of the ShF by
analyzing each of the links of the mechanism and determining the points, called principal
points, in which the static balancing can be reached. The work of Fischer provided the
basis for the methods studying the motion of the centers of mass (CoM) of the links in a
mechanism. The method of principal vectors was subsequently used by Goryachkin [8],
Yudin [9], and Kreutzinger [10].

Another early method proposed for the dynamic balancing of mechanisms was the
static substitution of masses. Its aim is to statically replace the mass of the coupler by
concentrated masses, thus transforming the problem of mechanism balancing into a simpler
problem of balancing the rotating links. The works of Maxwell [11], Smith [12], and
Talbourdet [13] are based on this method.

The 1920s were marked by a special interest in the balancing of engines [14,15] and
machines related to agriculture [16]. The Lanchester balancer stands out among these
works. It is still being used for balancing four-stroke engines.

During the 1940s, some methods based on function approximation were proposed to
achieve partial equilibrium. The work of Gheronimus [17] is a representative example. In
this work, the balancing conditions were formulated by minimizing the root mean square
(RMS) or the maximum values of the ShM. The duplicate mechanism method [18] was also
proposed in this decade. It achieves a complete balancing with the addition of axial and
mirror symmetric mechanism duplicates.

The balancing methods based on harmonic analysis appeared in the 1960s with the
use of the crank-slider mechanism in internal combustion engines [19,20]. Such methods
reduce the ShM by balancing certain harmonics of both the ShF and ShM. To carry out
this process, the unbalanced forces and moments are divided into Fourier series and then
analyzed in parts.

In 1969, Berkof and Lowen [21] proposed a new solution for dynamic balancing using
a method called linearly independent vectors. This method consists of formulating an
equation considering a vector representation describing the position of the total CoM of the
mechanism in conjunction with the equation representing the closed kinematic chain. A
system of equations containing linearly independent vectors is then obtained allowing to
find the balancing conditions of the mechanism by reducing to zero the time-dependent
coefficients. This method was subsequently explored in [22,23].

In the 1970s, the dynamic balancing theory achieved significant advances. Berkof [24]
formulated the first method for complete balancing using counterweights and counter-
inertias to eliminate the undesired forces and moments of the moving links, respectively. It
then became clear that a complete balancing of mechanisms is feasible at the expense of
considering complex design modifications and an inevitable increase of the total mass and
volume of the mechanism.

Methods proposing a partial balancing were then proposed searching to keep the
added mass reasonably small. In [25], Wiederrich and Roth formulated simple general
conditions for determining the inertia properties of a four-bar mechanism and achieved
its partial balancing. Dresig examined the partial balancing conditions for several 2D
mechanims with six and eight-bar linkages [26].

Later approaches involved the use of planetary [27] and auto-balanced systems [28].
More recent ones propose the use of the instantaneous dynamic balancing conditions [29],
the trajectory planning of the CoM of the mechanism [30], and the reformulation of the
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balancing conditions following a Taylor-based approach [29]. Finally, the most recent and
novel balancing method encompasses the flexibility of the links of the mechanism [31].

We focus our attention on Berkof’s counterweight approach. After the partial balancing
methods, optimization techniques were then explored searching a tradeoff between the
added mass and the reduction of the ShF and ShM.

In 1998, Segla presented the static balancing optimization of a robotic mechanism [32].
The balancing conditions were first obtained and then, a basic genetic algorithm pro-
grammed in Fortran was used for the optimization.

Currently, the most popular optimization techniques for mechanical problems are
based on metaheuristic methods: evolutionary [33], differential evolution [34], genetic [35],
and Firefly [36] algorithms. These proposals were designed to find heuristics (i.e., partial
solutions) that may provide sufficiently good tradeoffs for the dynamic balancing problem.

To our knowledge, all previous works addressing optimization techniques for the
dynamic balancing of mechanisms make use of Cartesian coordinates (CC) to obtain
the expressions of the dynamic reactions. A major drawback of CC is that they involve
trigonometric functions that derive into complex mathematical expressions that are compu-
tationally burdensome.

Our research approach differs from the existing literature in that it presents an alterna-
tive to CC: fully Cartesian coordinates (FCC), which are also called natural coordinates [37].
By using FCC, the dynamic reactions at the fixed frame can be formulated by means of
equations of less complexity (no angular variables). Then, the resulting ShF and ShM
expressions are used to optimize the dynamic balancing of mechanisms through the use
of counterweights.

Our previous work [38,39] successfully reported the dynamic balancing of a four-bar
mechanism and its optimization with Projected Gradient Descent. In this paper, we address
the dynamic balancing of a more complex system, a six-bar mechanism, and explore the
differential evolution (DE) algorithm as our optimization method.

Parallel mechanisms are increasingly being used in robotic applications [40,41]. The
six-bar mechanism is a typical parallel manipulator. This single degree-of-freedom planar
linkage is typically used as a variable-speed transmission mechanism where the input crank
rotates at constant speed and the output link works as an overrunning clutch mounted on
the output shaft [42].

The rest of the paper is organized as follows: In Section 2, the FCC-based mass-matrix
definition for the six-bar mechanism with counterweights is introduced together with
the expressions of the ShF and ShM. In Section 3, the details of the multiobjective DE
optimization are presented. In Section 4, a numerical example is presented to illustrate the
proposed approach. In Section 5, results are discussed and compared to others previously
reported in the literature. Finally, Section 6 concludes, summarizing the main contributions
and giving the future work perspectives of this research.

2. Mechanical Analysis
2.1. FCC-Based Definition of the Mass Matrix of an Element Defined by Three Basic Points

This section details the method used to obtain the mass matrix M3P of elements
defined by three basic points using FCC and the concept of virtual work.

Consider an element defined by three basic points i, j, and k, as shown in Figure 1.
The element is located in a global coordinate system (x, y) and in a local coordinate system
(x̄, ȳ) with its origin at point i and the x̄ axis directed toward point j.
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Figure 1. A 2D element with three basic points (i, j, and k).

The location of any point P in this element is defined by a vector r in the global
reference system and a vector r̄ in the local coordinate system. In this way, r can be
expressed, according to Equation (1).

r = ri + Ar̄ (1)

where A is the rotation matrix. Being the element rigid, the local position of vector r̄
remains constant regardless of the element’s motion. Thus, the position of point P can be
defined according to Equation (2).

r = ri + Ar̄ = ri + c1(rj − ri) + +c2(rk − ri) (2)

where c1 and c2 are the components of vector r̄ in the local coordinate system. The compo-
nents of vector r can be expressed in matrix form as shown in Equation (3).

r =
{

x
y

}
=

[
1− c1 − c2 0 c1 0 c2 0

0 1− c1 − c2 0 c1 0 c2

]


xi
yi
xj
yj
xk
yk


= Cq (3)

where qT =
{

xi yi xj yj xk yk
}

is the vector that contains the FCC of the element.
Note that matrix C is constant for a given point P and does not change with the system’s
motion, thus fulfilling Equations (4) and (5).

ṙ = Cq̇ (4)

r̈ = Cq̈ (5)

Coefficients c1 and c2 in matrix C can be expressed in terms of the coordinates of
points i, j, and k in the local reference frame according to Equation (6).

r̄ = c1(rj − ri) + c2(rk − ri) (6)

Since r̄i = 0 is located at the local reference origin, Equation (6) can be rewritten as
shown in Equation (7).

r̄ = [ r̄j | r̄k ]

{
c1
c2

}
= X̄c (7)
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Vector c contains the coefficients c1 and c2, and matrix X̄ has the components of vectors
r̄j and r̄k in its columns (Equation (8)).

X̄ = [ r̄j | r̄k ] =

[
xj xk
yj yk

]
=

[
lij Kx
0 Ky

]
(8)

Now, it is possible to define the virtual work W∗ generated by the inertial forces
(Equation (9)).

W∗ = −ρ
∫

Ω
ṙ∗T r̈dΩ (9)

where ρ is the density of the element’s material. Substituting Equations (4) and (5) into
Equation (9) yields to the definition of virtual work (Equation (10)):

W∗ = −ρ
∫

Ω
q̇∗TCTCq̈dΩ (10)

Since vectors q̇∗T and q̈ are independent of Ω, they can be taken out of the integral as
expressed by Equation (11).

W∗ = −q̇∗T
(

ρ
∫

Ω
CTCdΩ

)
q̈ (11)

On the other hand, taking into account the definition of virtual work proposed in [43]
(Equation (12)) and comparing it to Equation (11), the mass matrix M3P can be expressed
by Equation (13).

W∗ = −q̇∗TMq̈ (12)

M3P = ρ
∫

Ω
CTCdΩ (13)

Further development of the product of CTC in Equation (13) yields to Equation (14).

M3P = ρ
∫

Ω



ce 0 c f 0 cg 0
0 ce 0 c f 0 cg
c f 0 ch 0 ci 0
0 c f 0 ch 0 ci
cg 0 ci 0 cj 0
0 cg 0 ci 0 cj


dΩ (14)

with:
ce = c2

1 + 2c1c2 − 2c1 + c2
2 − 2c2 + 1 (15)

c f = −c2
1 − c1c2 + c1 (16)

cg = −c1c2 − c2
2 + c2 (17)

ch = c2
1 (18)

ci = c1c2 (19)

cj = c2
2 (20)

Note that Equation (14) involves solving the integrals of Equations (21)–(23).∫
Ω

ρdΩ = m (21)
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∫
Ω

ρcdΩ =
∫

Ω
ρX̄−1 r̄dΩ = ρ

∫
Ω

[ 1
lij
− Kx

Ky lij
0 1

Ky

][
x̄
ȳ

]
dΩ =

ρ
∫

Ω

[
x̄
lij
− ȳKx

Ky lij
ȳ

Ky

]
dΩ =

mx̄g
lij
− mȳgKx

Ky lij
mȳg
Ky

 (22)

∫
Ω

ρccTdΩ = X̄−1
(∫

Ω
ρr̄r̄TdΩ

)
X̄−T = X̄−1

(∫
Ω

ρ

[
x̄2 x̄ȳ
x̄ȳ ȳ2

]
dΩ
)

X̄−T =

X̄−1
[

Iy Ixy
Ixy Ix

]
X̄−T =

 IxK2
x

K2
y l2

ij
− 2IxyKx

Ky l2
ij

+
Iy

l2
ij
− IxKx

K2
y lij

+
Ixy

Ky lij

− IxKx
K2

y lij
+

Ixy
Ky lij

Ix
K2

y

 (23)

where m is the total mass of the element, r̄ represents the local coordinates of the center of
gravity, and Ix, Iy, and Ixy are the moments and products of inertia with respect to local
coordinates with origin at the basic point i.

By substituting the integrals of Equations (21)–(23) into Equation (14), we finally obtain
the mass matrix M3P (Equation (24)).

M3P =



e 0 f 0 g 0
0 e 0 f 0 g
f 0 h 0 i 0
0 f 0 h 0 i
g 0 i 0 j 0
0 g 0 i 0 j

 (24)

with:

e =
IxK2

x
K2

yl2 −
2IxKx

K2
ylij

+
Ix

K2
y
−

2IxyKx

Kyl2
ij

+
2Ixy

Kylij
+

Iy

l2
ij
+

2Kxmȳg

Kylij
+ m−

2mx̄g

lij
−

2mȳg

Ky
(25)

f = − IxK2
x

K2
yl2

ij
+

IxKx

K2
ylij

+
2IxyKx

Kyl2
ij
−

Ixy

Kylij
−

Iy

l2
ij
−

Kxmȳg

Kylij
+

mx̄g

lij
(26)

g =
IxKx

K2
ylij
− Ix

K2
y
−

Ixy

Kylij
+

mȳg

Ky
(27)

h =
IxK2

x

K2
yl2

ij
−

2IxyKx

Kyl2
ij

+
Iy

l2
ij

(28)

i = − IxKx

K2
ylij

+
Ixy

Kylij
(29)

j =
Ix

K2
y

(30)

2.2. Six-Bar Mechanism

Figure 2 shows the six-bar mechanism. This kind of mechanism exhibits one degree of
freedom and five mobile links.

Each of the links has a local coordinate system with its origin located at point i and
the x axis directed toward point j. Each of the links has a mass mbn and a center of gravity
located at local coordinates (xbn, ybn) for 1 ≤ n ≤ 5. The distribution of the points is
detailed in Table 1.
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For this mechanism, it is possible to define a vector q representing the positions of its
basic points (Equation (31)).

q = [Ax Ay Bx By Cx Cy Dx Dy Ex Ey Fx Fy Gx Gy]
T (31)

By time-deriving q, it is possible to obtain a new vector q̇ representing the velocities
of each of the basic points of the mechanism (Equation (32)). Similarly, by time-deriving
the velocity vector, the acceleration vector q̈ can be obtained (Equation (33)).

q̇ = [VAx VAy VBx VBy VCx VCy VDx VDy VEx VEy VFx VFy VGx VGy]
T (32)

q̈ = [AAx AAy ABx ABy ACx ACy ADx ADy AEx AEy AFx AFy AGx AGy]
T (33)

Figure 2. The six-bar mechanism.

Table 1. Point distribution for the six-bar mechanism.

Element Point i Point j Point k

1 C E D

2 A C

3 B F E

4 D G

5 F G

2.3. Counterweight Addition

To proceed with the dynamic balancing of the six-bar mechanism, a set of cylindrical
counterweights is added to its structure (Figure 3).

To simplify the procedure, let us assume that all counterweights are coincident with
the basic point i of each of the elements of the mechanism. The center of gravity of each
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counterweight is located at the local coordinates (xcn, ycn) for 1 ≤ n ≤ 5. Their thickness is
defined by tcn for 1 ≤ n ≤ 5.

Figure 3. Six-bar mechanism with cylindrical counterweights.

It is then possible to define the mass mcn of each counterweight as a function of
its density ρcn = ρ, its thickness tcn, and the location of its CoM (xcn, ycn), as shown in
Equation (34).

mcn = ρ V = ρπtcn(x2
cn + y2

cn) (34)

It is also possible to obtain the mass moments for each of the counterweights with
respect to the local coordinate system origin, as shown in Equations (35) and (36).

Ixcn =
1
4

mcn(x2
cn + y2

cn)+my2
cn =

1
4

mcn(x2
cn + 5y2

cn) =
1
4

ρπtcn(x2
cn + y2

cn)(x2
cn + 5y2

cn) (35)

Iycn =
1
4

mcn(x2
cn + y2

cn)+mx2
cn =

1
4

mcn(5x2
cn + y2

cn) =
1
4

ρπtcn(x2
cn + y2

cn)(5x2
cn + y2

cn) (36)

The polar moment of inertia of each counterweight Izcn with respect to the local
coordinate system origin can be defined by Equation (37).

Izcn = Ixcn + Iycn =
3
2

mcn(x2
cn + y2

cn) =
3
2

ρπtcn(x2
cn + y2

cn)
2 (37)

Similarly, the product of inertia of each counterweight with respect to the local coordi-
nate system origin can be calculated with Equation (38).

Ixycn = mcnxcnycn = ρπtcn(x2
cn + y2

cn)xcnycn (38)

2.4. Mass Matrix for the Six-Bar Mechanism with Counterweights

To formulate the mass matrix of the balanced mechanism, it is necessary to obtain the
mass matrices for each of the linkages (link and counterweight) first. The details of these
individual mass matrices can be found in Appendix A.
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Given that the mechanism consists of seven basic points, each of them represented by
one (x, y) coordinate, the resulting mass matrix will consist of 14 columns and 14 rows.

Equation (39) shows the mass matrix M representing the six-bar mechanism with
counterweights.

M =



a2 0 0 0 b2 c2 0 0 0 0 0 0 0 0
0 a2 0 0 −c2 b2 0 0 0 0 0 0 0 0
0 0 e3 0 0 0 0 0 g3 0 f3 0 0 0
0 0 0 e3 0 0 0 0 0 g3 0 f3 0 0
b2 c2 0 0 d2 + e1 0 g1 0 f1 0 0 0 0 0
−c2 b2 0 0 0 d2 + e1 0 g1 0 f1 0 0 0 0

0 0 0 0 g1 0 a4 + j1 0 i1 0 0 0 b4 c4
0 0 0 0 0 g1 0 a4 + j1 0 i1 0 0 −c4 b4
0 0 g3 0 f1 0 i1 0 h1 + i3 0 i3 0 0 0
0 0 0 g3 0 f1 0 i1 0 h1 + i3 0 i3 0 0
0 0 f3 0 0 0 0 0 i3 0 a5 + h3 0 b5 c5
0 0 0 f3 0 0 0 0 0 i3 0 a5 + h3 −c5 b5
0 0 0 0 0 0 b4 c4 0 0 b5 c5 d4 + d5 0
0 0 0 0 0 0 −c4 b4 0 0 −c5 b5 0 d4 + d5



(39)

where an, bn, . . . , jn are the terms of the different mass matrices for linkages n = 1, . . . , 5 (see
Appendix A).

2.5. Linear Momentum and Shaking Force

Once vectors q, q̇, and q̈ have been defined (Equations (31)–(33)), it is possible to
calculate the linear momentum L associated to the balanced mechanism (Equation (40)).[

Li
Lj

]
= BMq̇ (40)

where B (Equation (41)) is a matrix formed by identity matrices matching the number of
basic points in the mechanism.

B =

[
1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1

]T

(41)

By solving Equation (40) and considering that the velocity of the fixed points is always
zero (VAX = 0, VAY = 0, VBX = 0, VBY = 0), the expressions of the linear momentum (Li
and Lj) can be obtained.

The ShFi and ShFj of the mechanism can be computed by time-deriving the equations
Li and Lj (Equation (40)) (expressions are not included in the paper because of their length).

To guarantee the equilibrium, the result of these derivatives must be constant (normally
zero) in the analyzed period of time.

2.6. Angular Momentum and Shaking Moment

The use of FCC allows us to express the angular momentum H of the mechanim, as
shown in Equation (42):

H = q× (Mq̇) = rMq̇ (42)

where r is given as a function of the basic points and can be expressed as Equation (43):

r =
[
−AY AX −BY BX −CY CX −DY DX −EY EX −FY FX −GY GX

]T (43)

The ShM can then be calculated by time-deriving H (Equations (44) and (45)).

ShM =
dH
dt

= rM(
d(q̇)

dt
) + (

dr
dt
)Mq̇ (44)
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ShM =
dH
dt

= rMq̈ + ṙMq̇ (45)

with:

ṙ =[−VAY VAX −VBY VBX −VCY VCX −VDY VDX

−VEY VEX −VFY VFX −VGY VGX ]
T (46)

To guarantee the dynamic equilibrium of the mechanism, the ShM must be constant,
i.e., the time-derivative of H (Equation (45)) must be zero.

The ShM of the mechanism is finally obtained by solving Equation (45) and considering
VAX = 0, VAY = 0, VBX = 0 y VBY = 0 (equation is not included in the paper because of
its length).

3. Optimization
3.1. Objective Function

Two dimensionless balancing indexes βi, containing the motion parameters (q, q̇, and
q̈) of the six-bar mechanism, can be used to define the optimization’s objective function:
βShF and βShM.

βShF (Equation (47)) is defined by the RMS value of the ShF reaction of the opti-
mized mechanism (rms(oShF)) with respect to the RMS value of the original mechanism
(rms(ShF)), which are both considered over a time period T.

βShF =
rms(oShF)
rms(ShF)

=

√√√√∑N
k=1(

oShF2
ik +

o ShF2
jk)

∑N
k=1(ShF2

ik + ShF2
jk)

(47)

βShM (Equation (48)) can be calculated in a similar way. Nevertheless, the reaction
produced by ShM must also be considered.

βShM =
∑N

k=1
oShM2

k

∑N
k=1 ShM2

k

(48)

where oShM is the shaking moment of the optimized mechanism and ShM is a constant
representing the shaking moment of the unbalanced mechanism.

A multiobjective optimization problem emerges as it is desired to minimize both βShF
and βShM considering the variables boundaries (i.e., the physical limits for the locations of
the CoM (xcn and ycn) and the thickness (tcn) of each counterweight). To solve this problem,
a linear combination of the objectives is performed as proposed in Equation (49).

f (X) = γ ∗ βShM + (1− γ) ∗ βShF (49)

where γ is a scalar value that assigns the importance to each optimization objective. Thus,
the 15 variables to be optimized are: xc1, yc1, tc1, xc2, yc2, tc2, xc3, yc3, tc3, xc4, yc4, tc4, xc5, yc5,
and tc5. The boundaries for optimization are defined according to Equation (50).

xmin
cn 6 xcn 6 xmax

cn

ymin
cn 6 ycn 6 ymax

cn

tmin
cn 6 tcn 6 tmax

cn

(50)

3.2. Algorithm

Once the objective function has been proposed, an optimization method can be applied.
In this paper, we explore Differential Evolution (DE) [44].

Being an evolutionary algorithm, DE uses approaches inspired by the theory of evolu-
tion. It optimizes a problem by proposing a population of candidate solutions and creating
new candidate solutions with the ones that obtained the best scores. Thus, the new gen-
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erations are better than the previous ones. Recently, DE has been successfully applied to
disruptive fields such as the oil market [45] and genome studies [46].

The DE algorithm proposed for the complete balancing optimization of the six-bar
mechanism is presented in Algorithm 1. It was programmed in Python.

Algorithm 1: Differential Evolution (DE).
Input : N = 255, F = 0.8, CR = 0.7, kmax = 100

1 An initial population is generated S = {X1k, X2k, . . . , XNk}
2 Xbest = solution with the lowest value in the objective function
3 for k = 0 until kmax do
4 Q = {}
5 for i = 1 until N do
6 Selection of three random solutions in S γ, δ, η ∈ {1, . . . , N}, γ 6= δ 6= η 6= i
7 X̂ik = Xγk + F(Xδk − Xηk)

8 X̂ik = Clip(X̂ik)
9 for j = 1 until D do

10 R = Random value between 0 and 1 with uniform distribution
11 if R ≤ CR then
12 Yikj = X̂ikj

13 else
14 Yikj = Xikj

15 end
16 end
17 if f (Yik) < f (Xik) then
18 Q = Q ∪Yik
19 else
20 Q = Q ∪ Xik
21 end
22 If f (Yik) < f (Xbest) then Xbest = Yik
23 end
24 S = Q
25 k = k + 1
26 end
27 return Xbest

Given that the number of variables to optimize is equal to 15, a population of
N = 152 = 225 solutions is created, identifying the nth solution of generation k with the
vector XNk. Solutions are initialized following a uniform distribution bounded by limits be-
tween the allowed ranges for each variable. Three solutions are then selected to perform the
random mutation: Xγk, Xδk, and Xηk to generate a new solution: X̂ik = Xγk + F(Xδk − Xηk)
with F being a random value between 0 and 2.

The crossover is performed with a probability CR = 0.7. Then, Yik and Xik are
evaluated in the function to be optimized. To be considered part of the new generation, the
one with the best results is chosen. The generations are repeated 100 times, resulting in the
solution exhibiting the lowest value.

4. Results

This section presents the numerical results of the dynamic balancing of the six-bar
mechanism with FCC and DE optimization. To better visualize the influence of the counter-
weights on the procedure, a Pareto front analysis is proposed. This tool allows to restrict
our attention to the set of best solutions and ease the decision-making process.
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Table 2 summarizes the physical parameters of the six-bar mechanism shown in
Figure 2. Steel links have been considered with a density of 7800 kg/m3. The counter-
weights are considered to be made of brass with a density ρcn = 8500 kg/m3.

Table 2. Parameters of the six-bar mechanism used in the example. Those indicated with a ‘-’ are not
necessary for the numerical analysis.

Link
n

1 2 3 4 5

Mass
mbn

[kg]

0.6935 0.1022 0.9636 0.1825 0.1679

Length
ln

[m]

0.19 0.14 0.13416408 0.25 0.23

Inertia
Ixbn

[kg m/s2]

0.00116161 - 0.00622646 - -

Inertia
Iybn

[kg m/s2]

0.00556534 - 0.00657336 - -

Inertia
Izbn

[kg m/s2]

- 0.00066856 - 0.00380360 0.00296204

Inertia
Ixybn

[kg m/s2]

0.00167596 - 0.00522914 - -

CoM
xbn [m]

0.08 0.07 0.07751702 0.125 0.115

CoM
ybn [m]

0.03333333 0.0 0.06559133 0.0 0.0

Kx [m] 0.05 - 0.09838699 - -

Ky [m] 0.1 - 0.196677398 - -

A motor located at point A is responsible for actuating the mechanism. Its rotating
speed has been fixed at 500 rpm. Using direct kinematics, it is possible to obtain a sample
of the positions, velocities, and accelerations at each of the basic points of the mechanism.

By replacing all known parameters in the equations of the balancing indexes
(Equations (47) and (48)), it is possible to define the objective function (Equation (49)).
According to the mechanical characteristics of this particular example, the boundaries
considered for the optimization are shown in Equation (51):

−0.16 m 6 xcn, ycn 6 0.16 m

0.005 m 6 tcn 6 0.04 m
(51)

4.1. Optimization with Five Counterweights

The DE algorithm was executed until 200 valid solutions (i.e., solutions resulting from
the objective function optimization with values between 0 and 1) were obtained considering
γ as a random value with uniform distribution in the range (0, 1), following the random
search of the hyper-parameters presented in [47].

Figure 4a shows the relationship between the βShF and the βShM values for all the
solutions found. Different colors are used to represent the values used for γ in the objective
function f(X) (Equation (49)).
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In Figure 4b, the dark points represent the Pareto front while the light ones represent
the dominated solutions.

(a) (b)

Figure 4. Pareto analysis of the optimization objectives: βShM and βShF. (a) Optimized βShM and
βShF according to γ. (b) Pareto Front of the optimized objectives.

Among all the solutions found in the Pareto front, it is possible to select the one that
is the most appropriate according to the desired type of balancing. To exemplify this
statement, let us consider three different solutions from the Pareto front.

In the first one, a greater importance is given to balancing the ShM (βShM= 0.235917108,
βShF = 0.932850297). In the second one, a greater importance is given to balancing the ShF
(βShM = 0.924195224, βShF = 0.270900009). Finally, in the third solution, the same importance
is given to balancing both the ShF and ShM (βShM = 0.580111266, βShF = 0.558041831). These
solutions are detailed below.

1. In the first solution, a greater importance is given to balancing the ShM. This is
achieved by choosing the minimum value of index βShM (βShM = 0. 235917108), which
allows us to obtain an improvement of 76.4% without considering any improvement
of the ShF (βShF = 0.932850297). The following variables values correspond to this
solution:

xc1 = −0.02611622 yc1 = −0.033186164 tc1 = 0.021370695
xc2 = −0.06 yc2 = −0.012314794 tc2 = 0.039459546
xc3 = −0.06 yc3 = 0.016752092 tc3 = 0.039814955
xc4 = −0.002045161 yc4 = −0.000151565 tc4 = 0.005
xc5 = 0.001614171 yc5 = 0.00639164 tc5 = 0.005106848

2. The second chosen solution in the Pareto front is the one with the minimum value
in βShF (βShF = 0.270900009), which achieves an improvement of 72.91% in balancing
the ShM. This choice assigns no importance to the balancing of the ShM (βShM =
0.924195224). This solution yields to the following variable values:

xc1 = −0.049437705 yc1 = −0.04279353 tc1 = 0.0074319
xc2 = −0.06 yc2 = −0.001485936 tc2 = 0.038953174
xc3 = −0.050813691 yc3 = −0.017724236 tc3 = 0.039660979
xc4 = 0.001669535 yc4 = 0.005996916 tc4 = 0.005
xc5 = 0.000387207 yc5 = 0.013090811 tc5 = 0.005

3. The third chosen solution is the one in the Pareto front where both indexes are
optimized (βShM = 0.580111266, βShF = 0.558041831). By using this solution, the ShM
is reduced by 41.99% and the ShF is reduced by 44.2%. It corresponds to the following
variable values:
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xc1 = −0.06 yc1 = −0.030069707 tc1 = 0.006021448
xc2 = −0.06 yc2 = −0.00383543 tc2 = 0.04
xc3 = −0.06 yc3 = 0.004650961 tc3 = 0.028206906
xc4 = 0.000606455 yc4 = −0.001322538 tc4 = 0.005416754
xc5 = 0.000545683 yc5 = −0.0000185 tc5 = 0.005

To measure the method’s efficiency, we assessed two parameters: convergence and
computing time. Figure 5 shows the process of convergence of the objective function f (X)
as a function of generations. Six executions are presented with different γ values. Note
that all executions exhibit values higher than 1.0 at the beginning of the execution (i.e., not
optimized at all). After the 40th generation, all reach convergence (the closer the value to
zero, the better), proving that the DE method actually optimizes the objective function.

Computing time is a major concern in the efficiency of optimization algorithms. To
measure it, we executed 50 times the DE optimization procedure on a desktop computer
with an Intel Core i7 processor (2.40 GHz), 8 GB RAM, and Windows 10 OS. The average
computing time was 15.22 min with a standard deviation of 0.25 min. Being a mechan-
ical design application, the optimization procedure does not require a fast or real-time
computing but rather a practical one.

Figure 5. The convergence of the objective function f (X) with the DE method.

4.2. Dimensions of the Counterweights

An analysis is now presented to determine if the proposed boundaries for the opti-
mization are the most suitable or if they should be modified (in case there is the possibility
of changing them due to the mechanical constraints of the mechanism and its surround-
ing space).

Figure 6 shows the box plots of the partial derivatives of the objective function with re-
spect to each of the variables to be optimized xn, yn, and tn for each of the n counterweights
(1 ≤ n ≤ 5) when evaluated at the optimal solutions.

We can state that optimal boundaries have been found when all the values of the
partial derivatives of the objective function are close to zero. In the box plots of Figure 6, it
can be seen that the partial derivatives of the variables x1, y1, y2, y3, x4, y4, t4, x5, y5, and t5
are close to zero, implying that the proposed boundaries allow such variables to reach their
optimal values.

However, note that variables t1, x2, t2, x3, and t3 have partial derivative values that are
not close to zero. For example, in t1 and even more significantly in x2 and x3, the values
tend to be greater than zero; hence, it can be deduced that better optimization results could
be obtained if: (1) the thicknesses of counterweight 1 were smaller than the fixed boundary
of 0.005 m (i.e., practically eliminating counterweight 1) and (2) the x-axis positions of
counterweights 1 and 3 were less than the limit of −0.16 m (i.e., moving their CoM in their
–x local axis).
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Figure 6. Box plots of partial derivatives of the objective function with respect to each optimization
variable when using five counterweights.

On the other hand, the values of the partial derivatives of variables t2 and t3 tend to
be less than zero, which means that, if possible, it would be convenient to further extend
the boundaries of the optimization of these variables to values greater than 0.04 m.

Note that the information obtained from the Pareto front of the partial derivatives of
the objective function is extremely useful to make decisions concerning the boundaries of
the optimization, allowing us to foresee pertinent changes in the linkages as far as their
mechanical conditions allow it.

Figure 7a shows the histograms of the volumes of the counterweights obtained from
the different optimization results. Together with the analysis of the counterweights’ area
and thickness shown in Figure 7b, it is possible to conclude that counterweight 4 can be
eliminated: it has a very small volume compared to the other counterweights, and its
thickness and area are practically negligible.

In addition, for both counterweights 2 and 3, it can be appreciated that their thickness
tends to remain at the upper limit of the optimization, thus confirming the result of the
partial derivatives analysis: if the mechanical characteristics of the mechanism allow it, it
would be advisable to extend the upper limit of their thicknesses.
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(a)

(b)

Figure 7. Dimensional analysis for the five counterweights balancing the six-bar mechanism. (a) Vol-
umes of the five counterweights. (b) Relationship between the area and the thickness for the five
counterweights.
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4.3. Implementation

The optimization method and the dimensional analysis conclude with the design of a
solution that effectively reduces the dynamic reactions of the six-bar mechanism.

Let us consider the third case where both ShF and ShM are optimized. Figure 8
shows the proposed implementation. As suggested by the analysis, counterweight 4 has
been eliminated. Note that counterweight 5 is not visible because it exhibits very small
dimensions in relation to the mechanism. Yet, it has been considered for the dynamic
balancing of the mechanism.

Figure 8. Conceptual implementation of the third solution from the Pareto front for the six-bar
mechanism using five counterweights Ci.

4.4. Optimization with Four or Less Counterweights

The previous analysis suggested that not all five counterweights are strictly needed to
balance the six-bar mechanism: counterweight 4 is meaningless and counterweight 5 is so
small that it can be practically eliminated. When seeking a simple solution, i.e., one that
does not involve adding too much volume to the mechanism, it may be useful to reduce
the number of counterweights as long as they still provide acceptable results.

We performed the same analysis for four, three, two, and one counterweights. Figure 9
shows a comparison between the Pareto fronts of the different optimization results as
a function of the number of counterweights. Note that as expected, similar results are
obtained when using five, four, and three counterweights. So, a general conclusion for the
implementation would be to use three counterweights.

Figure 9. Pareto front comparison of the optimization objectives βShM and βShF according to the
number of counterweights.
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Table 3 summarizes the results obtained. The best results are highlighted in blue.
Again, the best choice depends on the desired balancing: only the ShF, only the ShM,
or both.

Table 3. Summary of the optimization results for the six-bar mechanism balancing.

Counterweights ShF Optimization ShM Optimization ShF and ShM Optimization
Cn % ShF, % ShM % ShF, % ShM % ShF, % ShM

All 5 72.91, 7.59 6.72, 76.41 44.2, 41.99
C1, C2, C3, C4 76.82, 3.59 3.21, 76.97 44.31, 40.73

C1, C2, C3 75.95, 0.5 3.53, 77.21 45.69, 46.81
C2, C3 56.98, 6.52 0.17, 67 41.66, 34.18

C3 44.97, 2.26 1.03, 61 28.69, 30.23

5. Discussion

The implementation of well-designed counterweights allows us to reduce the ShF and
ShM by 76.82% and 77.21%, respectively, when importance is given to either of them and
by 45.69% and 46.81%, respectively, when equal importance is given to both of them.

Table 4 compares our balancing results with others previously reported in the literature.
Note that the comparison is limited to the cases where either the ShF or the ShM are
optimized as not all the studies report the joint optimization. Table 4 includes other types
of mechanisms such as the crank-slider and the four-bar mechanism, which are indeed
simpler structures and thus easier to optimize. Six-bar mechanisms and their balancing are
more complex and less frequently found in the literature because, as explained in Section 2,
they exhibit a higher number of links with some defined by three basic points.

Table 4. Comparison of balancing results for several types of mechanisms and optimization methods.

Reference, Mechanism Optimization % of ShF % of ShM
CC or FCC Algorithm Optimization Optimization

[48], CC crank-slider Differential Evolution 61.42 65.96
[49], CC crank-slider Teaching–Learning 48 44
[50], CC crank-slider Genetic 46 99

[51], FCC crank-slider Differential Evolution 97.76 94.58
[52], CC four-bar Genetic 50 68
[36], CC four-bar Firefly 86.3 83.39

[38], FCC four-bar Gradient Descent 99.70 83.99
[53], CC six-bar Genetic 48.5 32.35

This work, FCC six-bar Differential Evolution 76.82 77.21

Note that the use of FFC to define the mass matrix of a mechanism and thus obtain the
expressions representing the dynamic reactions in its base, in conjunction with an optimiza-
tion algorithm, is a suitable methodology for the complete balancing of mechanisms. Our
previous work in crank-sliders [51] and four-bar [38] mechanisms confirm the efficiency of
the proposed approach. The results obtained surpass those of approaches using Cartesian
coordinates (CC).

The DE optimization method was successfully applied to solve the balancing problem of
a six-bar mechanism. DE is a simple yet robust approach to address multiobjective problems.

Comparison between Pareto fronts has proven to be a useful tool for better visualizing
the impact of each counterweight on the dynamic balancing of the mechanism.

The effectiveness of the analysis of the boundaries by means of box plots of the partial
derivatives of the variables to be optimized together with the histograms of volumes and
relations between area and thickens were also demonstrated. They ease the visualization of
possible improvements on the counterweights and allow us to make useful decisions on
their implementation.
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Balancing six-bar mechanisms is highly appreciated in areas such as mobile robotics,
since this type of linkage is used in humanoid robots [54] and bionic legs [55,56] as well as
in rehabilitation engineering [57], in which balancing could minimize the reactions caused
by the devices’ motion, thus improving their performance and usability.

6. Conclusions

This paper has presented a novel approach for the complete (or dynamic) balanc-
ing of mechanisms: the use of fully Cartesian coordinates (FCC) in conjunction with an
optimization method such as Differential Evolution (DE).

Among the main contributions of this paper is the development of the two-dimensional
mass matrix for elements defined by three basic points. To our knowledge, this matrix has
not been proposed so far in the literature and it can be applied to a vast number of more
complex mechanisms that use type of linkages. By using FCC, this work has demonstrated
that even for the most complex mechanisms, it is possible to obtain relatively simple non-
trigonometric equations that define the ShF and ShM and to further optimize their dynamic
balancing with algorithms such as DE with very good results.

As future work, it is expected to continue exploring FCC together with other meta-
heuristic methods to optimize more complex mechanisms in two and three dimensions.
Our approach promises to be highly efficient for optimizing the balancing conditions of
even more complex mechanisms once their mass matrices have been defined.
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Appendix A. Mass-Matrix for Individual Linkages

It is necessary to define the mass matrix for each of the linkages in order to assemble
the mass matrix of the entire mechanism.

Given that each counterweight is firmly attached to its corresponding link and that
their position with respect to the local reference system does not change with the mech-
anism’s motion, it is possible to consider five linkages to be optimized, each of them
encompassing a link and a counterweight.

Linkages 1 and 3 have mass matrices consisting of three basic points, while linkages 2,
4, and 5 have mass matrices involving two basic points.

To define the different mass matrices, it is necessary to substitute the terms m, x̄g, ȳg,
Ix, Iy, Ixy, and Iz in the equations that define the mass matrices of two and three points,
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considering the contribution of both the link and the counterweight. Thus, for each n
linkage, Equations (A1)–(A7) can be written.

mn = mbn + mcn = mbn + ρπtcn(x2
cn + y2

cn) (A1)

xgn =
xbnmbn + xcnmcn

mbn + mcn
(A2)

ygn =
ybnmbn + ycnmcn

mbn + mcn
(A3)

Ixn = Ixbn + Ixcn = Ixbn +
1
4

ρπtcn(x2
cn + y2

cn)(x2
cn + 5y2

cn) (A4)

Iyn = Iybn + Iycn = Iybn +
1
4

ρπtcn(x2
cn + y2

cn)(5x2
cn + y2

cn) (A5)

Ixyn = Ixybn + Ixycn = Ixybn + ρπtcn(x2
cn + y2

cn)xcnycn (A6)

Izn = Izbn + Izcn = Ixbn + Iybn + Ixcn + Iycn (A7)

Appendix A.1. Mass Matrix for Linkages 1 and 3

To define the mass matrix of linkage 1, let us consider point C as i, point E as j, and
point D as k. Similarly, for linkage 3, point B is considered as i, point F as j, and point E as k.

Figure A1 shows the distances Kx1, Ky1, Kx3, and Ky3. Note that for linkage 1, lij = l1
corresponds to the distance C̄E while for linkage 2, lij = l2 corresponds to the distance B̄F.

(a) (b)

Figure A1. Linkages defined by three basic points. (a) Linkage 1. (b) Linkage 3.

By using the mass matrix M3P (Equation (24)), the terms of the mass matrix for linkages
n = 1 and n = 3 can be defined according to Equations (A8)–(A13).
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Appendix A.2. Mass Matrix for Linkages 2, 4, and 5

Linkages 2, 4, and 5 are defined by two basic points. For linkage 2, point A is consid-
ered as i while point C is considered as j; for linkage 4, point D is considered as i while point
G is considered as j; for linkage 5, point F is considered as i while point G is considered as j.
Each of them have their origin at point i and the x axis directed toward point j. For each
linkage, ln is the distance between points i and j.

By substituting the corresponding terms in the mass matrix of the elements defined
by two basic points M2P (equation can be found in [38]), it is possible to obtain the terms
of the mass matrix of each of these elements consisting of a counterweight and a linkage
(Equations (A14)–(A17)).
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