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Abstract: The algebraic topology of Collatz attractors (or “Collatz Feathers”) remains very poorly
understood. In particular, when pushed to infinity, is their set of branches discrete or continuous?
Here, we introduce a fundamental theorem proving that the latter is true. For any odd x, we first
define An

x as the set of all odd numbers with Syr(x) in their Collatz orbit and up to n more digits than
x in base 2. We then prove limn→∞

|An
x |

2n+c ≥ 1 with c > −4 for all x and, in particular, c = 0 for x = 1,
which is a result strictly stronger than that of Tao 2019.

Keywords: dynamical system; 3x + 1 problem; Collatz conjecture; discrete chaos; Furstenberg
conjecture; discrete algebraic topology; chaos theory; chaotic cryptology
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1. Introduction

The Collatz conjecture—that all orbits of the 3x + 1 discrete dynamical system reach
1—remains extremely relevant both to the fundamental study of ergodic number theory
and to the applied one of chaotic cryptology. For example, Bocart 2018 [1] demonstrated
that it could be successfully used to develop a readily applicable proof-of-work algorithm
independent of large prime numbers for the cryptocurrency industry. In a previous
publication [2], we studied and exhibited the particular geometry of the Collatz basins
of attraction (hereunder, “attractors”) and connected it to the also difficult Furstenberg
conjecture, of which the entire complexity lies in that “base 2 and base 3 representations
share no common structure” (Furstenberg 1960 [3] and 1967 [4], and Shmerkin 2021 [5]).
Collatz attractors, also known as “Collatz feathers” [6] or “Collatz seaweeds”, are forming
complex quivers among natural numbers, but very little is still known of their partic-
ular geometry and topological properties. Here, we intend to simplify and extend the
arithmetic and algebraic formalism we introduced in [2] (where the reader may find
a more thorough bibliography) in order to obtain four fundamental lemmas and one
fundamental theorem to break new ground in the study of the geometric algebra and, in
particular, discrete algebraic topology of these otherwise mostly unknown structures.

2. Definitions

A few actions naturally appear in the study of Collatz attractors [2] so it is useful to
abbreviate them all here. For all odd x,

• S(x) := 2x + 1. It is equivalent to “appending an end digit 1 to x in base 2”. Sn(0) is,
therefor,e the nth Mersenne number.

• G(x) := 2x− 1. It is equivalent to “intercalating a digit 0 before the final digit 1 of x in
base 2”. Gn(3) is the (n + 1)th Mersenne number + 2.

• V(x) := 4x + 1 = G(S(x)). It is equivalent to “appending an end pair of digits 01 to x
in base 2”. Vn(1) is the (2(n + 1))th Mersenne number divided by 3.

• D(x) := 64x + 49.
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• A(x) := 2x−1
3 = G(x)

3 for x ≡ 2 mod 3 (we will note “x in [2]3”).

• C(x) := 4x−1
3 = S(G(x))

3 for x ≡ 1 mod 3 (we will note “x in [1]3”).

Furthermore:

1. x ∼ y is defined as “x and y have a common number in their Collatz orbit”. The
relation is reflexive, transitive, and symmetric.

2. Syr(x) means “the first odd number in the forward Collatz orbit of x”.
3. Ax is “the attractor of x” defined as all numbers with Syr(x) in their forward Collatz

orbit. An
x stands for “the elements of Ax with at most n more digits than x in base 2”.

4. Ax denotes “the complement of set Ax”. |An
x | is the number of elements in An

x
5. The “closure of {x}” by any action is the set of all possible compositions of this action on x.
6. Let Vx be the closure of {x} by V, and note Vn

x as its elements written at most with n
more digits than x in base 2.

7. Let Dx be the infinite sequence:

{{x; S(x)}; {D(x); S(D(x))}; ...; {Dk(x); S(Dk(x))}; ...}.

We further define Dn
x as the elements of Dx with at most n more binary digits than x.

8. We note [x] as “the binary length of x” and D[x]+k as “a D sequence starting with a
number of binary length [x] + k”

9. The “V-closure” of Dx, noted as VDx , is the closure of this set by action V. The V-
closure of each pair {a; S(a)} in Dx is called Pa. Note that Pn

a always has exactly n
elements. Vn

Dx
is, therefore, of the following form:

{Pn
x ;Pn−6

[x]+6; ...;Pn−6k
[x]+6k; ...}

10. AC(Vx) is defined as an “action A on all elements of Vx in [2]3 and action C on all
elements of Vx in [1]3”. Let us also note ACk+1(x), action AC on the V-closure of
ACk(x) and initiate with AC0(x) = x. Note that AC(x) is equivalent to AC(Vx), but
we may use the latter when we want to specify a parameter n for the maximum binary
length being considered.

11. The notation
⊔

as in
⊔n

k=1 xk is not understood as the general disjoint union but more
simply as “

⋃n
k=1 xk with each xk being already disjoint from the others”.

3. Preparatory Lemmas

Lemma 1 (Lemma of irreducibility). For all odd x, Ax is the closure of {x} by actions A, C,
and V. Each of its non-x element has a uniquely ordered, finite, and non-cyclic decomposition into
actions A, C, and V from x, and the only possible cycle is from x to itself.

Proof. 3(4x + 1) + 1 = 12x + 4 = 4(3x + 1) so x ∼ V(x) as x is odd. As residue classes in
base 3 are periodic by V, it always reaches numbers where actions C and A are applicable.
If x is in [0]3, then V(x) is in [1]3 and V2(x) in [2]3. Since 3((2x−1)/3) + 1 = 2x, we have that
for any x in [2]3, A(x) ∼ x, and since 3((4x−1)/3) + 1 = 4x, we also have C(x) ∼ x for any
x in [1]3.

For any x in [2]3, we could generalize action A to output the sequence (22k−1x−1)/3 for
all k > 1 because all elements of such sequence also converge to Syr(x), but we already
have them counted in all iterations of action V over A(x). The same goes for action C: it
is generalizable with (22kx−1)/3 for all k > 1 with x in [1]3, but we will already have those
numbers counted in any iteration of action V on C(x).

To prove that each element of Ax has a unique non-cyclic decomposition into actions
A, C, and V, we now define a one-to-one correspondence between any Syr(y) and either
action. For any odd y, either 3y + 1 is divisible by exactly 2, by exactly 4, or by at least 8.
If 3y + 1 is divisible by 2, then A((3y+1)/2) = y; if it is divisible by 4, then C((3y+1)/4) = y;
and if it is divisible by 8 or more, there are always finite k and z such that y = Vk(z) and
Syr(y) = Syr(z).
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Any odd x in Ax leads to Syr(x), so the only possible cycle is x to itself. For example,
1 is the only fixed point of C so the cycle in A1 is 1→ 1.

Remark 1. We already have that no composition of C, and V may be cyclical as both actions are
strictly increasing, but proving that no composition of A, C, and V be cyclical, as they combine
coprimes 2 and 3, would be of at least the same complexity as proving the Furstenberg ×2× 3
conjecture, of which the entire difficulty lies in that “base 2 and base 3 representations share no
known common structures” (Furstenberg 1960 [3] and 1967 [4], and Shmerkin 2021 [5]). We
already have, however, that, in any base 2k,

1. An(x) always ends with the representation of the (n + 1)th Mersenne number, e.g., by 1 . . . 1︸ ︷︷ ︸
k

2

2. Vn(x) always ends with the representation of the (2(n + 1))th Mersenne number divided by
3, e.g., by 01 . . . 01︸ ︷︷ ︸

k

2

3. Cn(x) always ends with the representation of number 2n+1 + 1 e.g., by 0 . . . 0︸ ︷︷ ︸
k

12

The chaoticity of ACV compositions (that is, any legal word of the form
X1 . . . (Xk(Xk+1 . . . (x)).), where Xk is representing exactly one of either operation and x is any
odd number) and hence the difficulty of proving the non-existence of cycles directly come from
the fact that A is allowed to delete digits and that both A and C contain divisions by 3. However,
the beauty of chaotic cryptology is that, whenever a simple system appears to be intractably
chaotic, it comes with the participation trophy of at least offering a strong (and straightforward)
industrial chaotic cipher.

Lemma 2 (Lemma of prolificity). Let x be odd with no odd y such that x = V(y). There is
always a unique odd z such that Dz ∈ AC(x).

Proof.

1. Let x be in [1]3, then so is V3(x). V(x) is in [2]3 and so is V4(x). A(V(x)) = S(C(x)),
A(V4(x)) = S(C(V3(x)), and C(V3(x)) = D(C(x)). Thus, AC(x) = DC(x). For
example, AC(7) = D9

2. Let x be in [0]3; then, V(x) is in [1]3 and AC(x) = DC(V(x)). For example AC(9) = D49

3. Let x be in [2]3; then, V2(x) is in [1]3 and AC(x) = DC(V2(x)) ∪ {A(x)}, with A(x)
not in DC(V2(x)). For example, AC(11) = D241 ∪ {7}. Note A(x) (in the example,
A(x) = 7) always has a V-sequence of its own so AC(A(x)) will in turn output
another D sequence.

Remark 2. For any odd x, AC(x) outputs a D sequence (and if x is in [2]3, a single additional
odd number), in which V-closure is an infinite sequence of V sequences (since no element of any
D sequence can be written V(y) with y being odd). Then, VAC(x) is an infinite sequence of V
sequences and VACk(x) is an infinite k-sequence (a sequence of sequences k times) of V sequences.
|Vn

x | is a polynomial of n of degree 1 (it is exactly equal to n/2), and the amount of numbers up to
extra binary length n from x in each VACk(x) is a polynomial of n of degree k + 1. This algebraic
property is the reason we call Lemma 2 that of "prolificity". Its first immediate consequence is that
limn→∞ |An

x |, being an infinite sequence of positive-valued polynomials of n of incremented degree
and with a positive coefficient for each term of maximal degree, is now necessarily at least of the form
Aean+c for some constants A, a, and c.

Lemma 3 (Lemma of homogeneity). All residue classes in base 3 are equally frequent in
ACk(Vn

x) when n and k tend toward infinity.
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Proof. V3(x) = 26x + 21 with 26 ≡ 1 mod 3 and 21 = 2103, so

1. Let x end in a 0 . . . 0︸ ︷︷ ︸
k

3; then, for all k, V3k
(x) ends in (a + 1)0 . . . 0︸ ︷︷ ︸

k

3 and V3k+1(x) ends

in (a + 2)0 . . . 0︸ ︷︷ ︸
k

13.

2. Let x end in a 2 . . . 2︸ ︷︷ ︸
k

3; then, for all k, V3k
(x) ends in (a + 1)2 . . . 2︸ ︷︷ ︸

k

3.

3. If x ends in 223, A(x) is in [2]3. If x ends in 123, A(x) is in [0]3. If x ends in 023, A(x)
is in [1]3.

4. If x ends in 213, C(x) is in [0]3. If x ends in 113, C(x) is in [2]3. If x ends in 013, C(x) is
in [1]3.

Remark 3. Concordant with Lemma 3, we can verify that actions D and S already preserve the
periodicity of residue classes in base 3: if x is in [0]3, D(x) is in [1]3; if x is in [1]3, D(x) is in [2]3;
and if x is in [2]3, D(x) is in [0]3. Furthermore, if x is in [0]3, S(x) is in [1]3; if x is in [1]3, S(x)
is in [0]3; and if x is in [2]3, S(x) is in [2]3. The Lemma of homogeneity is an essential result to
construct the following “Lemma of density”, which in turn is the most critical preparatory result for
the fundamental Lemma 1.

Lemma 4 (Lemma of density). As n → ∞, every Px ∈ VDy ∈ An
z , is associated with a single

sequence F =
⊔∞

k=1 D[x]+ak ∈ An
z , where a is a pseudorandom variable, of which the average is less

than 2, and

limn→∞
|Vn

F|
|⊔∞

k=1 P
n−k
[x]+k |

≥ 1

Proof. By Lemma 2 for any {x; S(x)} in some Da, there are always y and z such that
AC(Px) = {Dy;Dz}. Let us review all the possible cases.

1. For x in [0]3, y = C(S(x)) and z = C(V(x)). If x began with 102, [y] = [x] + 1 and
[z] = [x] + 2; otherwise, [y] = [x] + 2 and [z] = [x] + 3.

2. For x in [1]3, y = C(x) and z = C(V(S(x))). If x began with 102, [y] = [x] + 0 and
[z] = [x] + 3; otherwise, [y] = [x] + 1 and [z] = [x] + 4

3. For x in [2]3, y = A(x) and z = C(V2(x)). If x began with 102, [y] = [x] − 1 and
[z] = [x] + 4; otherwise, [y] = [x] + 0 and [z] = [x] + 5

For simplification, we assume the two cases of x beginning with either 102 or 112 are
at worst equifrequent but 102 (which is always outputing smaller numbers) will in fact be
more frequent because for any a beginning in 112, 3a always begins in 102, whereas exactly
one third of all odd a beginning in 102 (for example, those beginning in 10112) are such that
3a also begins with 102 (See Figure 27 in Rahn et al., 2021 [2]).

Thus, assuming the limiting conditions of Lemma 3, we can now associate a unique
disjoint pair {D[x]+a1

;D[x]+a2
} to each AC(Px). From all cases we reviewed above, we have

that ak is a pseudorandom variable, in which the pseudorandomness entirely comes from
the Furstenberg principle that “base 2 and base 3 representations share no known common
structure”, and its actual (and again, unknown) structure is in fact at the heart of the Bocart
proof of work (we may call the larger family “base-change ciphers”). However, what we
now know is that the mean of ak over all k is less than 2 because all of the possible cases are
{1; 2; 0; 3; −1; 4} if x began with 102 and {2; 3; 1; 4; 0; 5} if x began with 112, and within each
prefix starting condition (102 or 112), Lemma 3 guarantees their being equifrequent.

Hence, to each Px, there is a unique
⊔∞

k=1 D[x]+ak, in which V-closure contains at least⊔∞
k=1 P[x]+ak. As P[x]+ak contains exactly n− ak elements with up to n more binary digits

than x; if we take the limiting condition of a ≤ 2, each of them must be associated with at
least k additional (disjoint) elements to have
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lim
n→∞

|Vn
F|

|⊔∞
k=1 P

n−k
[x]+k|

≥ 1

Those additional elements are always found in VD[x]+ak
\ P[x]+ak.

Remark 4. Lemma 2 established that any |An
z | was growing exponentially with n. Lemma 4 now

further states that, as n goes to infinity, |An
z | fits each Px ∈ Dy ∈ An

z and is associated with a
unique collection F with particular density conditions. As we will see in Theorem 1, this now
provides enough information to pinpoint the general formula for limn→∞ |An

z |.

4. Fundamental Theorem of Collatz Attractors

Theorem 1. For x odd, there is always c > −4 in R, depending only on x, with

lim
n→∞

|An
x |

2n+c ≥ 1

In particular, for x = 1, c = 0.

Proof. We intend to prove the number of distinct elements in An
x , in which excluding x

itself will bring it arbitrarily close to the following formula as n grows:

n−c

∑
x=0

x

∏
k=0

n− c− k
k + 1

= 2n−c − 1 (1)

For x = 1, c = 0, as 2n − 1 covers all the odd numbers written with n more digits than
1 in base 2.

To achieve this result, we will demonstrate that the development of any |An
x | and |An

1 |
in particular follows a power series that is at least a sum of progressively iterated sums, of
which the first term is of the following form:

P1(n) =
n

∑
k=1

(n− k) =
1
2
(n)(n− 1) (2)

and which, iterated, gives a progression of the following form:

P2(n) =
n

∑
k=1

1
2
(n− k)(n− k− 1)

=
1

2 · 3 (n)(n− 1)(n− 2)

(3)

Then,

P3(n) =
n

∑
k=1

1
2 · 3 (n− k)(n− k− 1)(n− k− 2)

=
1

2 · 3 · 4 (n)(n− 1)(n− 2)(n− 3)

(4)

Thus, in general,

P0(n) = n

P j+1(n) =
n

∑
k=1

(P j(n− k)) =
(n− j)P j(n)

j + 1
(5)

Therefore, finally,
n

∑
j=0
P j(n) =

n

∑
x=0

x

∏
k=0

n− k
k + 1

= 2n − 1 (6)
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By Lemma 4, we have that, as n→ ∞, there is always a non-surjective f :

f : Pn
y ∈ An

x → An
x ; f (Pn

y) =
∞⊔

k=0

VDn−2k
[x]+2k

(7)

and

lim
n→∞

|⊔∞
k=0 VDn−2k

[x]+2k
|

|⊔∞
k=0 P

n−k
[x]+k|

≥ 1 (8)

Now note that, as |Pn
x | = n,

|
n⊔

a=1

Pn−a
[y]+a| =

n

∑
a=1

(n− a) = P1(n) (9)

Additionally,

| f (
n⊔

a=1

Pn−a
[y]+a)| ≥ |

n⊔
b=1

b⊔
a=1

Pn−a
[y]+a| =

n

∑
b=1

b

∑
a=1

(n− a) = P2(n) (10)

In general,

| f k+1(Pn
x)| = |

n⊔
k=1

f k(Pn
x)| ≥

n

∑
k=1
P k(n) = P k+1(n) (11)

Thus, for any Px ∈ Dy,

lim
n→∞

|An
{x;S(x)}| ≥

n

∑
k=0
P k(n) ≥ 2n − 1 (12)

Let us now take any odd y as the initial condition, assuming only that, without any
loss of generality, there is no odd a such that y = V(a) (because if there was, we would just
redefine y:=a). By Lemma 2, there is always a unique z so that AC(y) = Dz. The binary
length of z is at worst [y] + 3, indeed if y is in [0]3, z = C(V(y)) which, in the worst case of
y beginning with 112, has three more binary digits than y. Therefore, limn→∞ |An

{z;S(z)}| =
2n−3 modulo the existence of at most one cycle in all of Ay. As VDz =

⊔∞
k=0 P[z]+6k, we now

have, still modulo, the existence of at most one cycle:

lim
n→∞

|An
y |

2n−3 ≥ lim
n→∞

∑
n−3

6
k=0 2n−3−6k

2n−3 = 1 (13)

With the worst starting conditions already taken into account (hence the n− 3) and
now also considering the worst possible cycle (adding up to n− 3− 1), we now have that,
for any odd x, limn→∞ An

x always tends toward at least more than

1
2

n−3

∑
x=0

x

∏
k=0

n− 3− k
k + 1

> 2n−4 − 1 (14)

Note that An
x can have 2n+c elements with c positive, depending only on the initial

conditions, for example, on whether x or V(x) ends in 223 or 2223, etc., defining how many
consecutive times decreasing action A is applied in the early iterations of Ax.

If we now take the case of A1, its particular starting conditions are that, since A(5) = 3
and C(1) = 1, AC(1) = D1, 3 ∈ D1 and V2(3) = 53 = 12223.

Therefore, AC(3) = D17, with A(17) = 11, A(11) = 7, C(7) = 9, C(S(9)) = 25, and
C(V(9)) = 49. Thus, the initial development of A1 contains D1, D3=112 (of which the first
V series is already counted in D1, but Equation (2) is iterated at k = 1), D7=1112 , D9=10012 ,
D11=10112 , D17=100012 , D25=110012 , and D49=1100012 . With {D1;D3;D7;D9;D11;D17;D25;D49}
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for initial conditions, c = 0 modulo the existence of a cycle, but as the only cycle in A1 is

C(1)=1, we have limn→∞
|An

1 |
2n = 1

5. Discussion

While the previous demonstration was one of discrete algebraic topology, following an
interesting request from the reviewers, we outline here another simpler graph-theoretical
demonstration of the ACV-closure of any odd {x} being space-filling. In fact, one of the
reasons we ventured to call Theorem 1 a “Fundamental theorem” is that there may be a
great diversity of ways to demonstrate it.

We already know that the closure of any odd {x} by actions S and G up to the
additional binary length n, which in this case is strictly equivalent to all the odd numbers
of length lesser or equal to [x] + n and beginning with all the first characters of x minus
the last one, is in bijection with the powerset of the set with n elements and, therefore, has
exactly 2n elements. Importantly, for the sake of this demonstration, we will only consider
x ∈ [1]3, but if x ∈ [2]3, then we would consider A(x) until it is either in [1]3 or [0]3, and
with x ∈ [0]3, we just use the fact that, then, V(x) ∈ [1]3.

There are already 3k strings of k characters out of the alphabet {A, C, V}, but no odd
number exists such that it can remain whole under both A and C so |An

x | cannot be of the
form 3n. For any string to belong to An

x , the alphabet {A, C, V} is endowed with a grammar
interdicting certain strings and determined by both the residue class of odd numbers in
base 3 and the total binary characters added or subtracted by actions A, C, and V. Let us
begin by determining the latter:

1. A(y) = G(y)
3 so [A(y)] = [y]− 1 if x began with 102 or [y] + 0 otherwise.

2. C(y) = S(G(y))
3 so [C(y)] = [y] + 0 if x began with 102 or [y] + 1 otherwise.

3. V(y) = G(S(y)) so [V(y)] = [y] + 2 for all y in An
x

By Lemma 3, for all y in An
x , n→ ∞ A(y) and C(y) may be in any base 3 residue class

with equal frequency.
Additionally, note that prefixes 102 and 112 are not equally frequent with action · 3.

Indeed, if for all y beginning with 112, 3y always begin with 102, exactly one third of all
odd numbers beginning in 102—precisely, those greater than the Vn(1) (for those with an
odd number of digits in base 2) or than the S(Vn(1)) (for those with an even number of
digits) of the same length as theirs—are such that 3y will also begin with 102, thus favoring
this outcome after either actions A or C with a limit frequency of 2

3 when n→ ∞ (Figure 27
in Rahn et al., 2021 [2]). Action V on the other hand leaves the base 2 prefix intact.

Exactly one out of three times, each action (V, A ,and C) will only be allowed to be
followed by action V only, which also appends two more base 2 digits. Otherwise, action C
appends 1

3 digit on average, and action A removes 2
3 digits on average, meaning that C3(y)

has 1 more digits than y if y was on the right 2
3 of the odd numbers beginning with 102 (for

example, [S(34)] = [163] = 8 and [C3(S(34))] = [385] = 9 = [163] + 1).
If in any ACV string we note V , A, and C as the total number of characters V, A, and

C, respectively, then all strings in An
x must verify the following topological invariant:

2V − 2
3
A+

1
3
C ≤ n (15)

By Lemma 3, the following limit is also verified when V , A, and C are counted on
all of An

x :

limn→∞
A
C = 1 (16)

and since V is defined for all base 3 residue classes in An
x while there is no other operation

defined for residue class 03, we also have

limn→∞
V
A+ C =

3
2

(17)
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As A and C are equifrequent, we may represent “A or C exclusively and with equal
frequency” with X, and when n→ ∞, |An

x | will equal the number of paths in the binary
tree where 2

3 of all nodes (each representing a word) have a V and X vertices and 1
3 only

a V one. This is strictly equivalent to the binary tree where each node has exactly 2
3

chances of being allowed to branch non-exclusively in either V or X with equal frequency
(thus branching to just X with a total frequency of exactly 2

3 ·
1
2 = 1

3 ) and 1
3 to branch

non-exclusively and equifrequently in VV or VX. In this tree, we now count all of the
existing words, verifying

0 ≤ 2V − 1
3
X ≤ n (18)

If An
x was only closed by two distinct actions, both defined equifrequently on all

elements and with the binary length characteristics of V (for example V1 := 4x + 1 and
V2 := 4x + 3), it would be in bijection with the powerset of the set with n

2 elements.
However, the tree we defined is at least equivalent to V1 adding two binary digits and to
V2 adding two exactly half of the times and subtracting 1

3 the other half. Thus counting
all occurrences of V2 and only the pathways with a net-positive binary length extension,
we now have that An

x is at least as large as the powerset of the set with n
2 + n ∑∞

k=1
1
3k

elements. Therefore,

lim
n→∞

|An
x |

2
n
2 ·∏∞

k=1 2
n

3k
≥ 1 (19)

so:

lim
n→∞

|An
x |

2n ≥ 1 (20)

Remark 5. This alternative approach to proving the space-fillingness of Collatz feathers is partic-
ularly fertile conceptually. Indeed, the ACV-closure of any {x} can now, by the development of
Equation (19) and although it uses three distinct actions so would start with a maximum of 3kn

branches, be interpreted as 3n· log(2)
log(3) with log(2)

log(3) being the Hausdorff dimension of the triadic Cantor
set (the set of all real numbers that can be written without any digit 1 in base 3). Practitioners of
the Furstenberg conjecture know that Cantor sets are in turn a larger family containing sets left
invariant by either ×3 mod 1 or ×2 mod 1 but never by both ([4]). log(2)

log(3) is also the inverse of
the Hausdorff dimension of the Sierpinski triangle, a natural figure in the evaluation of the 3-adic
distance, which gives us some insight into the geometry of An

x when n → ∞. With this in mind,
it would be particularly interesting to further study the structure (and iterated morphisms) of the
attractors of the 7x + 1, 5x + 1 and Juggler sequences with the deliberate intent of constructing
("pathological") objects of an intermediate cardinality between ℵ0 and ℵ1 as such constructions,
though never achieved, are already known not to contradict ZFC [7,8]. All in all, we really believe
that the Collatz conjecture, the Furstenberg ×2× 3 conjecture, and the Continuum Hypothesis
should be much more tightly related in the literature.

6. Conclusions

Theorem 1, for the particular case of c = 0 when x = 1, already implies that “almost
all Collatz orbits converge to 1”, which is a result strictly stronger (and shorter) than
Tao 2019 [9], where it was only obtained that almost all Collatz orbits attained almost
bounded values, leaving not only the possibility of cycles but also the limitation of almost
boundedness. Such is not the case here: on the one side, all the elements in A1 converge
to 1 so none other than 1 belongs to a cycle, and on the other side, the elements of A1
are proven to cover almost all of N. Additionally, pushed to infinity, Collatz attractors are
therefore space-filling as their cardinality is of the form 2n+c.

However, Theorem 1 does not yet prove that all Collatz orbits converge to 1. Rather,

it proves that |A
n
1 |

|An
1 |

vanishes when n tends toward infinity (which by the way is consistent
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with the computational findings presented in Figure 15 in Rahn et al., 2021 [2]). Hence, |An
1 |

can never reach a formula of the form 2n+c for some integer (possibly negative) constant
c < n. At worst, it may only reach xn+c with x < 2. On the other side though, no Collatz
attractor can vanish. Thus, in conclusion, by Lemma 1, we have

lim
n→∞

|An
1 |

|An
1 |

= 0 (21)

However, for all odd x of binary length m, we always have:

lim
n→∞

|An
x |

|An
1 |

>
1

2m−4 > 0 (22)
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