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Abstract: In this work, a new robust controller is designed for a second-order plant model, considering
asymmetric output constraints. The tracking error convergence and output constraint are achieved
by using a control law whose output feedback term is user-defined and bounded: it takes on large
but finite and user-defined values for tracking error values equal to or higher than the constraint
boundary, and it comprises a previously known user-defined function for tracking error values
far from the constraint boundary. This is a significant contribution that remedies two important
limitations of common output constraint control designs: the infinite control effort for tracking error
equal to or higher than the constraint boundary, and the impossibility of using previously known
user-defined functions in the output feedback function for tracking error values far from the constraint
boundary. As another contribution, the control design is based on the dead-zone Lyapunov function,
which facilitates the achievement of convergence to a compact set with user-defined size, avoidance
of discontinuous signals in the controller, and robustness to model uncertainty or disturbances. The
proposed output feedback term consists of the product between two functions of the tracking error,
an increasing function and a sigmoid function, whose exact expressions are user-defined. Finally, the
effectiveness of the developed controller is illustrated by the simulation of substrate concentration
tracking in a continuous flow stirred bioreactor.

Keywords: second order system; asymmetric output constraint; unlimited domain Lyapunov function;
dead-zone Lyapunov function; robust control

MSC: 37M99; 37M05

1. Introduction

Many dynamic systems are subject to output constraint, which is related to perfor-
mance requirements, physical limitations, or safety issues [1–3]. For instance, the joint
position of robotic manipulators, and the velocity of nonholonomic and unmanned aerial
vehicles should be limited [1,2,4].

In the control literature, a common strategy to tackle output constraint is the barrier
Lyapunov function (BLF) [1], which was pioneered by [5]. Compared to other output
constraint strategies, it has the advantage of easier implementation, as numerical or compu-
tationally intensive algorithms are avoided [4]. In the BLF strategy, the prescribed constant
boundary defined for the tracking error is tackled through a Lyapunov function that in-
volves a vertical asymptote at the prescribed boundary, so that it takes on large values for
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the tracking error values close to the boundary and it is not defined for tracking error values
exceeding it. The output feedback term of the resulting control law also exhibits these
features. Therefore, the achievement of output constraint within the prescribed boundaries
is a consequence of the enhanced control effort [1,6,7]. Usually, the Lyapunov function
is logarithm or tangent type [4], whereas sliding mode control (SMC) [4,6] or backstep-
ping control [2,8] are used as basic control design framework. The main improvements to
the basic BLF control design for higher-order nonlinear systems are the consideration of
asymmetric constraint [1–4]; consideration of no strict feedback form systems [1–3]; use of
finite-time stabilization [3,9].

An alternative way to achieve output constraint is by using a Lyapunov function
defined over the whole domain of the tracking error, and a controller with output feedback
terms featuring large but bounded values for the tracking error equal to the prescribed
boundary [10]. Some control designs with these features (which we call FOC features) are
discussed in what follows. In [10], a modification is proposed for the Lyapunov function
used in traditional prescribed performance control (PPC). In [11], an output-constrained
SMC is designed for systems of relative degree two involving disturbances. The first
derivative of the output is constrained but not the output. The controller guarantees that
the constraints can be violated during a finite time, which can be shortened by properly
choosing the controller parameters. When there is a constraint violation event, the control
law includes an additive term that is the function of the error between the constrained
state and the constraint bound. The Lyapunov function used is a quadratic function of the
sliding surface. In [12], a sliding mode control design with double power reaching law and
variable power parameters is proposed. A changing magnitude of the parameters of the
power terms of the reaching law is proposed, so as to improve the convergence rate of the
approach phase. From the reaching law it follows that: (i) the control law involves a double
power function of the sliding surface(s) with variable parameters; (ii) the gradient of the
power function is higher when the sliding surface is farther from zero. As a result, the
convergence speed of the sliding surface is faster for large values of the surface. Comparing
the proposed SMC with the fast power reaching law, it achieves a faster convergence of
the surface and a higher tracking precision in presence of time-varying disturbances. One
deduces that this controller can be adapted to achieve output constraint requirements
if the parameters of the double power function are chosen to fulfill the aforementioned
FOC features.

In this work, a new robust controller is designed for the second-order plant model,
considering asymmetric output constraints. The control design is based on dead-zone
Lyapunov functions, aimed at achieving tracking error convergence. An improved output
feedback term of the control law is proposed, consisting of the product between two
user-defined functions of the tracking error: a basic increasing function and a sigmoid
function that exhibits bounded but enhanced values for the tracking error equal to the
constraint boundary. In this way, the output feedback term function is increasing with a
steep section that leads to significantly higher but finite values for the tracking error equal
to or higher than the constraint bound. The resulting control law yields an overlarge but
bounded control effort for tracking error values equal to or higher than the prescribed
constraint boundary. The main contributions over closely related output constraint control
designs are:

− Contribution Bi. The output feedback term of the control law, and consequently, the
control law, take on large but finite and user-defined values when the tracking error
values are equal to or higher than the prescribed constraint bound. In contrast, in
BLF-based output constraint controllers (for instance [3,4,13]) the output feedback
term, and consequently, the control law, give infinite values when the tracking error is
equal to the constraint bound, and it is not defined for tracking error values higher
than the constraint bound.

− Contribution Bii. The output feedback term of the control law is equal to a user-
defined output function when the tracking error is far from the constraint bound.
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This implies that high-performance output feedback functions, for instance, the well-
known power-law functions, can be used in the controller for these tracking error
values. In contrast, in BLF-based output constraint controllers (see [3,4,13]), previously
known user-defined functions cannot be used in the output feedback term for tracking
error values far from the constraint boundary.

− Contribution Biii. The advantages of control design based on dead-zone Lyapunov
functions are achieved, for instance, the absence of discontinuous signals in the
controller whereas keeping robustness against disturbances or modeling error. In
contrast, in BLF-based output constrain controllers (e.g., [4,13]), discontinuous signum
type signals are used in the control law.

The system model, the reference model and the control goal are provided in Section 2,
and the controller design and stability analysis in Section 3. The numerical simulation is
provided in Section 4, and the conclusions are drawn in Section 5.

2. System Model, Reference Model and Control Goal

SISO second-order nonlinear model represent several systems, including mechatronic,
biochemical and networked systems. This model usually includes disturbance terms caused
by parametric uncertainty, modeling error, unmodeled parasitic dynamics and unknown
external disturbances [14–16]. Consider a SISO second-order model with states x1, x2,:

dx1

dt
= F1 + Fg1x2 + δ1, (1a)

dx2

dt
= F2 + bmu + δ2. (1b)

where x1 is the state to be controlled and u is the input. The model terms satisfy the
following assumptions:

Assumption 1. The state x2 is bounded for u bounded, x1 ∈ R, x2 ∈ R.

Assumption 2. The state x1 is measured and u is known.

Assumption 3. F1, F2 and Fg1 are known functions of x1 and x2; and bm is known; δ1, δ2 are
unknown but bounded terms, with unknown bounds.

Remark 1. Assumption 1, that is, x2 is bounded if u bounded, is a case of input to state stability
(ISS), which is commonly accomplished in practical scenario. Additionally, it implies that the
nonlinear system can be globally stabilized in the presence of input saturation [17,18].

Remark 2. Assumption 2 implies that the measurement of x1 must be accurate for the application
of the proposed controller. Hence, cases with significant noise are not allowed.

Remark 3. In Assumption 3, the bounded disturbance terms are caused by either parametric uncer-
tainty, modeling error, unmodeled parasitic dynamics or unknown external disturbances [14–16].
Thus, these terms render the model more akin to practical scenario.

Remark 4. As the state x2 is not required to be known in the assumptions, real-time measurement
of x2 is not needed. This unavailability of knowledge on some state is common in practical scenarios,
due to either environmental disturbances, equipment cost or technical limitation [1].

The input u is constrained and its relationship with the unconstrained input signal
unc is:

u =


umax i f unc > umax

unc i f unc ∈ [umin umax]
umin i f unc < umin

(2)
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where umin, umax are constant input constraints.

Remark 5. The input saturation is due to limitations on physical structure of the actuator. Therefore,
the input constraints umin, umax are defined by operational limits [19].

An observer is considered in order to cope with the lack of knowledge on x2 and
to avoid the risk of excessive increase of updated parameters, what is caused by input
saturation (2). The observer model can be represented as:

dx̂1

dt
= Had1 + Hg1 x̂2 (3a)

dx̂2

dt
= Had2 + bmu (3b)

where x̂1 is the estimate of x1; x̂2 is the estimate of x2; Had1, Hg1, Had2, bm are known
functions of x1 and x2. The controller design in Section 3 uses this observer model instead
of the system model (1).

Remark 6. Observers of this form are commonly used, for instance [20]. Alsoan example of observer
for model (1) is provided in Appendix A, based on [21].

Control goal. Consider the tracking error e1 = x̂1 − yd, where yd is desired output
provided by the reference model

yd =
am

p + am

am

p + am
r (4)

where r is the reference signal, and am is a user-defined positive constant, and p = d/dt is
the differential operator [22,23]. The goal of the controller design is to formulate the control
an update laws that achieve the convergence of the tracking error e1 towards the compact
set Ωe1 = {e1 : |e1| ≤ ε}, and the constraint of the tracking error e1 within a region with
upper bound εu or lower bound −ε l , as user-defined, by using a controller with an output
feedback function that has the following features: (i) it exhibits large but bounded and
user-defined values for tracking error equal to or higher than the prescribed constraint
bound; (ii) it involves a previously known user-defined function for tracking error values
far from the constraint bound; (iii) it is non-decreasing with the tracking error, but its exact
expression is user-defined. The width of the target compact set ε, the upper constraint
bound εu and the lower constraint bound −ε l are user-defined and constant, and ε, εu, ε l ,
are positive.

Remark 7. The observer (3) is used in the controller design in order to cope with the lack of
knowledge on the state x2 and the effect of input saturation (2). Thus, the observer model is used
instead of the system model (1), and the estimates x̂1, x̂2 are used instead of x1, x2.

3. Control Algorithm, Controller Design and Stability Analysis
3.1. Control Algorithm

The controller is:

unc =
1

bm

(
−kc2H2

g1e2 − Had2 −
dT1 f

dt

)
(5)

where
e2 = x̂2 + T1 f (6)
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T1 f is given by
dT1 f

dt
=

1
τT1

(
−T1 f + T1

)
(7)

T1 =

(
W − .

yd
)
+ Had1

Hg1
+ k f sate1 (8)

sate1 =

{
e1
ε

(
2− |e1|

ε

)
f or e1 ∈ (–ε, ε)

sgn(e1) otherwise
(9)

kc1kc2 >

(
1
4

)
; kf ≥ µ f + ε > 0 (10)

where Had1, Had2, Hg1 are functions of observer model (3), and: (i) x̂1, x̂2, are state estimates
provided by the observer; (ii) kc1, kc2 are user-defined positive constants; (iii) τT1 is the time
constant of the signal T1 f ; (iv) k f is the gain of the term for robustness against the error
caused by the difference T1 − T1 f .

In addition,
W = φa fehc (11)

where fehc is a function that leads to increased W value for e1 values equal to or higher than
the constraint boundary:

fehc is continuous and increasing with respect to e1;
fehc ≈ 1 for e1 values far from the bound but not exceeding it, with the bound being either εu or− ε l ;
fehc � 1 for e1 values close to the bound (εu or− ε l);
fehc � 1 for e1 values exceeding the bound, that is, e1 > εu in case of upper
bound εu, or for e1 < −ε l in case of lower bound− ε l .

(12)

and φa is a previously known user-defined function of fe1 that satisfies the properties:

φa = 0 f or fe1 = 0
φa 6= 0 f or fe1 6= 0

sgn(φa) = sgn( fe1) 6= 0 f or fe1 6= 0
φa is continuous with respect to fe1

φa is non-decreasing with fe1

(13)

and

fe1 =


e1 − ε f or e1 ≥ ε
0 f or e1 ∈ (−ε, ε)

e1 + ε f or e1 ≤ −ε
(14)

The block diagram of the controller is shown in Figure 1.
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Remark 8. The output feedback function W (11) is a nonlinear function of the tracking error, and
it exhibits the features mentioned in the control goal (Section 2):

− Bi: it takes on large but bounded and user-defined values for tracking error close, equal, or
higher than the prescribed constraint boundary. It is achieved by using the sigmoid function
fehc. This feature allows to achieve tracking error constraint.

− Bii: it involves a previously known user-defined function φa for tracking error values far from
the constraint bound, but it must satisfy conditions (13).

Remark 9. Functions φa and fehc must satisfy conditions (13) and (12), respectively, but their
exact expressions are user-defined.

Remark 10. An example of fehc for the case of upper constraint boundary εu and no lower
constraint is:

fehc = (1− fT)(kw − 1) + 1 (15)

fT =
k1idn

ct
koi + k1idn

ct
, dct =

{
|εu − e1| f or e1 ≤ εu

0 f or e1 > εu
, kw > 1 (16)

where kw is a user-defined positive constant that specifies the enhancement of W for e1 values close
to the bound εu, and koi, k1i, n are user-defined positive constants. The main features of fehc (15)
and fT (16) are:

fT = 0 f or e1 ≥ εu
fT ≈ 1 f or e1 � εu

fehc = kw f or e1 ≥ εu
fehc ≈ 1 f or e1 � εu

so that fehc fulfills conditions (12).

Remark 11. An example of φa is

φa = kφ1| fe1|αsgn( fe1) + kφ2| fe1|3sgn( fe1) (17)

which is based on the output feedback function used in [12,24]:

φw = k1|•|αsgn(•) + k2|•|βsgn(•) (18)

where α > 0, β > 0, k1 > 0, k2 > 0, and the ranges and values α ∈ [0.75, 1.6], β ∈ [0.75, 1.6],
k1 = 1.5, k2 = 0.8 were used in [12], whereas α = 5/8, β = 3, k1 = 2.5× 42.4, k2 = 25× 42.4,
were used in [24].

Remark 12. In BLF based output constraint control, the Lyapunov function of the type

Ve1 =
εα

u
α

|e1|α

(εu − e1)
α

with α ≥ 2 is commonly used, being εu the upper constraint [3,4,13]. The gradient of Ve1 is:

dVe1

de1
= εα+1

u sgn(e1)
|e1|α−1

(εu − e1)
α+1

Therefore, the resulting output feedback function of the control law involves the term 1/(εu − e1)
α,

which leads to infinite control effort for e1 = εu. A dead-zone modification can be incorporated in
order to avoid discontinuous signals in the controller:

Ve1 =
εα

u
α

| fe1|α

(εu − fe1)
α
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dVe1

de1
= εα+1

u sgn( fe1)
| fe1|α−1

(εu − fe1)
α+1

A BLF-based output constraint controller comprises Equations (5)–(10), (14) with the above
gradient W = dVe1/de1, instead of the gradient (11)–(13). This allows to compare the proposed
controller with respect to BLF-based output-constraint controller.

Remark 13. The developed controller can be applied to second-order systems subject to output
constraint, for instance mechatronic, mechanical and biochemical systems [14–16]. Indeed, output
constraint is common in practical scenarios, and it is caused by physical limitations [6,25].

3.2. Controller Design and Stability Analysis

Theorem 1. Consider the desired output yd provided by the reference model (4), the second order
model (1) subject to assumptions 1–3, the observer (3), the tracking error e1 = x̂1 − yd, which
is constrained within a region with upper bound εu or lower bound −ε l , as user-defined, the
controller (5)–(14). Then, the tracking error e1 converges asymptotically to Ωe1 = {e1 : |e1| ≤ ε},
where the bound ε is user-defined, positive and constant; and e1 is constrained within a region with
upper bound or lower bound −ε l , as user-defined.

Proof. Task 1 [Definition of the tracking error e1 and its time derivative]. Recall the
observer (3). We define the tracking error as e1 = x̂1 − yd. Differentiating with respect to
time, yields

de1

dt
=

dx̂1

dt
− dyd

dt
Incorporating the dx̂1/dt expression (3a), yields:

de1

dt
= Hg1 x̂2 + Had1 −

.
yd (19)

Task 2 [Definition of (Ve1) the dead-zone subsystem Lyapunov function for the
tracking error, its gradient, and its properties]. The control goal includes the achievement
of output tracking and the formulation of a controller with an output feedback function
satisfying the stated features, being the exact output feedback function defined by the user.
Therefore, Ve1, the Lyapunov function of the tracking error e1, is defined as an integral of
its gradient W and the Ve1 and W properties are defined, but the exact W expression is not.
Thus, the properties of Ve1, are set as:

Ve1 = 0 f or fe1 = 0
Ve1 > 0 f or fe1 6= 0

Ve1 is continuous with respect to fe1,
Ve1is bounded for fe1 bounded
Ve1 is non-decreasing with | fe1|

(20)

where

fe1 =


e1 − ε f or e1 ≥ ε
0 f or e1 ∈ (−ε, ε)

e1 + ε f or e1 ≤ −ε
(21)

The main properties of fe1 (21) are:

fe1 = 0 f or e1 ∈ [−ε, ε]
fe1 6= 0 f or e1 /∈ [−ε, ε]

sgn( fe1) = sgn(e1) 6= 0 f or e1 /∈ [−ε, ε]
fe1 ∈ L∞ f or e1 ∈ L∞
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Thus, the Ve1 properties (20) in terms of fe1 lead to the properties in terms of e1:

Ve1 = 0 f or e1 ∈ [−ε, ε]
Ve1 > 0 f or e1 /∈ [−ε, ε]

Ve1 is continuous with respect to e1, and it is bounded for e1 bounded
Ve1 is non-decreasing with increasing |e1|

In order to obtain convergence of e1 to the compact set Ωe1 and to facilitate its proof,
we require the gradient

W ,
dVe1

d fe1
(22)

to fulfill the following properties:

W = 0 f or fe1 = 0
W 6= 0 f or fe1 6= 0

sgn(W) = sgn( fe1) 6= 0 f or fe1 6= 0
W is continuous with respect to fe1

W is non-decreasing with fe1

(23)

As a consequence, the properties of W in terms of e1 are:

W = 0 f or e1 ∈ [−ε, ε]
W 6= 0 f or e1 /∈ [−ε, ε]

sgn(W) = sgn(e1) = sgn( fe1) 6= 0 f or e1 /∈ [−ε, ε]
W is continuous with respect to e1

W is non-decreasing with e1

(24)

A practical way to define Ve1 and W is to define a W function of fe1 that satisfies
properties (23), and then to determine Ve1 from

Ve1 =
∫ fe1

0
Wd fe1

What leads to fulfillment of Ve1 properties (20). The integral form of Ve1 for the case
of asymmetrical is considered in Appendix B. The basic choice of W is W = kc1 fe1 which
fulfills properties (23) and leads to Ve1 = (1/2)kc1 f 2

e1, which fulfills properties (20).
Task 3 [Determination of dVe1/dt and incorporation of the output feedback term].

The time derivative of Ve1 can be expressed as

dVe1

dt
=

dVe1

de1

de1

dt
(25)

From the definition of W (22), the definition of fe1 (21) and the properties of W (24), it
follows that

dVe1

de1
= W

Combining with Equation (25), yields

dVe1

dt
= W

de1

dt

Incorporating the de1/dt expression (19), yields

dVe1

dt
= −W2 + W

(
Hg1 x̂2 +

(
W − .

yd
)
+ Had1

)
(26)
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where the term W2 has been subtracted and added to provide the non-positive term −W2

in the dVe1/dt expression, what allows obtaining convergence of e1 towards the expected
compact set.

Task 4 [Definition of the second backstepping state e2]. Equation (26) can be rewrit-
ten as

dVe1

dt
≤ −W2 − k f Hg1|W|+ WHg1

(
x̂2 +

(
W − .

yd
)
+ Had1

Hg1
+ k f sign(W)

)
(27)

where the term −k f Hg1|W| has been added and subtracted to provide robustness against
an error term that will arise later because of the filtering approximation. To avoid the
discontinuous signal sign( fe1), we notice from the W properties (24) that:

|W| = Wsate1

with

sate1 =

{
e1
ε

(
2− |e1|

ε

)
f or e1 ∈ (–ε, ε)

sgn(e1) otherwise

dsate1

de1
=

{
2
ε

(
1− |e1|

ε

)
f or e1 ∈ (–ε, ε)

0 otherwise

Therefore, Equation (27) can be rewritten as

dVe1

dt
≤ −W2 − k f Hg1|W|+ WHg1

(
x̂2 +

(
W − .

yd
)
+ Had1

Hg1
+ k f sate1

)

Or equivalently,

dVe1

dt
≤ −W2 − k f Hg1|W|+ WHg1(x̂2 + T1) (28)

where

T1 =

(
W − .

yd
)
+ Had1

Hg1
+ k f sate1

If e2 were defined as e2 = x̂2 + T1, the term dT1/dt in its time derivative would involve
an undesired ‘explosion of terms’. To avoid this effect, the DSC strategy involves the use of
a filtered signal in the definition of e2 [26,27]. Therefore, we propose a definition of e2 with
a filtered T1, denoted as T1 f . Equation (28) can be rewritten as

dVe1

dt
≤ −W2 − k f Hg1|W|+ WHg1

(
e2 + δt1 f

)
(29)

where
e2 = x̂2 + T1 f (30)

and T1 f is given by
dT1 f

dt
=

1
τT1

(
−T1 f + T1

)
(31)

and δt1 f = T1 − T1 f is the error caused by filtering. In the current DSC strategy, it is
assumed that the time derivative of the input signal of the filter is bounded, see [26]. In the
case of filter given in Equation (31), that assumption would be dT1/dt ∈ L∞. Equation (31)
and T1 ∈ L∞ imply T1 f ∈ L∞ and, consequently, δt1 f ∈ L∞, so that δt1 f ≤ µ f , where µ f is
a positive constant. Therefore, Equation (29) can be rewritten as:

dVe1

dt
≤ −k f Hg1|W|+ µ f

∣∣Hg1
∣∣|W| −W2 + WHg1e2 (32)
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If k f is chosen such that k f ≥ µ f > 0, then −k f
∣∣Hg1

∣∣|W|+ µ f
∣∣Hg1

∣∣|W| ≤ 0, so that
Equation (32) leads to

dVe1

dt
≤ −W2 + WHg1e2

Task 5 [Determination of the time derivative de2/dt]. Differentiating e2 (Equation (30))
with respect to time, yields

de2

dt
=

dx̂2

dt
+

dT1 f

dt
Substituting expression for dx̂2/dt (Equation (3b)), yields

de2

dt
= Had2 + bmu +

dT1 f

dt
(33)

where dT1 f /dt is given by Equation (31).
Task 6 [Definition of Ve2, the dead-zone Lyapunov function for e2, determination

of its time derivative and formulation of the control law]. As we need to obtain the
convergence of the state e2 (30) to Ωe2 = {e2 : |e2| ≤ ε}, we choose Ve2, the dead-zone
Lyapunov-like function for the state e2 as

Ve2 =
1
2

f 2
e2 (34)

where

fe2 =


e2 − ε f or e2 ≥ ε
0 f or e2 ∈ (−ε, ε)

e2 + ε f or e2 ≤ −ε
(35)

The main properties of Ve2 are:

Ve2 = 0 f or e2 ∈ [−ε, ε]
Ve2 > 0 f or e2 /∈ [−ε, ε]

Ve2 is continuous with respect to e2,
Ve2 is bounded for e2 bounded

Differentiating Ve2 (34) with respect to time, yields

dVe2

dt
= fe2

de2

dt

Incorporating the de2/dt expression (Equation (33)), and arranging, yields

dVe2

dt
= −kc2 H2

g1fe2e2 + fe2

(
kc2H2

g1e2 + Had2 + bmu +
dT1 f

dt

)
(36)

To counteract the effect of the term fe2

(
kc2H2

g1e2 + Had2 + dT1 f /dt
)

we choose the
control law for unc as:

unc =
1

bm

(
−kc2H2

g1e2 − Had2 −
dT1 f

dt

)
(37)

Considering moments of no input saturation (u = unc), substituting (37) into
Equation (36), yields

dVe2

dt
= −kc2 H2

g1fe2e2 (38)
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Task 7 [Determination of the dVe1/dt+dVe2/dt expression under the formulated con-
troller and arrangement in terms of a non-positive function of e1]. Adding expressions
for dVe1/dt (32) and dVe2/dt (38), yields:

dVe1
dt + dVe2

dt ≤ −k f Hg1|W|+ µ f
∣∣Hg1

∣∣|W| − kc1(β1 + β2)W2 + WHg1e2
−kc2 H2

g1fe2e2
(39)

where β1, β2 are positive constants that satisfy β1 + β2 = 1, β1 ∈ (0, 1), β2 ∈ (0, 1), and
the term WHg1e2 exhibits no non-positive nature, so that it must be counteracted by the
non-positive terms

− k f
∣∣Hg1

∣∣|W| − kc1(β1 + β2)W2 − kc2 H2
g1fe2e2

To this end, e2 is expressed in terms of fe2 and the term −k f
∣∣Hg1

∣∣|W|+ µ f
∣∣Hg1

∣∣|W|+
WHg1e2 appearing in Equation (39) is arranged at what follows. From the definition of
fe2 (35) it follows that

fe2 = e2 + de2.

de2 =


−ε f or e2 ≥ ε

−e2 f or e2 ∈ (−ε, ε)
ε f or e2 ≤ −ε

Therefore,
e2 = fe2 − de2, |de2| ≤ ε

In view of this expression, the term WHg1e2 can be rewritten as WHg1e2 = WHg1 fe2 +
WHg1(−de2). Hence, WHg1e2 ≤WHg1 fe2 + ε|W|

∣∣Hg1
∣∣. Therefore, the term−k f

∣∣Hg1
∣∣|W|+

µ f
∣∣Hg1

∣∣|W|+ WHg1e2 leads to

− k f
∣∣Hg1

∣∣|W|+ µ f
∣∣Hg1

∣∣|W|+ WHg1e2 ≤ −
(

k f − µ f − ε
)∣∣Hg1

∣∣|W|+ Hg1W fe2 (40)

If k f is chosen such that k f ≥ µ f + ε ≥ ε > 0, then −
(

k f − µ f − ε
)∣∣Hg1

∣∣|W| ≤ 0, and,

consequently, Equation (40) leads to −k f
∣∣Hg1

∣∣|W| + µ f
∣∣Hg1

∣∣|W| + WHg1e2 ≤ Hg1W fe2.
Combining this expression with Equation (41) leads to

dVe1

dt
+

dVe2

dt
≤ −kc1(β1 + β2)W2 + Hg1W fe2 − kc2 H2

g1 fe2e2 (41)

Some properties of fe2 (35) are:

sgn( fe2) = sgn(e2) 6= 0 f or e2 /∈ [−ε, ε];
| fe2| < |e2| f or e2 /∈ [−ε, ε]; fe2 = 0 f or e2 ∈ [−ε, ε]

Hence,
e2 fe2 = |e2| | fe2| > f 2

e2 f or e2 /∈ [−ε, ε]
e2 fe2 = 0 = f 2

e2 f or e2 ∈ [−ε, ε]

Combining these properties, yields e2 fe2 ≥ f 2
e2. Therefore,−kc2H2

g1 fe2e2 ≤ −kc2H2
g1 f 2

e2.
Substituting this into Equation (41), yields

dVe1

dt
+

dVe2

dt
≤ −kc1(β1 + β2)W2 + Hg1W fe2 − kc2H2

g1 f 2
e2 (42)
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where β1 and β2 are user-defined positive constants that satisfy β1 + β2 = 1, β1 ∈ (0, 1), β2 ∈
(0, 1). Equation (42) can be arranged as

dVe1
dt + dVe2

dt ≤ −kc1β1W2

+(−1)kc1β2

[
W2 + 2W

(
1

2kc1β2
Hg1 fe2

)
+ 4kc1kc2β2

(
Hg1 fe2
2kc1β2

)2
]

(43)

If kc1, kc2 values are chosen such that kc1kc2 ≥ (1/4)β−1
2 , then 4kc1kc2β2 ≥ 1 and

Equation (43) lead to

dVe1
dt + dVe2

dt ≤ −kc1β1W2 + (−1)kc1β2

[
W + 1

2kc1β2
Hg1 fe2

]2

≤ −kc1β1W2 ≤ 0
(44)

Task 8. [Integration of the d(Ve1 + Ve2)V/dt expression, and determination of the
convergence of e1]. Arranging and integrating Equation (44) yields

Ve1 + Ve2 + kc1β1

∫ t

to
W2dt ≤ Ve1|to + Ve2|to

where Ve1|to, Ve2|to are Ve1 (20), Ve2 (34) at time to. From the above expression it follows

that Ve1 ≤ Ve1|to + Ve2|to; Ve2 ≤ Ve1|to + Ve2|to; kc1β1
∫ t

to W2dt ≤ Ve1|to + Ve2|to. Therefore,
applying Barbalat’s lemma [28], we obtain the result that fe1 converges asymptotically to
zero, and the definition of fe1 (21) implies that e1 = x̂1 − yd converges asymptotically to
Ωe1, Ωe1 = {e1 : |e1| ≤ ε}, for moments of no input saturation. This completes the proof.

Task 9 [Definition of the structure of the output feedback term of the controller].
From the control law (37) it follows that the output feedback function W has a straightfor-
ward effect on the control law. To achieve the output feedback function features stated in
the control goal, we propose the output feedback function structure

W = φa fehc (45)

where fehc is a function that increases the value of W for e1 values equal to or higher than
the constraint bound (εu or− ε l):

it is continuous and increasing with respect to e1;
fehc ≈ 1 for e1 values far from the bound, either εu or −ε l ;
fehc � 1 for e1 values close to the bound (εu or− ε l);
fehc � 1 for e1 > εu in case of upper bound εu, or e1 < −ε l in case of lower bound −ε l .

The function φa is a previously known user-defined function of fe1 that satisfies the W
properties (23):

φa = 0 f or fe1 = 0
φa 6= 0 f or fe1 6= 0

sgn(φa) = sgn( fe1) 6= 0 f or fe1 6= 0
φa is continuous with respect to fe1

φa is non− decreasing with fe1

(46)

Some examples of φa and fehc are given in Equations (15), (17) and (18). �

3.3. Discussion of Results

The developed controller design considers a second-order model with model uncer-
tainties and output error constraints. Asymmetric tracking error constraint is considered.
The main closed loop features are: (i) the tracking error converges to a compact set whose
width is user-defined so that it depends on neither model terms, modeling error, nor model
coefficients; (ii) output error constraint is achieved by using enhanced control effort; (iii) dis-
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continuous signals are avoided in the controller. In addition, the output feedback term of the
control law takes on large values for tracking error values close to the constraint boundary.

The overall steps of the control design are: (i) definition of the tracking error e1 and
its time derivative; (ii) definition of the dead-zone Lyapunov-like function for the tracking
error (Ve1), its gradient and its properties; (iii) determination of the time derivative dVe1/dt,
and incorporation of the output feedback term; (iv) definition of the second backstepping
state e2; (v) determination of the time derivative de2/dt; (vi) definition of the dead-zone
Lyapunov-like function for e2 (Ve2), determination of its time derivative, and formulation of
the control law; (vii) determination of the d(Ve1 + Ve2)/dt expression under the formulated
controller; (viii) integration of the d(Ve1 + Ve2)/dt expression and determination of the
boundedness of the closed-loop signals and convergence of e1; (ix) definition of the structure
of the output feedback term of the controller.

The control design procedure aims at rendering the time derivative of the overall
Lyapunov function non-positive. The backstepping strategy is used as the basic framework
for the control design, and the filtering approximation of the DSC strategy is used in order
to avoid an ‘explosion of complexity’. However, several improvements are incorporated
in the basic backstepping-DSC procedure to achieve contributions Bi, Bii and Biii: an
additional robustness term is used in order to tackle the effect of the approximation error;
dead-zone modification is used in the Lyapunov-like function; a new output feedback
stabilizing term is incorporated in the time derivative dVe1/dt.

The dead-zone modification of the Lyapunov functions has the following advantages:
it allows for avoiding discontinuous signals in the controller signals, while robustness to
disturbances or uncertainty terms is ensured; it facilitates guaranteeing the convergence of
the tracking error to the user-defined region. Dead-zone Lyapunov functions have been
mainly applied to robust control design: early studies are presented in [22,29,30], whereas
recent studies in [31–35]. In turn, the theory of the dead-zone Lyapunov function keeps
several of the advantages of the current Lyapunov function, including its usefulness for
proving global asymptotic stability and for formulating nonlinear control which can be
noticed in [36,37].

The output feedback function W (45) is a nonlinear function of the tracking error, and
it exhibits the advantages mentioned in the control goal (Section 2):

− Bi: it takes on large but bounded and user-defined values for tracking error close, equal,
or higher than the prescribed constraint bound, which is done through the sigmoid
function fehc. This function satisfies conditions (12), whereas its exact expression and
the level of enhancement kw are user-defined. The tracking error constraint is achieved
through this control effort enhancement.

− Bii: it involves a previously known user-defined output feedback function φa for track-
ing error values far from the constraint bound. This function satisfies condititons (46),
whereas its exact expression is user-defined so that high-performance functions are
allowed, for instance the double power law (18).

4. Numerical Simulation

In this section, the controller and convergence results stated in Theorem 1 are illustrated
through simulation for a continuous bioreactor, using the input constraint condition (2),
the reference model (4) and the controller Equations (5)–(14). We consider a continuous
culture of Gluconacetobacter diazotrophicus with constant culture volume and substrate sensor
dynamics, being the measured substrate concentration (ss) the output to be controlled and
the dilution rate (D) the control input. Its model comprises biomass and substrate mass
balance equations [20] and substrate sensor dynamics [38]:

dss

dt
= − 1

τ1
ss +

1
τ1

s (46a)

ds
dt

= (sin − s)D− ysµx (46b)
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dx
dt

= (µ− D)x (46c)

where x is the biomass concentration; x2 = s is the substrate concentration; sin is the
inlet substrate concentration; µ is the specific growth rate, ys is the yield coefficient; ysµ
is the substrate uptake rate, D = Q/V is the dilution rate; Q is the feeding flow rate;
V is the liquid volume [20] and x1 = ss is the output of the substrate sensor [38]. The
equations for substrate measurement (46a) and substrate concentration (46b) correspond to
model (1) and fulfill assumptions 1 to 3. The bacterium strain, initial medium composition,
temperature, pH, dissolved oxygen concentration and mixing conditions correspond to the
batch cultivation presented in [39]. The specific growth rate expression is

µ = µmax

(
1− x

xmax

) f

The parameters of substrate and biomass models (46b), (46c) are fitted to batch culture
data presented in [39], giving as result: µmax = 0.01484 h-1; Xmax = 0.32 g/L; f = 1.607;
ys = 0.0234; ms = 0.22425. In addition, sin = 180 g/L and τ1 = 0.03 h were used for the
continuous plant models (46). The width of the tracking error convergence set Ωe1, the
constraint boundary and the input bound are set to ε = 1.3; εu = 1.9; Dmax = 4. The
observer used is based on that of [20], and the state estimation results in x̂1 ≈ x1, and
x̂2 ≈ x2.

The parameters of control Equations (5)–(11) are chosen as am = 0.1; τT1 = 0.01;
k f = 0.195. We use an asymmetric form of (17) for φa:

φa =

{
kφ1| fe1|αsgn( fe1) + kφ2| fe1|3sgn( fe1) f or e1 > 0

−kc1 fe1 f or e1 ≤ 0

with kc1 = 0.5; kφ1 = 0.0002164; kφ2 = 4.408; α = 1.417, so that the W function is:

W =

{
φa fehc f or e1 > 0
−kc1 fe1 f or e1 ≤ 0

The function (15) is used for fehc: the effect of koi, k1i, n on the fT curve is shown in
Figure 2, whereas their effect on the fehc and W curves is shown in Figure 3. The fT curve
(Figure 2) shows that: the fT function is continuous and smooth; fT ≈ 0 for low dct values;
fT ≈ 1 for high values. In addition, steeper curve is obtained with high n, high k1i, low koi.

The fehc curve (Figure 3a,b) shows that: the fehc function is continuous and smooth;
fehc ≈ 1 for low e1 values; fehc ≈ kw for e1 close to εu. In addition, steeper form is obtained
with high n, high k1i, low koi.

The W curve (Figure 3c,d) shows that: the W function is continuous and smooth;
W ≈ φa for low e1 values; W ≈ kwφa for e1 close to εu. In summary, the definition of fehc
parameters to obtain the desired W features is simple, while involving the user-defined
dependence for low e1 values and for e1 close to εu.

The values of fehc are chosen to be koi = 0.001, 10, n = 3. The simulation is performed
using MATLAB version R2014 with ode45 function. The trajectories of the tracking error e1,
the backstepping state e2, the control input D, the output x1 = S and the desired output yd
for these n, koi, k1i values and different values of eto are shown in Figures 4 and 5.
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Figure 2. Effect of 𝑑௖௧ on the 𝑓  function (16), for different values of 𝑛, 𝑘௢௜, 𝑘ଵ௜: (a) curve of 𝑓  for 𝑘௢௜ = 0.005, 𝑘ଵ௜ = 1; (b) curve of 𝑓  for 𝑘௢௜ = 0.005 and 𝑛 = 3; (c) detail of 𝑓  curve for 𝑘௢௜ =0.005 and 𝑛 = 3; (d) curve of 𝑓  for 𝑘ଵ௜ = 10 and 𝑛 = 3; (e) detail of 𝑓  curve for 𝑘ଵ௜ = 10 and 𝑛 = 3. 

 

Figure 2. Effect of dct on the fT function (16), for different values of n, koi, k1i: (a) curve of fT for
koi = 0.005, k1i = 1; (b) curve of fT for koi = 0.005 and n = 3; (c) detail of fT curve for koi = 0.005
and n = 3; (d) curve of fT for k1i = 10 and n = 3; (e) detail of fT curve for k1i = 10 and n = 3.

Mathematics 2022, 10, 1855 15 of 20 
 

 

 
Figure 2. Effect of 𝑑௖௧ on the 𝑓  function (16), for different values of 𝑛, 𝑘௢௜, 𝑘ଵ௜: (a) curve of 𝑓  for 𝑘௢௜ = 0.005, 𝑘ଵ௜ = 1; (b) curve of 𝑓  for 𝑘௢௜ = 0.005 and 𝑛 = 3; (c) detail of 𝑓  curve for 𝑘௢௜ =0.005 and 𝑛 = 3; (d) curve of 𝑓  for 𝑘ଵ௜ = 10 and 𝑛 = 3; (e) detail of 𝑓  curve for 𝑘ଵ௜ = 10 and 𝑛 = 3. 

 

Figure 3. Cont.



Mathematics 2022, 10, 1855 16 of 20Mathematics 2022, 10, 1855 16 of 20 
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Figure 4. Simulation results for 𝑟 = 30: (a) Trajectory of the tracking error 𝑒ଵ and backstepping 
state 𝑒ଶ; (b) detail of the trajectories of 𝑒ଵ and 𝑒ଶ; (c) trajectory of the control input 𝐷; (d) detail of 
the trajectory of the control input; (e) trajectory of the output 𝑥ଵ and desired output 𝑦ௗ; (f) detail 
of the trajectories of 𝑥ଵ, 𝑦ௗ. 

Figure 3. Effect of the tracking error e1 on the fehc function (15) and W = φa fehc for εu = 1.9: (a) curve
of fehc for kw = 2, n = 3; (b) detail of the fehc curve; (c) curve of W and φa for n = 3, k1i = 10,
koi = 0.001, and koi = 0.005; (d) detail of the W and φa curves.
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Figure 4. Simulation results for r = 30: (a) Trajectory of the tracking error e1 and backstepping state
e2; (b) detail of the trajectories of e1 and e2; (c) trajectory of the control input D; (d) detail of the
trajectory of the control input; (e) trajectory of the output x1 and desired output yd; (f) detail of the
trajectories of x1, yd.
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In this paper, we proposed a robust controller for systems described by the second-
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by using a control law whose output feedback term is user-defined and bounded, com-
prising large but finite user-defined values for tracking error values equal to or higher 
than the constraint boundary, and a user-defined function for tracking error values far 
from the constraint boundary. This is a significant contribution that remedies two im-
portant limitations of common output constraint control designs: the infinite control effort 
for tracking error equal to or higher than the constraint boundary, and the impossibility 
of using previously known user-defined functions in the output feedback function for 
tracking error values far from the constraint boundary. As another contribution, the con-
trol design is based on the dead-zone Lyapunov function, which facilitates the achieve-
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Figure 5. Simulation results for r = 37: (a) Trajectory of the tracking error e1 and backstepping state
e2; (b) detail of the trajectories of e1 and e2; (c) trajectory of the control input D; (d) detail of the
trajectory of the control input; (e) trajectory of the output x1 and desired output yd; (f) detail of the
trajectories of x1, yd.

Simulations (Figures 4 and 5) verify that:

− the developed controller achieves a fast asymptotic convergence of the tracking error
e1 to the compact set Ωe1 = {e1 : |e1| ≤ ε}.

− the dependence of the control effort on the tracking error is remarkably enhanced
with the applied fehc function (Figures 3 and 4), thus avoiding violation of output
constraint. This is mostly noticed at initial time when the tracking error is high and
outside Ωe1.

5. Conclusions

In this paper, we proposed a robust controller for systems described by the second-
order input-output model, considering asymmetric tracking error constraints. The main
contribution over closely related studies is that the tracking error convergence is achieved
by using a control law whose output feedback term is user-defined and bounded, compris-
ing large but finite user-defined values for tracking error values equal to or higher than the
constraint boundary, and a user-defined function for tracking error values far from the con-
straint boundary. This is a significant contribution that remedies two important limitations
of common output constraint control designs: the infinite control effort for tracking error
equal to or higher than the constraint boundary, and the impossibility of using previously
known user-defined functions in the output feedback function for tracking error values
far from the constraint boundary. As another contribution, the control design is based on
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the dead-zone Lyapunov function, which facilitates the achievement of convergence to a
compact set with user-defined size, avoidance of discontinuous signals in the controller
and robustness to model uncertainty or disturbances.

To achieve the aforementioned features, the main improvements made in the control
design procedure are: (i) dead zone modification is used in the Lyapunov function; (ii) the
Lyapunov function for the tracking error is defined as an integral in terms of its gradient;
(iii) the non-positive stabilizing term in the time derivative of the overall Lyapunov function
is chosen to be the square of the output feedback term; (iv) the output feedback term is
defined as the product between a sigmoid function and an increasing function, both of
them depending on the tracking error.

The main limitations of the proposed controller are:

− The design is only valid for the second-order systems, so that systems of higher-order
are not allowed.

− Finite-time stabilization is not guaranteed. That is, the time for convergence of the
tracking error e1 to its compact set Ωe1 is not straightforwardly defined by the user.
Indeed, some trial-and-error effort is needed for achieving a desired convergence time.

− The control gain bm is considered completely known.

The simulations show several of the advantages mentioned in the contributions in-
cluding (i) convergence of the tracking error to a compact set whose width is user-defined;
(ii) the tracking error is constrained by using the proposed output feedback term in the
control law; (iii) the input signal is continuous.
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Appendix A

The observer of [21], using the terms of model (1) is:

dx̂1

dt
= −

∣∣Fg1
∣∣(ωx1 +

(
k +

1
4ω

)
ψx1 + satx1θ̂

)
+ F1 + Fg1 x̂2

dx̂2

dt
= −Fg1ω

((
k +

1
4ω

)
ψx1 + satx1θ̂

)
+ F2 + bmu

dθ̂

dt
= γ

∣∣Fg1
∣∣|ψx1|

where

ψx1 =


x1 − ε f or x1 ≥ ε
0 f or x1 ∈ [−ε, ε]
x1 + ε f or x1 ≤ −ε
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satx1=


1 f or x1 ≥ ε

1
ε x1 f or x1 ∈ [−ε, ε]
−1 f or x1 ≤ −ε

x1 = x̂1 − x1,

ε is the width of the convergence region of x1, and ω, k, γ, ε, are user-defined positive
constants. Therefore, the terms of observer form (3) are:

Had1 =
∣∣Fg1

∣∣(ωx1 +

(
k +

1
4ω

)
ψx1 + satx1θ̂

)
− F1

Hg1 = Fg1

Had2 = −Fg1ω

((
k +

1
4ω

)
ψx1 + satx1θ̂

)
+ F2

Appendix B

The function W can be asymmetrical:

W =

{
Wu f or fe1 ≥ 0
Wl f or fe1 < 0

In this case, Ve1 is determined from

Ve1 =

{∫ fe1
0 Wud fe1 f or fe1 ≥ 0∫ fe1
0 Wld fe1 f or fe1 < 0
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