
Citation: Anton, C.; Leon, F.;

Gavrilescu, M.; Drăgoi, E.-N.; Floria,

S.-A.; Curteanu, S.; Lisa, C. Obtaining

Bricks Using Silicon-Based Materials:

Experiments, Modeling and

Optimization with Artificial

Intelligence Tools. Mathematics 2022,

10, 1891. https://doi.org/10.3390/

math10111891

Academic Editor: Jüri Majak

Received: 19 April 2022

Accepted: 22 May 2022

Published: 31 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Obtaining Bricks Using Silicon-Based Materials: Experiments,
Modeling and Optimization with Artificial Intelligence Tools
Costel Anton 1, Florin Leon 2,* , Marius Gavrilescu 2, Elena-Niculina Drăgoi 1 , Sabina-Adriana Floria 2 ,
Silvia Curteanu 1 and Cătălin Lisa 1,*

1 Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of
Iasi, Bd. Mangeron, No. 73, 700050 Ias, i, Romania; costel.anton@gmail.com (C.A.);
elena-niculina.dragoi@academic.tuiasi.ro (E.-N.D.); silvia.curteanu@academic.tuiasi.ro (S.C.)

2 Faculty of Automatic Control and Computer Engineering, “Gheorghe Asachi” Technical University of Iasi,
Bd. Mangeron, No. 27, 700050 Iasi, Romania; marius.gavrilescu@academic.tuiasi.ro (M.G.);
sabina-adriana.floria@academic.tuiasi.ro (S.-A.F.)

* Correspondence: florin.leon@academic.tuiasi.ro (F.L.); catalin.lisa@academic.tuiasi.ro (C.L.)

Abstract: In the brick manufacturing industry, there is a growing concern among researchers to find
solutions to reduce energy consumption. An industrial process for obtaining bricks was approached,
with the manufacturing mix modified via the introduction of sunflower seed husks and sawdust.
The process was analyzed with artificial intelligence tools, with the goal of minimizing the exhaust
emissions of CO and CH4. Optimization algorithms inspired by human and virus behaviors were
applied in this approach, which were associated with neural network models. A series of feed-forward
neural networks have been developed, with 6 inputs corresponding to the working conditions, one
or two intermediate layers and one output (CO or CH4, respectively). The results for ten biologically
inspired algorithms and a search grid method were compared successfully within a single objective
optimization procedure. It was established that by introducing 1.9% sunflower seed husks and 0.8%
sawdust in the brick manufacturing mix, a minimum quantity of CH4 emissions was obtained, while
0% sunflower seed husks and 0.5% sawdust were the minimum quantities for CO emissions.

Keywords: bricks; artificial neural networks; optimization algorithms; biologically inspired meth-
ods; modeling

MSC: 97R40; 90C26; 92Exx

1. Introduction

The process of obtaining burnt bricks involves a significant consumption of energy.
Given the current context in which the cost of energy has become a critical issue, there is
growing concern among researchers to find solutions to reduce energy consumption [1].
Most of the existing studies in the literature are carried out at the laboratory scale and
involve the inclusion in the manufacturing mix of bricks containing waste products, such
as agricultural waste [2] and textile sludge [3], as well as wastes resulting from the steel
industry, containing mainly slag, dust, mud [4], cotton micro-waste [5], sawdust [6], coffee
grounds [7], brick powders and residual ceramics [8–10], ash [11] and others. After ob-
taining the finished products at the laboratory scale, they are evaluated in terms of their
mechanical properties, thermal conductivity and water absorption. Beshah and others [3]
obtained very good compression resilience results (approximately 30 MPa) and energy
savings of 26 and 50% when used in combination with 10% clay and 20% textile sludge
to obtain burned bricks. At the same laboratory scale, Cultrone and others [6] established
that the addition of sawdust to the composition of bricks in different proportions from 2.5
to 10% does not cause significant changes in the color of the bricks or in their mineralogy.
Manni and others [7] also found that bricks do not change color even when coffee grounds

Mathematics 2022, 10, 1891. https://doi.org/10.3390/math10111891 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10111891
https://doi.org/10.3390/math10111891
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1370-9145
https://orcid.org/0000-0001-5006-000X
https://orcid.org/0000-0001-8170-5923
https://doi.org/10.3390/math10111891
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10111891?type=check_update&version=2


Mathematics 2022, 10, 1891 2 of 21

are added to their composition in proportions ranging from 10 to 30%. In the context of the
significant reduction in clay sources involved in the manufacture of bricks, Khitab et al. [8]
established that 27% of clay can be replaced with ceramic waste powder and waste brick
powder without affecting the quality of the bricks. The same conclusion was reached by
Wiryikfu and others [9] when they used 20% waste brick powder. The introduction of
coffee grounds to the composition of burnt bricks led to decreased thermal conductivity,
resistance to bending and increased porosity and water absorption. Very good results were
obtained for burnt bricks when using granite sludge at the laboratory scale by Hamid [10].
The optimum composition was 70% clay, 25% silica fume and 5% granite sludge waste at a
firing temperature of 700 ◦C.

The production of burnt bricks by adding waste to the manufacturing mix must be
assessed both in terms of preserving the properties of the finished products, which must be
comparable to the classic ones, and taking into account other important factors. Among
them, the distance from the place where the waste is located can be mentioned, which
can lead to additional production costs and also to an increase in exhaust gases emissions
in the furnace chimney. Sani and Nzihou evaluated the impacts of adding agricultural
waste to the manufacturing mix on the thermal and mechanical properties of bricks at the
laboratory scale, as well as on the net consumption of energy and gases emitted during the
combustion process [1]. These authors established that the introduction of 4% olive core
flour in the brick manufacturing mix led to a 36% reduction in energy consumption. They
also found that CO2 emissions increased by a maximum of 4.38% when using agricultural
waste [1].

Analyzing the influence of adding waste to industrial-scale brick manufacturing
mixes is a challenge for process engineers. These installations are designed and put
into operation for a certain type of manufacturing mix and a certain type of combustion
process. The tests performed at the industrial scale involve high costs and many hours of
production in test mode. The use of various artificial intelligence tools in the processing
and optimization of databases obtained at the industrial scale leads to significant savings
of time and money. Information can be obtained to change the operating limits without
affecting the performance during the manufacturing process and to improve production
costs and environmental impact.

Different optimization algorithms inspired by human and virus behaviors were ap-
plied in this approach. These algorithms were deliberately chosen because they are inspired
by organisms with very different degrees of complexity, i.e., very simple or very complex,
but with complicated, unpredictable or unknown behaviors. By analyzing these organisms,
new ideas can emerge for optimization research. Additionally, few applications have been
addressed so far using these algorithms; therefore, another original contribution is to test
them in the chemical engineering field, more precisely to optimize the process of obtaining
bricks using silicon-based materials.

Mainly, these optimization algorithms can be organized into three categories: al-
gorithms inspired by the human behaviors of both cooperation and competition, and
algorithms inspired by virus behavior.

Optimization algorithms inspired by the human behaviors of learning and cooperation.
It is thought that human learning is based on three main strategies: random learn-

ing, individual learning and social learning. Accordingly, the following algorithms have
been developed: Simplified Human Learning Optimization (SHLO) [12], Social Learning
Optimization (SLO) [13] and Teaching–Learning-Based Optimization (TLBO) [14]. Not
many improvements have been proposed so far for SHLO and SLO. Still, one can mention
adaptive SHLO [15,16] and a combination between SLO, differential evolution and im-
proved Social Cognitive Optimization [17]. On the other hand, TLBO is a simple, efficient
algorithm [18], which has been used in several hybrid variants, e.g., including an error cor-
rection strategy and Cauchy distribution [19], genetic crossover and mutation strategies [20],
a combination with a Bird Mating Optimizer [21] and Differential Learning [22].

Optimization algorithms inspired by human competitive behavior.



Mathematics 2022, 10, 1891 3 of 21

The specific algorithms based on human competition are sports-inspired algorithms,
e.g., the Football Game Algorithm (FGA) [23,24] and Volleyball Premier League (VPL)
algorithm [25], as well as the Imperialist Competitive Algorithm (ICA) [26], which was
applied for a robust PID controller [27] and elsewhere in the engineering domain [28]. So
far, FGA and VPL have not been the subject of a great number of studies. Among the
proposed improvements, one can mention a modified VPL approach that uses the sine
cosine algorithm [29] and the Multi-Objective Volleyball Premier League algorithm [30].
On the other hand, the ICA has been extensively studied, and many variants have been
published, e.g., ICA combined with different chaotic maps [31], k-means clustering [32]
and neural networks [33,34].

Optimization algorithms inspired by virus behavior.
Some examples that belong to this class are: Viral System (VS) [35], Virulence Opti-

mization Algorithm (VOA1) [36] and Virus Colony Search (VCS) [37] approaches. VCS was
applied to find the optimal placement of distributed generators with regard to a reliability
assessment [38], and for unit commitment in smart grids with wind farms [39]. Another
algorithm is the Virus Optimization Algorithm (VOA2) [40–42], for which only one modi-
fied variant [43] is available in the literature. In general, one cannot find many reported
applications for these algorithms.

In most studies, these optimization algorithms have been tested on benchmark prob-
lems, with several applications in the field, especially for the TLBO algorithm [18]. After an
in-depth literature study, no applications were found in the fields addressed in this paper
or in related fields in which real industrial processes are considered.

In this approach, some optimization algorithms are applied to minimize the gas emis-
sions in an industrial process, whereby burnt bricks are obtained through the introduction
in the manufacturing mix of sunflower seed husks and sawdust. The novelty of this
research paper is the study via simulation of the industrial process using optimization
procedures, including neural networks and biologically inspired algorithms, to provide
the percentage compositions of seed husks and sawdust and dry product mass, as well as
the amounts of clay, ash and organic raw materials to be used in the manufacturing mix,
so that the amounts of CO and CH4 discharged to the furnace chimney are minimal. The
combination of neural networks with algorithms inspired by human and virus behaviors
has not been studied in the literature, which is another contribution of the present article.

2. Materials and Methods
2.1. Experimental Determinations

The experimental tests were performed in an industrial system used for obtaining
bricks. Here, 100 batches of bricks were evaluated, for which the manufacturing mix was
modified via the introduction of sunflower seed husks and sawdust in proportions ranging
between 0 and 3.5%. The impact assessment of the addition of these auxiliary materials
on the exhaust emissions resulting from the manufacturing process was performed by
analyzing the exhaust gases in the furnace chimney with a Testo 350 flue gas analyzer. This
was equipped with detection and measurement cells specific to the gases of interest (CO,
NO and CH4) and metrologically calibrated. This analyzer provided CO measurement
resolutions of 0.1 ppm and 1 ppm for NO and CH4.

The experimental determinations allowed the construction of a database containing
information on the mass percentage composition of sunflower seed husks (SSH) and
sawdust (S), dry product mass (DPM), the amount of clay (C), the amount of ash (A) and
the amount of organic raw material (ORM) used, as well as the amounts of CO, NO and
CH4 discharged to the furnace chimney in the manufacturing process of 100 loads of bricks.

2.2. Modeling Methodology

Given the current energy crisis, process engineers are trying to maintain and improve
productivity in industrial brick-making plants that are designed and put into operation for
a certain type of manufacturing mix and a certain type of combustion process by adding



Mathematics 2022, 10, 1891 4 of 21

auxiliary materials such as sawdust and sunflower seed husks. The manufacturing mix
must follow the same combustion curves due to the constructive characteristics of the
installation, and the quantity of exhaust emissions in the furnace chimney must also be
carefully monitored.

In this study, it is proposed to build neural models that make predictions about the
changes in quantity of exhaust emissions when different percentages of auxiliary materials
are introduced into the manufacturing mix, thereby helping to reduce the number of
experimental tests with significant economic impacts, because these tests are carried out
on large-capacity industrial plants (approximately 90,000 bricks per day) and involve
significant consumption of materials. The predictions based on the constructed neural
models have the advantage of reducing the consumption of materials, energy and time.
Furthermore, the neural models are then introduced into an optimization procedure with
the goal of minimizing the quantities of exhaust emissions.

The input data used for the neural models were: the mass percentage compositions
of sawdust (S) and sunflower seed husks (SSH), dry product mass (DPM) expressed in kg
and the amount of clay (C), the amount of ash (A) and the amount of organic raw material
(ORM) expressed in tons. The output parameters considered were: the amounts of CO
and CH4 present in the flue gases in the furnace chimney. Neural networks with forward
propagation with 6 inputs, one or two layers with 6 to 30 hidden neurons and an output
were developed. The neural models with the best results in the training stage were tested
in the validation stage on new series of experimental data (unseen data).

In the modeling stage, feed-forward neural networks with one or two hidden layers
were tested because in many applications it has been shown that this type of neural model
provides satisfactory results as a universal approximator. The method applied for the
development of the network was trial and error, and in order to obtain the best topology,
many variants were tested (neural networks with one or two hidden layers and different
numbers of intermediate neurons), following the errors at the end of a relatively large
number of training epochs.

The feed-forward multilayer perceptron neural networks were built using the Neu-
roSolutions commercial simulator produced by the company NeuroDimension. The back-
propagation training algorithm was applied, since it is the most commonly used algorithm
for training neural networks, which aims to minimize the error via gradient descent. The
transfer function used was the hyperbolic tangent. The experimental data were randomly
ordered and divided into 87 instances used for training and 13 used for validation.

2.3. Optimization Methodology

The optimization problem aims to determine the percentage compositions of seed
husks and sawdust and the amounts of clay, ash and organic raw materials to be used in the
manufacturing mix so that the amounts of CO and CH4 discharged to the furnace chimney
are minimal. The previously determined neural models were included in the optimization
procedure.

The methodology implemented for modeling and optimizing the industrial process
for obtaining bricks is presented in Figure 1.

For single-objective optimization, considering separate problems for minimizing CO
and CH4, the following algorithms inspired by the human and virus behavior were tested:
Simple Human Learning Optimization Algorithm, Teaching–Learning-Based Optimization
Algorithm, Social Learning Optimization, Football Game Algorithm, Volleyball Premier
League Algorithm, Imperialist Competitive Algorithm, Viral System, Virulence Optimiza-
tion Algorithm, Virus Colony Search and Virus Optimization Algorithm.



Mathematics 2022, 10, 1891 5 of 21Mathematics 2022, 10, x FOR PEER REVIEW 5 of 23 
 

 

 

Figure 1. Methodology for modeling and optimizing experimental data (S = sawdust; SSH = 

sunflower seed husks; DPM = dry product mass; C = the amount of clay; A = the amount of ash; 

ORM = the amount of organic raw materials). 

For single-objective optimization, considering separate problems for minimizing CO 

and CH4, the following algorithms inspired by the human and virus behavior were 

tested: Simple Human Learning Optimization Algorithm, Teaching–Learning-Based 

Optimization Algorithm, Social Learning Optimization, Football Game Algorithm, 

Volleyball Premier League Algorithm, Imperialist Competitive Algorithm, Viral System, 

Virulence Optimization Algorithm, Virus Colony Search and Virus Optimization 

Algorithm. 

All the algorithms have original implementations in C#. They were included in a 

unified optimization framework with a flexible architecture that allows the loose 

coupling of the modules implementing various algorithms and optimization problems 

[43]. New algorithms and new optimization problems can easily be added because they 

are based on predefined interfaces and the main program only uses IProblem and 

IAlgorithm objects, respectively. This is one of the few optimization frameworks 

available for .NET (more specifically, .NET framework 4.7.2). The resulting software is a 

Windows-based, self-contained application where the user can experiment with different 

combinations of algorithms, problems and parameter values. 

Because these algorithms are less known and applied, a short description will be 

made for each of them. Additionally, we applied these algorithms and their 

performances were compared. 

The Simple Human Learning Optimization (SHLO) algorithm [12] is inspired by a 

human learning model in which three learning mechanisms, similar to those of humans, 

are addressed: random learning, individual learning and social learning. The random 

learning operator is used to mimic random events that may occur during learning. At 

the beginning of the learning process, one can expect the process to be random because 

people do not have previous experience of the problem. Moreover, during learning, 

people cannot fully replicate previous experiences due to forgetting or partial 

knowledge of information. The individual learning operator is based on the principle 

that people avoid mistakes by using their own experiences. Therefore, this type of 

learning can improve an individual’s performance. The SHLO algorithm mimics 

individual learning through the use of an individual knowledge database (IKD). Each 

individual i in the population has an IKDi knowledge database that other individuals 

Figure 1. Methodology for modeling and optimizing experimental data (S = sawdust; SSH = sun-
flower seed husks; DPM = dry product mass; C = the amount of clay; A = the amount of ash; ORM =
the amount of organic raw materials).

All the algorithms have original implementations in C#. They were included in a
unified optimization framework with a flexible architecture that allows the loose coupling
of the modules implementing various algorithms and optimization problems [43]. New
algorithms and new optimization problems can easily be added because they are based
on predefined interfaces and the main program only uses IProblem and IAlgorithm ob-
jects, respectively. This is one of the few optimization frameworks available for .NET
(more specifically, .NET framework 4.7.2). The resulting software is a Windows-based,
self-contained application where the user can experiment with different combinations of
algorithms, problems and parameter values.

Because these algorithms are less known and applied, a short description will be
made for each of them. Additionally, we applied these algorithms and their performances
were compared.

The Simple Human Learning Optimization (SHLO) algorithm [12] is inspired by a
human learning model in which three learning mechanisms, similar to those of humans,
are addressed: random learning, individual learning and social learning. The random
learning operator is used to mimic random events that may occur during learning. At the
beginning of the learning process, one can expect the process to be random because people
do not have previous experience of the problem. Moreover, during learning, people cannot
fully replicate previous experiences due to forgetting or partial knowledge of information.
The individual learning operator is based on the principle that people avoid mistakes by
using their own experiences. Therefore, this type of learning can improve an individual’s
performance. The SHLO algorithm mimics individual learning through the use of an
individual knowledge database (IKD). Each individual i in the population has an IKDi
knowledge database that other individuals cannot access. However, in a social environment,
people can effectively learn from shared experience [44,45]. The social learning operator
attempts to eliminate the possible disadvantage of a slow and inefficient learning process
of individual learning, especially for complicated problems. In the SHLO algorithm, a social
knowledge database (SKD) is used to mimic learning from collective experience. The SKD
database is used to store the best experience of the population. Although in SHLO there
is no direct interaction between individuals, cooperative learning is indirectly achieved
because (1) the SKD can be updated with better knowledge from better individuals and (2)



Mathematics 2022, 10, 1891 6 of 21

each individual in the population can access the SKD database. An updating operation is
also used in SHLO to update the IKD and SKD during the search.

The Teaching–Learning-Based Optimization (TLBO) algorithm proposed by Rao
et al. [14,46–48] is inspired by the process of teaching and learning. The basic princi-
ple of this process is the effect that a teacher has on the results obtained by a class of
learners. Learning based on cooperation between learners is also considered. Therefore,
the algorithm has two learning phases known as the teacher phase and the learner phase.
TLBO is a population-based algorithm with the following analogies: the class of students
represents the population, the marks of students for different subjects taught are correlated
with the values for the variables of the solution in the optimization problem and the result
of a student represents the fitness of the individual. In the teacher phase, the best student
in the class is chosen in the algorithm to have the role of teacher. The goal of the teacher is
to influence the marks of other learners in each subject. However, the teacher has a certain
level of knowledge for each subject taught. The teacher’s level of knowledge in a particular
subject is given by the difference between the teacher’s mark and the average mark of the
class in that subject. When the teacher has a better level of knowledge, he or she has a more
significant influence on the marks of each learner. The teacher always influences the marks
of all learners in the class, but a learner accepts the new knowledge only if he or she has
a better result than the previous one. In the second phase of TLBO, the learners attempt
to improve their knowledge by interacting with one another. When some learner has a
superior amount of knowledge, this can help a peer to improve their own knowledge. The
interactions between learners are random, and each learner in the class has to interact with
any other learner [49]. When two learners interact, their result identifies which one is better,
while the difference between their marks influences the amount of knowledge transferred.
The TLBO algorithm has been tested on many constrained and unconstrained optimization
problems in various fields of engineering [50].

The Social Learning Optimization (SLO) algorithm [17] is based on the idea that
intelligence in humans is determined both by genes and by social and cultural influence.
It can be improved by learning and by acquiring new knowledge from participating in
collective actions. When enough knowledge has been accumulated, a form of culture is
established, and this can accelerate the development of intelligence. SLO includes three
co-evolution spaces, organized by layers. The first (bottom) layer is the micro-space that
supports individual evolution, which is in fact based on genetic evolution. SLO does not
impose any constraints on the type of evolution and does not suggest a particular algorithm;
for example, differential evolution can be used here. The next layer is the learning space
that fosters imitation learning and observational learning by individuals, with the goal
of improving their intelligence by learning from peers. The third (top) layer is the belief
space, where knowledge extracted from the middle layer is conveyed. In this space, the
accumulation of knowledge creates culture, which is further used to guide the individual
genetic evolution in the micro-space. The purpose of the top layer is to simulate the
phenomenon by which culture can accelerate the speed of evolution of human intelligence.
In the upper co-evolution spaces, the SLO algorithm uses a library of knowledge points.
These knowledge points are potential solutions, and better solutions can be found in their
vicinity. The best individuals in the learning space replace the poor individuals in the belief
space, and those in the belief space replace the poor individuals in the micro-space.

The Football Game Algorithm (FGA) [23] is based on an idealized version of the
football game. The initial population defines the initial team of players on the field. Then,
each player moves around his last position with a random walk procedure combined with
a motion towards the ball. The ball is passed between players, and the players in better
positions, i.e., with lower values of the objective function, are more likely to receive the ball.
The part related to the coach represents the local search aspect of the algorithm. In order to
increase the solution quality, a hypersphere is considered around the nearest best position
in the vicinity of a player, whose radius decreases as the algorithm evolves. Members
farther from good solutions are pushed toward the closest good positions. The coach may



Mathematics 2022, 10, 1891 7 of 21

also employ the change option to replace weaker players with other players around the
closest good position, depending on the coach’s memory.

The Volleyball Premier League (VPL) algorithm [25] is inspired by the interactions
between volleyball teams during a competition season, along with the coach’s decisions
during a match. The members of a team are the players, the reserves and the coach. The
representation of the solution has two segments called the active and passive parts. The
active part, represented by the actual players of the team, includes six active players.
The fitness of each solution is calculated based on this part. The passive part contains
certain variables used in special rules such as the strategy for changing players, where a
replacement can occupy the position of a player who was removed at the decision of the
coach. In the VPL, the term “league” is used to represent the concept of a population. The
teams play against each other and the winning team in each match is determined based on a
power index. Furthermore, several strategies are employed for knowledge sharing, similar
to crossovers, and for learning by exploiting the best solutions from the team population.
Changes may also occur between active formations and passive reserves. Additionally,
there is a mechanism for exchanging players between teams, as well as a mechanism for
promoting and relegating teams from the league.

The Imperialist Competitive Algorithm (ICA) [26] is a metaheuristic inspired by socio-
political behaviors, based on the phenomena of imperialism and colonialism [28]. An
empire consists of an imperialist and one or more colonies. An imperialist is a developed
country that attempts to expand its power by spreading its cultural values to other less
developed countries called colonies. As the colonies adopt the cultural values of an
imperialist, they are said to be assimilated or gradually absorbed by that imperialist. The
existence of several empires implies the existence of competition for power between these
empires. The ICA is a population-based algorithm with the following analogies: a country
represents an individual, the socio-political elements of a country are the variables of
the solution and the cost of a country represents the fitness of the individual. The set of
countries, i.e., the population of individuals, is divided into several empires that compete
for power. The power of an empire is determined using the cost of its imperialist and a
fraction of the cost of its colonies. The following main steps can describe the ICA algorithm:
assimilation, revolution, intra-empire competition and inter-empire competition. The
assimilation operation is applied within each empire and imitates the effect of imperialist
influence on the colonies. When assimilation is completed, the colonies of an empire will be
closer to their imperialist. The revolution operation imitates the resistance of some colonies
to be absorbed by their imperialists. Revolution in ICA is similar to the mutation operation
of a genetic algorithm, and it randomly changes the positions of certain colonies. After the
operations of assimilation and revolution, intra-empire competition follows. In this type
of competition, the imperialist of an empire exchanges positions with one of the colonies
if that colony has a better cost than that of the imperialist. Thus, a colony can become
the new imperialist. In the last step, inter-empire competition imitates the competition
between empires. Weaker empires will gradually lose their colonies to stronger empires
until they collapse, and the ideal convergence of the search process is identified when only
one empire remains.

The Viral System (VS) [35] is an optimization method based on an analogy of how
a biological system reacts to a viral infection. The population of potential solutions is
considered to be an organism composed of multiple cells. When a cell is infected, the virus
starts replicating nucleus capsids inside the cell body. Once a threshold is reached and
sufficient capsids have been generated, the virus is able to use the cell’s DNA to replicate
itself, at which point the cell is destroyed and the resulting viruses can spread to other cells
from its neighborhood. The number of nucleus capsids increases over multiple iterations
to a binomially distributed amount. Fitter solutions have higher upper thresholds for the
number of capsids required for the infection to manifest. Furthermore, the organism may
develop an antigenic response, in which case fitter cells may resist the infection altogether.
The virus replication process maybe either lytic, when the infection manifests suddenly,



Mathematics 2022, 10, 1891 8 of 21

or lysogenic, when the virus lies dormant until triggered. The duration of the lysogenic
cycle is determined from binomially distributed variables, with healthier cells having
longer thresholds in terms of the accumulated delay until the infection starts to manifest.
Consequently, fitter cells will have a higher chance to resist the infection and longer delays
until the manifestation or the replication of the virus, while less fit cells will be removed
from the population more easily and will have a greater contribution to the spread of the
infection.

The Virulence Optimization Algorithm (VOA) [36] is based on the behavior of viruses
when attempting to spread through a host organism. The solution population is composed
of both cell and virus instances, and the approach is based on the tendency of the viruses to
seek regions from the problem space where there are more resources, i.e., fitter cells which
offer more potential for replication. For each generation of potential solutions, the cell and
virus populations are clustered together via k-means. After a mutation and crossover phase,
the viruses migrate through the problem space by moving toward the best member of the
best cluster. In an attempt to better generalize the algorithm, the viruses are translated
toward the best solution part-way, along a percentage of the total distance, while the
translation direction is deviated by a certain angle. Of the resulting virus population, the
best viruses are cloned and the least fit ones are removed. Repeated clustering, migration
and selection of the viruses eventually causes the population to converge towards forming
a large, dense cluster containing the fittest solution.

Similar to the VOA algorithm, the Virus Colony Search (VCS) algorithm [37,43] sim-
ulates how viruses survive and propagate by attacking living cells. Although the termi-
nologies used by the authors of the VOA and VCS are different, the general principles
are the same. The major difference between the two algorithms is given by an additional
step present in the VCS (virus diffusion) and by the way in which the common steps are
implemented. The implementation of the VCS algorithm is based on a set of five rules: (a)
two groups are simulated, the colony of viruses and the colony of host cells; (b) during the
diffusion process, each virus randomly generates a new individual; (c) each virus infects a
single cell; (d) the reproduction of each virus is based on the host cell destruction; (e) after
the application of the immune response process, only some of the best individuals remain
in the population. Thus, the steps taken by the VCS algorithm are:

1. Initialization. Similar to VOA, this step is designed to generate the initial population.
In the VCS this is achieved through a random sampling of the search space;

2. Virus diffusion. This step simulates the process by which a virus searches for a host
cell. The mechanism used in the VCS is based on the Gaussian Random Walk:

V′popi = Gaussian
(

Gg
best, τ

)
+

(
r1Gg

best − r2Vpopi

)
(1)

where i is the index of the current individual, V′popi is the newly created individual,

Gg
best is the best individual from a generation and r1 and r2 are random values gen-

erated in [0, 1] interval. For the Gaussian parameters, the standard deviation τ is
computed using the following relation: log(g)/g·(Vpopi − Gg

best);
3. Host cell infection. After the cell has been attacked, the viruses begin to multiply using

its resources. This process is simulated using the CMA-ES algorithm consisting of
three sub-stages: the host cell colony changes relative to the individual represented
by the arithmetic mean of the virus population; the best individuals in the virus
population are identified and its center is calculated; the parameters for the calculation
of the center and the applied covariance matrix are updated;

4. Immune response. At this stage, viruses evolve and the best-performing ones are
selected for the next generation. Evolution is carried out on the basis of a performance
order.

The Virus Optimization Algorithm (VOA) is also a population-based metaheuristic
algorithm that simulates the attacking behavior of viruses [41]. The algorithm has three
main steps: (1) initialization; (2) replication; (3) updating and selection.



Mathematics 2022, 10, 1891 9 of 21

1. Initialization. Like other metaheuristics, the initialization consists of generating the
initial population of individuals. In this step, the control parameters are also set. In
the initial version, a three-level factorial design is used to determine them [41].

2. Replication. In this step, new individuals are created. This is performed using the
common and strong members of the population and is based on 2 sub-steps that in-
clude classification and replication. In the classification sub-step, the best individuals
(which correspond to the strong member groups) and the rest (which correspond to
the common members group) are identified. In the replication sub-step, new strong
and common individuals, determined through Equations (2) and (3), are added to the
population:

nvij = svij ±
rand()

intensity
svij (2)

nvij = cvij ± rand()cvij (3)

where nv indicates the new virus, sv refers to the strong virus and cv to the common
virus. In the case of strong viruses, the replication is directed by an intensity parameter
that is modified in the updating and selection step of the algorithm if the right
conditions occur.

3. Updating and selection. In this case, two sub-steps are encountered: (i) updating of
the exploitation mechanisms; (ii) population maintenance. In the first sub-step, the
population convergence and the algorithm evolution are checked. If the average
performance did not improve, the exploitation is intensified. In the population
maintenance, the population undergoes a reduction phase, where if the number
of viruses is higher than 1000 (value determined on the relation encountered in nature,
where the average size of a virus is usually around 1000 times that of a cell), then the
worst identified individuals are eliminated.

3. Results
3.1. Neural Network Modeling

The evaluation of the topology of artificial neural networks (ANN) was performed by
testing the performances of several networks with 6 inputs (the percentage compositions of
sawdust and sunflower seed husks, dry product mass, the amount of clay, the amount of ash
and the amount of organic raw material expressed in tons), with one or two intermediate
layers with 6 to 30 hidden neurons and an output for predicting the amounts of CO and
CH4, respectively, resulting in the gas discharge chimney. The selection criteria for the
best topology were the mean square error (MSE), the coefficient of determination (r2) and
the percent error Ep (%). The coding of the topology of the neural networks used was
ANN(m:n:p), where m represents the number of nodes in the input layer, n is the number of
neurons in the hidden layer and p is the number of neurons in the output layer.

In order to ensure the good generalization capability of the networks, they were
trained while following the evolution of the MSE error on the validation set. Although
the exact values differed from network to network, as an intuitive estimation, it was
empirically found that after about 80,000 epochs for CO and about 50,000 epochs for CH4,
the performance no longer improved and the network training was ended at that moment.

Table 1 presents the topologies of neural models constructed for predicting the amount
of CO together with the selection criteria and the time required to obtain them. The best
performances in the training stage were obtained with the ANN(6:20:16:1) model. The
mean square deviation calculated for the training stage was ± 34.4 mg/m3.



Mathematics 2022, 10, 1891 10 of 21

Table 1. Topology and performance of different ANNs constructed and trained for CO prediction.

No. Topology MSE r2 Ep (%) Time (min)

1. ANN(6:6:1) 0.0388 0.870 4.99 4.19
2. ANN(6:12:1) 0.0321 0.894 4.13 5.04
3. ANN(6:18:1) 0.0276 0.910 3.49 5.28
4. ANN(6:20:1) 0.0261 0.915 3.36 5.38
5. ANN(6:24:1) 0.0292 0.905 3.68 5.45
6. ANN(6:20:6:1) 0.0251 0.918 3.35 5.48
7. ANN(6:20:12:1) 0.0148 0.953 2.57 5.55
8. ANN(6:20:16:1) 0.0128 0.959 2.19 5.49
9. ANN(6:20:18:1) 0.0242 0.921 3.21 5.66

(MSE = mean square error; r2 = coefficient of determination; Ep = percent error).

The results obtained with the ANN(6:20:16:1) model in the validation stage are shown
in Figure 2.

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 23 
 

 

selection criteria for the best topology were the mean square error (MSE), the coefficient 

of determination (r2) and the percent error Ep (%). The coding of the topology of the 

neural networks used was ANN(m:n:p), where m represents the number of nodes in the 

input layer, n is the number of neurons in the hidden layer and p is the number of 

neurons in the output layer. 

In order to ensure the good generalization capability of the networks, they were 

trained while following the evolution of the MSE error on the validation set. Although 

the exact values differed from network to network, as an intuitive estimation, it was 

empirically found that after about 80,000 epochs for CO and about 50,000 epochs for CH4, 

the performance no longer improved and the network training was ended at that 

moment. 

Table 1 presents the topologies of neural models constructed for predicting the 

amount of CO together with the selection criteria and the time required to obtain them. 

The best performances in the training stage were obtained with the ANN(6:20:16:1) 

model. The mean square deviation calculated for the training stage was ± 34.4 mg/m3. 

Table 1. Topology and performance of different ANNs constructed and trained for CO prediction. 

No. Topology MSE r2 Ep (%) Time (min.) 

1. ANN(6:6:1) 0.0388 0.870 4.99 4.19 

2. ANN(6:12:1) 0.0321 0.894 4.13 5.04 

3. ANN(6:18:1) 0.0276 0.910 3.49 5.28 

4. ANN(6:20:1) 0.0261 0.915 3.36 5.38 

5. ANN(6:24:1) 0.0292 0.905 3.68 5.45 

6. ANN(6:20:6:1) 0.0251 0.918 3.35 5.48 

7. ANN(6:20:12:1) 0.0148 0.953 2.57 5.55 

8. ANN(6:20:16:1) 0.0128 0.959 2.19 5.49 

9. ANN(6:20:18:1) 0.0242 0.921 3.21 5.66 

(MSE = mean square error; r2 = coefficient of determination; Ep = percent error). 

The results obtained with the ANN(6:20:16:1) model in the validation stage are 

shown in Figure 2. 

 

Figure 2. Experimental values for CO compared to those obtained with the ANN(6:20:16:1) model. 

The mean square deviation calculated by comparing the experimental data with 

those provided by the ANN (6:20:16:1) model was ±89.7 mg/m3. 

Figure 2. Experimental values for CO compared to those obtained with the ANN(6:20:16:1) model.

The mean square deviation calculated by comparing the experimental data with those
provided by the ANN (6:20:16:1) model was ±89.7 mg/m3.

Neural models constructed to predict the amount of CH4 resulting in the gas discharge
chimney and their performance in the training stage are presented in Table 2. The results
obtained indicate that the best performance for CH4 is obtained with the ANN (6:30:18:1)
model. The value of the mean square error calculated for CH4 is ± 43.8 mg/m3 and is
slightly higher than that obtained for CO.

Table 2. Topology and performance of different ANNs constructed and trained for CH4 prediction.

No. Topology MSE r2 Ep (%) Time (min)

1. ANN(6:6:1) 0.0173 0.946 18.28 2.02
2. ANN(6:14:1) 0.0122 0.962 15.38 2.25
3. ANN(6:20:1) 0.0106 0.967 12.16 2.42
4. ANN(6:24:1) 0.0105 0.968 11.48 2.55
5. ANN(6:30:1) 0.0093 0.971 10.44 3.05
6. ANN(6:36:1) 0.0100 0.970 11.29 3.32
7. ANN(6:30:12:1) 0.0091 0.972 9.81 3.33
8. ANN(6:30:18:1) 0.0085 0.973 9.59 3.58
9. ANN(6:30:24:1) 0.0095 0.971 10.25 3.64

(MSE = mean square error; r2 = coefficient of determination; Ep = percent error).

Figure 3 compares the values obtained with the ANN (6:30:18:1) model in the valida-
tion stage with the experimental ones and shows a mean square deviation of±108.8 mg/m3.



Mathematics 2022, 10, 1891 11 of 21

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 23 
 

 

Neural models constructed to predict the amount of CH4 resulting in the gas 

discharge chimney and their performance in the training stage are presented in Table 2. 

The results obtained indicate that the best performance for CH4 is obtained with the ANN 

(6:30:18:1) model. The value of the mean square error calculated for CH4 is ± 43.8 mg/m3 

and is slightly higher than that obtained for CO. 

Table 2. Topology and performance of different ANNs constructed and trained for CH4 prediction. 

No. Topology MSE r2 Ep (%) Time (min.) 

1. ANN(6:6:1) 0.0173 0.946 18.28 2.02 

2. ANN(6:14:1) 0.0122 0.962 15.38 2.25 

3. ANN(6:20:1) 0.0106 0.967 12.16 2.42 

4. ANN(6:24:1) 0.0105 0.968 11.48 2.55 

5. ANN(6:30:1) 0.0093 0.971 10.44 3.05 

6. ANN(6:36:1) 0.0100 0.970 11.29 3.32 

7. ANN(6:30:12:1) 0.0091 0.972 9.81 3.33 

8. ANN(6:30:18:1) 0.0085 0.973 9.59 3.58 

9. ANN(6:30:24:1) 0.0095 0.971 10.25 3.64 

(MSE = mean square error; r2 = coefficient of determination; Ep = percent error). 

Figure 3 compares the values obtained with the ANN (6:30:18:1) model in the 

validation stage with the experimental ones and shows a mean square deviation of ±108.8 

mg/m3. 

 

Figure 3. Experimental values for CH4 compared to those obtained with the ANN (6:30:18:1) 

model. 

Neural models built to assess the impacts of the addition of auxiliary materials 

(sawdust and sunflower seed husks) on the amounts of exhaust gases in the furnace 

chimney in an industrial brick-making plant offer the possibility of making predictions 

that can help to reduce the number of test batches, with significant savings in time and 

money. Even if the mean square deviations are slightly larger than what other authors 

report in the literature [51–56], it must be taken into account that the modeled data are 

obtained experimentally in an industrial installation where the flow of gases discharged 

to the furnace chimney is of about 40,000 m3/h. In order to evaluate the influence of 

composition and density on the compressive strength of AAC lightweight brick, Zulkifli 

et al. [51] obtained a correlation coefficient of 0.984 in the training stage for the neural 

models with feed-forward backpropagation architecture and the Levenberg–Marquardt 

training algorithm. Recently, Shaban et al. [54] proposed on adaptive neuro-fuzzy 

Figure 3. Experimental values for CH4 compared to those obtained with the ANN (6:30:18:1) model.

Neural models built to assess the impacts of the addition of auxiliary materials (saw-
dust and sunflower seed husks) on the amounts of exhaust gases in the furnace chimney in
an industrial brick-making plant offer the possibility of making predictions that can help
to reduce the number of test batches, with significant savings in time and money. Even
if the mean square deviations are slightly larger than what other authors report in the
literature [51–56], it must be taken into account that the modeled data are obtained exper-
imentally in an industrial installation where the flow of gases discharged to the furnace
chimney is of about 40,000 m3/h. In order to evaluate the influence of composition and
density on the compressive strength of AAC lightweight brick, Zulkifli et al. [51] obtained a
correlation coefficient of 0.984 in the training stage for the neural models with feed-forward
backpropagation architecture and the Levenberg–Marquardt training algorithm. Recently,
Shaban et al. [54] proposed on adaptive neuro-fuzzy inference system (ANFIS) with particle
swarm optimization (PSO) to predict the compressive strength of concrete aggregate bricks
(BACs). The correlation coefficient obtained in the training stage was 0.955. The importance
of the study by Shaban et al. [54] derives from the fact that built models can help reduce
demolition and construction (D&C) wastes and support efficient construction management.
Members of our research group obtained correlation coefficients higher than 0.999 in the
training stage for the neural models with feed-forward backpropagation architecture when
modeling the thermal stability of some materials [56].

3.2. Single-Objective Optimization

Two optimization problems were formulated to determine the percentage composi-
tions of seed husks and sawdust and the amounts of clay, ash and organic raw materials to
be used in the manufacturing mix so that the amounts of CO and CH4 discharged to the
furnace chimney are minimized. Optimization algorithms inspired by human and virus
behavior were used.

Thus, the optimization procedure has the following characteristic elements:

• The objective function is represented by the amounts of CO and CH4 discharged to
the furnace chimney (they are distinct problems, meaning the optimization process
has a single objective);

• The decision variables are the inputs of the neural network, i.e., the percentage com-
positions of seed husks and sawdust, the dry product mass, as well as the amounts of
clay, ash, and organic raw materials, respectively;

• The optimization process included the best models that had been previously deter-
mined, i.e., ANN (6:30:18:1) for CH4 and ANN (6:20:16:1) for CO;

• The purpose of the optimization process was to determine the working conditions (the
values of the five inputs of the neural networks) that lead to the minimum amount of
exhaust gas.



Mathematics 2022, 10, 1891 12 of 21

The results obtained for optimizing the amount of CO discharged to the furnace
chimney are presented in Table 3. The runtime is expressed in milliseconds (ms). In this
table, for each algorithm (column 1) the best solution is specified (column 2), together with
the corresponding values of the 6 decision variables and the value of the objective function,
i.e., the amount of CO that was subjected to minimization. Additionally, in columns 4 and
5 the performance recorded by the algorithm for 100 simulations is presented.

Table 3. Results obtained with biologically inspired optimization algorithms for CO (mg/m3).

Optimization Algorithm Best Solution
([Inputs]⇒ Output)

Performance
(100 Simulations)

Simple Human Learning
Optimization Algorithm

[0.000, 0.523, 14.310,
729.676, 133.477, 8.564]
⇒ 627.567

Runtime mean: 169.9
Runtime st. dev.: 33.783
No. evaluations mean: 100,100
No. evaluations st. dev.: 0

Best solution: 627.567
Mean solution: 627.567
St. dev. solution: 0

Teaching-Learning Based
Optimization Algorithm

[0.000, 0.529, 14.305,
729.677, 133.477, 8.547]
⇒ 627.567

Runtime mean: 723.3
Runtime st. dev.: 3.466
No. evaluations mean: 200,100
No. evaluations st. dev.: 0

Best solution: 627.567
Mean solution: 627.567
St. dev. solution: 0.002

Social Learning Optimization
[0.056, 0.565, 14.268,
375.746, 240.888, 1.403]
⇒ 627.567

Runtime mean: 70
Runtime st. dev.: 11.747
No. evaluations: 16,030
No. evaluations st. dev.: 0

Best solution: 627.567
Mean solution: 627.567
St. dev. solution: 0

Football Game Algorithm
[0.000, 0.472, 14.611,
729.677, 133.477, 10.382]
⇒ 627.567

Runtime mean: 55.3
Runtime st. dev.: 13.252
No. evaluations mean: 10,000
No. evaluations st. dev.: 0

Best solution: 627.567
Mean solution: 627.568
St. dev. solution: 0.001

Volleyball Premier League Algorithm
[0.578, 2.425, 13.460,
682.426, 86.488, 4.182]⇒
627.582

Runtime mean: 1492.3
Runtime st. dev.: 13.077
No. evaluations mean: 333,938
No. evaluations st. dev.: 1358.68

Best solution: 627.582
Mean solution: 627.59
St. dev. solution: 0.007

Imperialist Competitive Algorithm
[0.000, 0.529, 14.305,
729.677, 133.477, 8.547]
⇒ 627.567

Runtime mean: 305.7
Runtime st. dev.: 147.901
No. evaluations mean: 79,520
No. evaluations st. dev.: 39,005.3

Best solution: 627.567
Mean solution: 627.567
St. dev. solution: 0.002

Viral System
[1.809, 0.268, 11.717,
723.748, 98.529, 5.989]⇒
627.583

Runtime mean: 6.7
Runtime st. dev.: 4.562
No. evaluations mean: 175.1
No. evaluations st. dev.: 23.927

Best solution: 627.583
Mean solution: 627.583
St. dev. solution: 0

Virulence Optimization Algorithm
[3.673, 0.302, 12.475,
391.974, 183.682, 33.514]
⇒ 627.571

Runtime mean: 442.3
Runtime st. dev.: 130.741
No. evaluations mean: 5662.5
No. evaluations st. dev.: 654.742

Best solution: 627.571
Mean solution: 627.682
St. dev. solution: 0.179

Virus Colony Search
[0.002, 0.595, 14.249,
729.497, 133.256, 8.370]
⇒ 627.567

Runtime mean: 0.9
Runtime st. dev.: 2.7
No. evaluations mean: 33,110
No. evaluations st. dev.: 17,291.1

Best solution: 627.567
Mean solution: 627.568
St. dev. solution: 0.002

Virus Optimization Algorithm
[0.264, 0.494, 14.517,
715.361, 130.378, 11.070]
⇒ 627.567

Runtime mean: 0.1
Runtime st. dev.: 0.03
No. evaluations mean: 6550.8
No. evaluations st. dev.: 802.434

Best solution: 627.567
Mean solution: 627.578
St. dev. solution: 0.008

The Simple Human Learning Optimization Algorithm, Teaching-Learning Based Opti-
mization Algorithm, Social Learning Optimization, Football Game Algorithm, Imperialist
Competitive Algorithm, Virus Colony Search and Virus Optimization Algorithm reach the
same optimum, but the corresponding combinations of inputs slightly vary.



Mathematics 2022, 10, 1891 13 of 21

Excluding the algorithms with input values rather far from the input values provided
by the majority, and taking the average of the input values provided by the majority of
algorithms, it follows that the manufacturing mix composed of 0% sunflower seed husks,
0.5% sawdust, 14.4 kg of dry product, 729.6 tons of clay, 133.4 tons of ash and 8.9 tons
of organic raw materials leads to the minimum amount of CO being discharged into the
furnace chimney following the combustion process.

The results obtained for the second optimization problem, i.e., the input data necessary
so that the flow of CH4 discharged to the furnace chimney is minimal, are presented in
Table 4. The best results were obtained with the Simple Human Learning Optimization
Algorithm, Teaching–Learning-Based Optimization Algorithm and Imperialist Competitive
Algorithm. The result that does not contain inputs close to their extreme values indicates
that a minimum amount of CH4 can be obtained if 1.9% sunflower seed husks, 0.8%
sawdust, 14.9 kg of dry product, 510.8 tons of clay, 18.2 tons of ash and 26.2 tons of organic
raw materials are used in the manufacturing mix.

Table 4. Results obtained with biologically inspired optimization algorithms for CH4 (mg/m3).

Optimization Algorithm Best Solution ([Inputs]
⇒ Output) Performance (100 Simulations)

Simple Human Learning
Optimization Algorithm

[3.165, 1.707, 13.038,
428.125, 91.827, 14.837]
⇒ 5.847

Runtime mean: 176.6
Runtime st. dev.: 5.
No. evaluations mean: 100,100
No. evaluations st. dev.: 0

Best solution: 5.847
Mean solution: 5.848
St. dev. solution: 0.001

Teaching-Learning Based
Optimization Algorithm

[0.568, 3.500, 10.210,
62.521, 11.507, 28.932]⇒
5.847

Runtime mean: 1021.5
Runtime st. dev.: 6.454
No. evaluations mean: 200,100
No. evaluations st. dev.: 0

Best solution: 5.847
Mean solution: 5.847
St. dev. solution: 0

Social Learning Optimization
[2.827, 1.029, 17.527,
1175.909, 213.194, 53.036]
⇒ 5.848

Runtime mean: 82.2
Runtime st. dev.: 1.72
No. evaluations mean: 16,030
No. evaluations st. dev.: 0

Best solution: 5.848
Mean solution: 5.867
St. dev. solution: 0.025

Football Game Algorithm
[2.366, 3.076, 12.711,
436.729, 17.956, 28.932]
⇒ 5.861

Runtime mean: 61.6
Runtime st. dev.: 1.114
No. evaluations mean: 10,000
No. evaluations st. dev.: 0

Best solution: 5.861
Mean solution: 5.946
St. dev. solution: 0.086

Volleyball Premier League Algorithm
[3.500, 3.500, 18.670,
651.084, 133.477, 28.932]
⇒ 5.859

Runtime mean: 2208.4
Runtime st. dev.: 16.421
No. evaluations mean: 358,402
No. evaluations st. dev.: 1609.16

Best solution: 5.859
Mean solution: 5.907
St. dev. solution: 0.059

Imperialist Competitive Algorithm
[1.916, 0.758, 14.865,
510.807, 18.213, 26.201]
⇒ 5.847

Runtime mean: 188.8
Runtime st. dev.: 48.004
No. evaluations mean: 34,537
No. evaluations st. dev.: 9325.13

Best solution: 5.847
Mean solution: 8.386
St. dev. solution: 2.221

Viral System
[2.836, 3.123, 16.306,
290.118, 113.866, 24.425]
⇒ 6.253

Runtime mean: 5.7
Runtime st. dev.: 3.662
No. evaluations mean: 100.6
No. evaluations st. dev.: 0.8

Best solution: 6.253
Mean solution: 9.764
St. dev. solution: 4.481

Virulence Optimization Algorithm
[2.541, 0.700, 12.646,
261.597, 84.943, 19.883]
⇒ 6.464

Runtime mean: 3054
Runtime st. dev.: 594.252
No. evaluations mean: 18,614.9
No. evaluations st. dev.: 18,336.1

Best solution: 6.464
Mean solution: 13.97
St. dev. solution: 8.994



Mathematics 2022, 10, 1891 14 of 21

Table 4. Cont.

Optimization Algorithm Best Solution ([Inputs]
⇒ Output) Performance (100 Simulations)

Virus Colony Search
[3.094, 3.426, 14.746,
176.624, 117.014, 27.545]
⇒ 5.853

Runtime mean: 1.2
Runtime st. dev.: 1.327
No. evaluations mean: 33,110
No. evaluations st. dev.: 17,291.1

Best solution: 5.853
Mean solution: 5.917
St. dev. solution: 0.059

Virus Optimization Algorithm
[3.149, 2.484, 14.615,
358.040, 112.675, 21.226]
⇒ 5.857

Runtime mean: 0.3
Runtime st. dev.: 0.458
No. evaluations mean: 4589
No. evaluations st. dev.: 2368.11

Best solution: 5.857
Mean solution: 6.095
St. dev. solution: 0.276

The results in Tables 3 and 4 depend on the values of the parameters for each algorithm.
They are included in Appendix A (Table A1). Different values would naturally lead to
different results.

Figure 4 presents an overview related to the performance of the optimization algo-
rithms in terms of the best solution quality and execution time. However, the scales of the
problems are very different. The best solutions are very close for all algorithms, while the
runtimes can greatly vary. Therefore, some artificial performance indicators were computed
independently for each component. For solution quality, these are based on the ratio be-
tween the solution provided by an algorithm and the minimum (best) solution found by all
algorithms. The runtime indicators are based on the ratios between the logarithms of actual
execution times. Thus, the graph gives more of an intuitive view of the solution quality
and runtime. The best values are those close to 1; smaller values refer to lower-quality
indicators.

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 23 
 

 

were computed independently for each component. For solution quality, these are based 

on the ratio between the solution provided by an algorithm and the minimum (best) 

solution found by all algorithms. The runtime indicators are based on the ratios between 

the logarithms of actual execution times. Thus, the graph gives more of an intuitive view 

of the solution quality and runtime. The best values are those close to 1; smaller values 

refer to lower-quality indicators. 

 

Figure 4. Performance indicators for solution quality and execution time for the ten algorithms 

considered for the two optimization problems (SHLO = Simple Human Learning Optimization; 

TLBO = Teaching–Learning-Based Optimization; SLO = Social Learning Optimization; FGA = 

Football Game Algorithm; VPL = Volleyball Premier League; ICA = Imperialist Competitive 

Algorithm; VS = Viral System, VlOA = Virulence Optimization Algorithm; VCS = Virus Colony 

Search; VrOA = Virus Optimization Algorithm). 

The following explanations based on exemplification will clarify the significance of 

Figure 4, highlighting the accuracy and usefulness of the results obtained, while also 

highlighting some of the advantages and disadvantages of the applied methods. Four 

rectangles appear next to each algorithm—the first two reflect the quality of the results 

(CO and CH4) and the next two are for the execution time. The ideal case corresponds to 

the situation in which very good results would be obtained over a short execution time. 

Figure 4 shows that satisfactory results are accompanied by relatively long lead times. 

The best situation corresponds to the SLO algorithm, for which the result indicators equal 

1, but those for the running time are at the values of 0.6–0.7. This is an acceptable 

compromise to obtain very good results by having a relatively long running time. 

We also have good results reflected by values of 1 for CO and CH4 provided by 

SHLO, TLBO and ICA, but with longer execution times (lower values for the following 

two bars). Other information provided by the figure shows unacceptable results for CO 

and CH4 given by VPL, VS and VlOA and short execution times (values of 1 for bars 3 

and 4) corresponding to the VrOA and VCS algorithms. 

By analyzing Figure 4, the main conclusion is that most optimization results are 

satisfactory from a technological point of view. 

3.3. Comparison with Classic Population-Based Algorithms 

Although promising, the use of the algorithms applied so far is not yet widespread 

in the optimization community. This is why we also include a comparison with 

well-established algorithms such as the classic real-valued Genetic Algorithm (GA), 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SHLO TLBO SLO FGA VPL ICA VS VlOA VCS VrOA

R
e

la
ti

v
e

 q
u

a
li

ty

Algorithm

CO Solution

CH4 Solution

CO Runtime

CH4 Runtime

Figure 4. Performance indicators for solution quality and execution time for the ten algorithms
considered for the two optimization problems (SHLO = Simple Human Learning Optimization;
TLBO = Teaching–Learning-Based Optimization; SLO = Social Learning Optimization; FGA = Football
Game Algorithm; VPL = Volleyball Premier League; ICA = Imperialist Competitive Algorithm;
VS = Viral System, VlOA = Virulence Optimization Algorithm; VCS = Virus Colony Search;
VrOA = Virus Optimization Algorithm).

The following explanations based on exemplification will clarify the significance of
Figure 4, highlighting the accuracy and usefulness of the results obtained, while also
highlighting some of the advantages and disadvantages of the applied methods. Four



Mathematics 2022, 10, 1891 15 of 21

rectangles appear next to each algorithm—the first two reflect the quality of the results
(CO and CH4) and the next two are for the execution time. The ideal case corresponds to
the situation in which very good results would be obtained over a short execution time.
Figure 4 shows that satisfactory results are accompanied by relatively long lead times. The
best situation corresponds to the SLO algorithm, for which the result indicators equal 1, but
those for the running time are at the values of 0.6–0.7. This is an acceptable compromise to
obtain very good results by having a relatively long running time.

We also have good results reflected by values of 1 for CO and CH4 provided by
SHLO, TLBO and ICA, but with longer execution times (lower values for the following two
bars). Other information provided by the figure shows unacceptable results for CO and
CH4 given by VPL, VS and VlOA and short execution times (values of 1 for bars 3 and 4)
corresponding to the VrOA and VCS algorithms.

By analyzing Figure 4, the main conclusion is that most optimization results are
satisfactory from a technological point of view.

3.3. Comparison with Classic Population-Based Algorithms

Although promising, the use of the algorithms applied so far is not yet widespread
in the optimization community. This is why we also include a comparison with well-
established algorithms such as the classic real-valued Genetic Algorithm (GA), Differential
Evolution (DE) and Particle Swarm Optimization (PSO). The results obtained for different
configurations for the two optimization problems addressed in our work are given in
Tables 5 and 6.

Table 5. Results obtained with classic optimization algorithms for CO (mg/m3).

Optimization Algorithm Best Solution ([Inputs]⇒
Output) Performance (100 Simulations)

GA
no. chromosomes = 50
no. generations = 100

[0.051, 0.590, 14.275, 727.648,
133.476, 8.707]⇒ 627.567

Runtime mean: 428.596
Runtime st. dev.: 21.858
No. evaluations mean: 5000
No. evaluations st. dev.: 0

Best solution: 627.567
Mean solution: 627.567
St. dev. solution: 0

GA
no. chromosomes = 50
no. generations = 500

[0.002, 0.548, 14.290, 729.461,
133.430, 8.561]⇒ 627.567

Runtime mean: 2013.860
Runtime st. dev.: 104.082
No. evaluations mean: 25,000
No. evaluations st. dev.: 0

Best solution: 627.567
Mean solution: 627.567
St. dev. solution: 0.001

GA
no. chromosomes = 100
no. generations = 1000

[0.000, 0.528, 14.308, 729.612,
133.474, 8.534]⇒ 627.567

Runtime mean: 13856.667
Runtime st. dev.: 720.981
No. evaluations mean: 100,000
No. evaluations st. dev.: 0

Best solution: 627.567
Mean solution: 627.567
St. dev. solution: 0

DE
no. chromosomes = 30
no. generations = 100

[0.083, 0.208, 13.480, 786.487,
217.001, 12.477]⇒ 627.567

Runtime mean: 90.300
Runtime st. dev.: 4.628
No. evaluations mean: 3000
No. evaluations st. dev.: 0

Best solution: 627.567
Mean solution: 627.567
St. dev. solution: 0

DE
no. chromosomes = 50
no. generations = 500

[0.323, 0.877, 13.383, 746.862,
123.897, 10.662]⇒ 627.567

Runtime mean: 750.877
Runtime st. dev.: 38.574
No. evaluations mean: 25,000
No. evaluations st. dev.: 0

Best solution: 627.567
Mean solution: 627.567
St. dev. solution: 0

PSO
no. particles = 30
no. iterations = 100

[0.000, 0.529, 14.305, 729.677,
133.477, 8.547]⇒ 627.567

Runtime mean: 92.281
Runtime st. dev.: 4.679
No. evaluations mean: 3000
No. evaluations st. dev.: 0

Best solution: 627.567
Mean solution: 627.568
St. dev. solution: 0.001

PSO
no. particles = 50
no. iterations = 1000

[0.000, 0.529, 14.305, 729.677,
133.477, 8.547]⇒ 627.567

Runtime mean: 1415.965
Runtime st. dev.: 73.474
No. evaluations mean: 50,000
No. evaluations st. dev.: 0

Best solution: 627.567
Mean solution: 627.569
St. dev. solution: 0.002

(GA = genetic algorithm; DE = differential evolution; PSO = particle swarm optimization).



Mathematics 2022, 10, 1891 16 of 21

Table 6. Results obtained with classic optimization algorithms for CH4 (mg/m3).

Optimization Algorithm Best Solution ([Inputs]⇒
Output) Performance (100 Simulations)

GA
no. chromosomes = 50
no. generations = 100

[2.435, 1.747, 15.333, 436.009,
17.800, 27.772]⇒ 5.850

Runtime mean: 460.526
Runtime st. dev.: 23.858
No. evaluations mean: 5000
No. evaluations st. dev.: 0

Best solution: 5.850
Mean solution: 6.766
St. dev. solution: 1.600

GA
no. chromosomes = 50
no. generations = 500

[2.478, 0.797, 12.962, 423.188,
18.531, 21.379]⇒ 5.847

Runtime mean: 2237.895
Runtime st. dev.: 116.928
No. evaluations mean: 25,000
No. evaluations st. dev.: 0

Best solution: 5.847
Mean solution: 5.858
St. dev. solution: 0.022

GA
no. chromosomes = 100
no. generations = 1000

[2.155, 1.339, 13.413, 518.764,
18.863, 27.093]⇒ 5.847

Runtime mean: 14829.123
Runtime st. dev.: 773.507
No. evaluations mean: 100,000
No. evaluations st. dev.: 0

Best solution: 5.847
Mean solution: 5.847
St. dev. solution: 0.002

DE
no. chromosomes = 30
no. generations = 100

[1.347, 2.970, 12.083, 418.237,
18.604, 25.541]⇒ 5.847

Runtime mean: 121.404
Runtime st. dev.: 6.960
No. evaluations mean: 3000
No. evaluations st. dev.: 0

Best solution: 5.847
Mean solution: 5.857
St. dev. solution: 0.013

DE
no. chromosomes = 50
no. generations = 500

[1.562, 1.430, 12.652, 418.746,
17.961, 22.133]⇒ 5.847

Runtime mean: 986.667
Runtime st. dev.: 51.830
No. evaluations mean: 25,000
No. evaluations st. dev.: 0

Best solution: 5.847
Mean solution: 5.847
St. dev. solution: 0.001

PSO
no. particles = 30
no. iterations = 100

[1.673, 3.500, 13.908, 462.521,
17.188, 27.932]⇒ 5.847

Runtime mean: 115.088
Runtime st. dev.: 5.640
No. evaluations mean: 3000
No. evaluations st. dev.: 0

Best solution: 5.847
Mean solution: 7.296
St. dev. solution: 4.335

PSO
no. particles = 50
no. iterations = 1000

[1.448, 2.378, 18.670, 485.228,
17.477, 27.932]⇒ 5.847

Runtime mean: 1890.877
Runtime st. dev.: 98.453
No. evaluations mean: 50,000
No. evaluations st. dev.: 0

Best solution: 5.847
Mean solution: 5.847
St. dev. solution: 0

(GA = genetic algorithm; DE = differential evolution; PSO = particle swarm optimization).

The main parameters that influence the execution speed and solution quality are the
population size and the number of generations or iterations. Other parameters have their
own influence, but in order to keep the number of experiments manageable, they were
given typical values. Moreover, in our case the difference in solution quality was not large,
while the runtime mainly depends on the number of individuals generated throughout
the execution of the algorithm. Thus, for GA we used tournament selection with two
individuals (chromosomes), elitism with one individual, arithmetic crossover with 0.9
probability and mutation by gene resetting with 0.1 probability. For DE, the amplification
factor was 0.8 and the crossover rate was 0.9. For PSO, we used the global best method,
whereby the inertia weight was set to 0.729 and the cognitive and social coefficients were
both set to 1.494.

The results show that the runtime greatly depends on the combination of parameters,
although the algorithms obtain the optimal solutions most of the time. When the parame-
ters considered have lower values, thereby decreasing the runtime, the solution may be
suboptimal but still good.

However, some biologically inspired algorithms, e.g., Virus Colony Search or Virus
Optimization Algorithm, are much faster, even by two orders of magnitude, and the quality
of their results is still very good.

It must also be mentioned that the execution time of the algorithms can be further
reduced by parallelizing some operations. Since some algorithms are easier to parallelize
than others, in order to allow a fair comparison all of the implementations were sequential.



Mathematics 2022, 10, 1891 17 of 21

4. Discussion

The main goal of this approach was to develop a complex, efficient methodology
based on artificial intelligence tools for modeling and simulation. The methodology was
applied on an industrial process, i.e., obtaining bricks from materials with different added
ingredients, aiming to streamline the process. In this respect, artificial neural networks
proved to be good models. Thus, for the prediction of CO emissions, the best model
was ANN(6:20:16:1) with MSE = 0.0128, r2 = 0.959 and Ep = 2.19%; while for CH4, the
ANN(6:30:18:1) model gave values of MSE = 0.0085, r2 = 0.973 and Ep = 9.59%. The neural
models were integrated into an optimization procedure solved with different algorithms
inspired by human behavior (learning, cooperation and competition) and virus behavior.
For the same value of the objective function, the algorithms give different results for the 6
decision variables, which is a real advantage in practice, allowing the user to choose the
most convenient solution.

A comparison between the performance of the optimization algorithms graphically
illustrated in Figure 4 highlights the algorithms that obtained the best results regarding
the CO and CH4 values (SLO, SHLO, TLBO, ICA) or the best (short) execution times
(VrOA, VCS).

Most solutions are of the same quality as the solutions found by other commonly used
population-based algorithms such as GA, DE and PSO.

Regarding the advantages and disadvantages of the applied algorithms, it must be
emphasized that an optimization algorithm depends very much on the specifics of the
approached problem. This was also the reason why in this approach we used 10 algorithms,
tracking the quality of the results and execution times. Obviously, the accessibility of the
method can be added to the aspects discussed. However, once the implementation is
complete, in the version with the user-friendly interface, the handling of the program is no
longer a disadvantage. In addition, it can be easily adapted to other processes and systems.

The optimization problems solved with algorithms inspired by the behavior of viruses
indicate that the addition of sunflower seed husks and sawdust to the manufacturing mix
contributes to increasing the amount of CO in the exhaust gases to the furnace chimney.
However, the heat generated during the burning of sunflower seed husks and sawdust
can supply the heat required during the manufacturing process, thereby reducing energy
consumption. Ibrahim and others [57] in a laboratory-scale study established that the use
of sawdust as an alternative to clay to produce bricks helps to reduce energy consumption.
This aspect was also highlighted by Kurmus and Mohajerani [58] for bricks incorporating
1% waste (cigarette butts), whereby energy savings of at least 8% can be achieved. Sani and
Nzihou established that the introduction of 4% olive core flour in the brick manufacturing
mix leads to a 36% reduction in energy consumption [1]. Other recent studies [59,60] have
shown the efficiency of using waste in the manufacture of bricks.

5. Conclusions

The industrial process of obtaining bricks was studied here, first experimentally by
evaluating the influence of adding sunflower seed husks and sawdust on the exhaust
emissions resulting from the manufacturing process. Then, using experimental data sets,
artificial intelligence tools were developed and applied for modeling and optimization
actions.

In the modeling step, neural network models were determined and used to make
predictions about the changes in quantity of exhaust emissions when different percentages
of auxiliary materials were introduced into the manufacturing mix, there helping to reduce
the number of experimental tests, having a significant economic impact.

Feed-forward neural networks were developed in various configurations, with 6 input
variables (percentage compositions of sawdust and sunflower seed husks, dry product
mass, amount of clay, amount of ash and amount of organic raw materials), one or two
intermediate layers and a single output variable (amounts of CO and CH4, respectively,
present in the flue gases in the furnace chimney). The best models, selected using the mean



Mathematics 2022, 10, 1891 18 of 21

square error, coefficient of determination and percent error, were ANN(6:20:16:1) for CO
prediction and ANN (6:30:18:1) for CH4 prediction.

The best neural networks were included in an optimization procedure designed to
minimize the gas emissions. Algorithms from three categories, inspired by the human
behaviors of learning and cooperation, human competitive behavior and virus behavior,
were applied comparatively to provide the best working conditions associated with the
minimum energy consumption.

An overview related to the performance of the optimization algorithms in terms
of the best solution quality and execution time was provided based on certain artificial
performance indicators computed independently for each component. The main conclusion
was that most optimization results were acceptable from a technological point of view.

The optimization results indicated that the addition of sunflower seed husks and
sawdust to the manufacturing mix contributes to increasing the amount of CO in the
exhaust gases in the furnace chimney. However, the heat generated during the burning of
sunflower seed husks and sawdust can supply the heat required during the manufacturing
process, thereby reducing the energy consumption.

In addition to these good results, what is important in this approach is the simulation
methodology, including the neural networks and optimization biologically inspired algo-
rithms, which provide satisfactory results. In addition, the methodology developed in this
approach is generalizable and flexible, meaning it can be easily adapted to other processes,
in association with different types of models.

Author Contributions: Conceptualization, S.C., C.L. and F.L.; methodology, S.C., C.L. and F.L.;
software, F.L., M.G., E.-N.D. and S.-A.F.; validation, S.C., C.L. and F.L.; formal analysis, C.A.; investi-
gation, C.A. and C.L.; resources, C.A. and F.L.; writing—original draft preparation, S.C., C.L., C.A.,
M.G., E.-N.D., S.-A.F. and F.L.; writing—review and editing, S.C. and C.L.; supervision, S.C.; funding
acquisition, C.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a publication grant of TUIASI, project number GI/P31/2021.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this section, the parameter values of the algorithms whose results are included in
Tables 3 and 4 are succinctly presented in Table A1.

Table A1. The parameters values of the algorithms considered for the optimization of CO and CH4.

Optimization Algorithm Parameters and Values

Simple Human Learning Optimization
number of iterations = 100
population size = 100
number of bits = 32

Teaching–Learning-Based Optimization number of iterations = 1000
population size = 100

Social Learning Optimization

population size = 30
number of generations = 250
amplification factor = 0.8
crossover rate = 0.9
lambda = 5
delta = 5

Football Game Algorithm

number of iterations = 200
number of players = 50
max strategies = 25
flv reduction = 0.85
hrlv reduction = 0.95



Mathematics 2022, 10, 1891 19 of 21

Table A1. Cont.

Optimization Algorithm Parameters and Values

Volleyball Premier League

number of iterations = 100
fall rate = 0.15
transportation rate = 0.36
g = 2
league size = 10
number of players = 10

Imperialist Competitive Algorithm

number of iterations = 1000
population size = 100
number of empires = 10
alpha = 1.0
beta = 1.5
probability of revolution = 0.05
mu = 0.1
zeta = 0.2

Viral System

number of iterations = 1000
number of cells = 100
plt = 0.5
pi = 0.4
pr = 0.7
pan = 0.2
lnr init = 10
lit init = 10
max neighborhood distance = 10
number of max converge solutions = 3
convergence epsilon = 0.001

Virulence Optimization Algorithm

number of iterations = 100
number of cells = 100
number of initial viruses = 10
probability to mutate = 0.75
probability to recombine = 0.2
mutation sigma = 1.0
max angle offset = 1.57079633
number of best viruses from cluster = 3
number of best virus clones = 2
number of max converge solutions = 3
convergence epsilon = 0.001

Virus Colony Search number of iterations = 100
population length = 20

Virus Optimization Algorithm

number of iterations = 10
population length = 20
strong members = 5
strong growth rate = 10
common growth rate = 2
intensity = 1

References
1. Sani, R.; Nzihou, A. Production of clay ceramics using agricultural wastes: Study of properties, energy savings and environmental

indicators. Appl. Clay Sci. 2017, 146, 106–114. [CrossRef]
2. Srisuwan, A.; Phonphuak, N.; Saengthong, C. Improvement of thermal insulating properties and porosity of fired clay bricks

with addition of agricultural wastes. Suranaree J. Sci. Technol. 2018, 25, 49–58.
3. Beshah, D.A.; Tiruye, G.A.; Mekonnen, Y.S. Characterization and recycling of textile sludge for energy-efficient brick production

in Ethiopia. Environ. Sci. Pollut. Res. 2021, 28, 16272–16281. [CrossRef] [PubMed]
4. Vieira, C.M.F.; Amaral, L.F.; Monteiro, S.N. Recycling of Steelmaking Plant Wastes in Clay Bricks. In Current Topics in the Utilization

of Clay in Industrial and Medical Applications; Zoveidavianpoor, M., Ed.; IntechOpen: London, UK, 2018; pp. 25–43.

http://doi.org/10.1016/j.clay.2017.05.032
http://doi.org/10.1007/s11356-020-11878-7
http://www.ncbi.nlm.nih.gov/pubmed/33387312


Mathematics 2022, 10, 1891 20 of 21

5. Mebrahtom, T.; Haregeweyni, H.; Tamrat, T. Manufacturing of ecofriendly bricks using microdust cotton waste. J. Eng. 2021,
2021, 8815965.

6. Cultrone, G.; Aurrekoetxea, I.; Casado, C.; Arizzi, A. Sawdust recycling in the production of lightweight bricks: How the amount of
additive and the firing temperature influence the physical properties of the bricks. Constr. Build. Mater. 2020, 235, 117436. [CrossRef]

7. Manni, A.; El Haddar, A.; El Hassani, I.-E.E.A.; El Bouari, A.; Sadik, C. Valorization of coffee waste with Moroccan clay to produce
a porous red ceramics (class BIII). Bol. Soc. Esp. Cerám. Vidr. V 2019, 58, 211–220. [CrossRef]

8. Khitab, A.; Riaz, M.S.; Jalil, A.; Khan, R.B.N.; Anwar, W.; Khan, R.A.; Arshad, M.T.; Kirgiz, M.S.; Tariq, Z.; Tayyab, S. Manufacturing
of clayey bricks by synergistic use of waste brick and ceramic powders as partial replacement of clay. Sustainability 2021, 13, 10214.
[CrossRef]

9. Wiryikfu, N.C.; Fokam, C.B.; Kenmeugne, B.; Tchotang, T. The influence of burnt clay brick waste addition on recycled brick. Int.
J. Pavement Res. Technol. 2021, 14, 482–486. [CrossRef]

10. Abdel Hamid, E.M. Investigation of using granite sludge waste and silica fume in clay bricks at different firing temperatures.
HBRC J. 2021, 17, 123–136. [CrossRef]

11. Kadir, A.A.; Sarani, N.A. An overview of wastes recycling in fired clay bricks. Int. J. Integr. Eng. 2012, 4, 53–69.
12. Wang, L.; Ni, H.; Yang, R.; Fei, M.; Ye, W.A. Simple Human Learning Optimization Algorithm. In Communications Computer and

Information Science; Book Series CCIS; Springer: Berlin/Heidelberg, Germany, 2014; Volume 462, pp. 56–65.
13. Leon, F.; Curteanu, S. Regression Algorithm Based on Nearest Neighbors with Adaptive Distance Metrics and Multiple-Point Hill Climbing Training

on a Lot of Noise-Affected Training; Register of Works, No. 6573/9.10.2018; Romanian Copyright Office, ORDA: Bucharest, Romania, 2018.
14. Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching–learning-based optimization: A novel method for constrained mechanical design

optimization problems. Comput. Aided Des. 2011, 43, 303–315. [CrossRef]
15. Wang, L.; Ni, H.; Yang, R.; Pardalos, P.M.; Du, X.; Fei, M. An adaptive simplified human learning optimization algorithm. Inf. Sci.

2015, 320, 126–139. [CrossRef]
16. Cao, J.; Yan, Z.; Xu, X.; He, G.; Huang, S. Optimal power flow calculation in AC/DC hybrid power system based on adaptive

simplified human learning optimization algorithm. J. Mod. Power Syst. Clean Energy 2016, 4, 690–701. [CrossRef]
17. Liu, Z.-Z.; Chu, D.H.; Song, C.; Xue, X.; Lu, B.Y. Social learning optimization (SLO) algorithm paradigm and its application in

QoS-aware cloud service composition. Inf. Sci. 2016, 326, 315–333. [CrossRef]
18. Venkata, R.R. Review of applications of TLBO algorithm and a tutorial for beginners to solve the unconstrained and constrained

optimization problems. Decis. Sci. Lett. 2016, 5, 1–30. [CrossRef]
19. Zhai, Z.; Jia, G.; Wang, K. A novel teaching-learning-based optimization with error correction and cauchy distribution for path

planning of unmanned air vehicle. Comput. Intell. Neurosci. 2018, 3, 5671709. [CrossRef]
20. Kumar, Y.; Dahiya, N.; Malik, S.; Khatri, S. A new variant of teaching learning based optimization algorithm for global optimization

problems. Informatica 2019, 43, 65–75. [CrossRef]
21. Zhang, Q.; Yu, G.; Song, H. A hybrid bird mating optimizer algorithm with teaching-learning-based optimization for global

numerical optimization. Stat. Optim. Inf. Comput. 2015, 3, 54–65. [CrossRef]
22. Zou, F.; Wang, L.; Chen, D.; Hei, X. An improved teaching-learning-based optimization with differential learning and its

application. Math. Probl. Eng. 2015, 2015, 754562. [CrossRef]
23. Fadakar, E.; Ebrahimi, M. A New Metaheuristic Football Game Inspired Algorithm. In Proceedings of the 1st Conference on

Swarm Intelligence and Evolutionary Computation, CSIEC 2016—Proceedings, Higher Education Complex of, Bam, Bam, Iran,
9–11 March 2016.

24. Djunaidi, A.V.; Juwono, C.P. Football game algorithm implementation on the capacitated vehicle routing problems. Int. J. Comput.
Algorithm 2018, 7, 45–53.

25. Moghdani, R.; Salimifard, K. Volleyball premier league algorithm. Appl. Soft Comput. 2018, 64, 161–185. [CrossRef]
26. Atashpaz-Gargari, E.; Lucas, C. Imperialist Competitive Algorithm: An Algorithm for Optimization Inspired by Imperialistic

Competition. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp.
4661–4667.

27. Shabani, H.; Vahidi, B.; Ebrahimpour, M. A robust PID controller based on imperialist competitive algorithm for load-frequency
control of power systems. ISA Trans. 2013, 52, 88–95. [CrossRef] [PubMed]

28. Hosseni, S.; Khaled, A. A survey on the imperialist competitive algorithm metaheuristics: Implementation in engineering domain
and directions for future research. Appl. Soft Comput. 2014, 24, 1078–1094. [CrossRef]

29. Moghdani, R.; Abd Elaziz, M.; Mohammadi, D.; Neggaz, N. An improved volleyball premier league algorithm based on sine
cosine algorithm for global optimization problem. Eng. Comput. 2021, 37, 2633–2662. [CrossRef]

30. Moghdani, R.; Salimifard, K.; Demir, E.; Benyetton, A. Multi-objective bolleyball premier meague algorithm. Knowl.-Based Syst.
2020, 196, 105781. [CrossRef]

31. Talatahari, S.; Farahmand Azar, B.; Sheikholeslami, R.; Gandomi, A.H. Imperialist competitive algorithm combined with chaos
for global optimization. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 1312–1319. [CrossRef]

32. Niknam, T.; Fard, E.T.; Pourjafarian, N.; Rousta, A. An efficient hybrid algorithm based on modified imperialist competitive
algorithm and K-means for data clustering. Eng. Appl. Artif. Intell. 2011, 24, 306–317. [CrossRef]

33. Ahmadi, M.A.; Ebadi, M.; Shokrollahi, A.; Majidi, J.M.S. Evolving artificial neural network and imperialist competitive algorithm
for prediction oil flow rate of the reservoir. Appl. Soft Comput. 2013, 13, 1085–1098. [CrossRef]

http://doi.org/10.1016/j.conbuildmat.2019.117436
http://doi.org/10.1016/j.bsecv.2019.03.001
http://doi.org/10.3390/su131810214
http://doi.org/10.1007/s42947-020-1141-6
http://doi.org/10.1080/16874048.2021.1904549
http://doi.org/10.1016/j.cad.2010.12.015
http://doi.org/10.1016/j.ins.2015.05.022
http://doi.org/10.1007/s40565-016-0227-2
http://doi.org/10.1016/j.ins.2015.08.004
http://doi.org/10.5267/j.dsl.2015.9.003
http://doi.org/10.1155/2018/5671709
http://doi.org/10.31449/inf.v43i1.1636
http://doi.org/10.19139/86
http://doi.org/10.1155/2015/754562
http://doi.org/10.1016/j.asoc.2017.11.043
http://doi.org/10.1016/j.isatra.2012.09.008
http://www.ncbi.nlm.nih.gov/pubmed/23084664
http://doi.org/10.1016/j.asoc.2014.08.024
http://doi.org/10.1007/s00366-020-00962-8
http://doi.org/10.1016/j.knosys.2020.105781
http://doi.org/10.1016/j.cnsns.2011.08.021
http://doi.org/10.1016/j.engappai.2010.10.001
http://doi.org/10.1016/j.asoc.2012.10.009


Mathematics 2022, 10, 1891 21 of 21

34. Hajihassani, M.; Armaghani, D.J.; Marto, A.; Mohamad, E.T. Ground vibration prediction in quarry blasting through an artificial
neural network optimized by imperialist competitive algorithm. Bull. Eng. Geol. Environ. 2015, 4, 873–886. [CrossRef]

35. Cortés, P.; García, J.M.; Muñuzuri, J.; Onieva, L. Viral systems: A new bio-inspired optimisation approach. Comput. Oper. Res.
2008, 35, 2840–2860. [CrossRef]

36. Jaderyan, M.; Khotanlou, H. Virulence optimization algorithm. Appl. Soft Comput. 2016, 43, 596–618. [CrossRef]
37. Li, M.D.; Zhao, H.; Weng, X.W.; Han, T. A novel nature-inspired algorithm for optimization: Virus colony search. Adv. Eng. Softw.

2016, 92, 65–88. [CrossRef]
38. Hosseini, S.J.D.; Moradian, M.; Shahinzadeh, H.; Ahmadi, S. Optimal placement of distributed generators with regard to reliability

assessment using virus colony search algorithm. Int. J. Renew. Energy Res. 2018, 8, 714–723.
39. Shahinzadeh, H.; Gharehpetian, G.B.; Moazzami, M.; Moradi, J.; Hosseinia, S.H. Unit Commitment in Smart Grids with Wind

Farms Using Virus Colony Search Algorithm and Considering Adopted Bidding Strategy. In Proceedings of the 2017 Smart Grid
Conference (SGC), Tehran, Iran, 20–21 December 2017; pp. 1–19.

40. Liang, Y.C.; Cuevas Juarez, J.R. Multilevel Image Thresholding Using Relative Entropy and Virus Optimization Algorithm. In
Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2012 IEEE World Congress on Computational Intelligence,
Brisbane, Australia, 10–15 June 2012; pp. 1–8.

41. Liang, Y.C.; Cuevas Juarez, J.R. A novel metaheuristic for continuous optimization problems: Virus optimization algorithm. Eng.
Optim. 2015, 48, 73–93. [CrossRef]

42. Liang, Y.C.; Cuevas Juarez, J.R. Harmony Search and Virus Optimization Algorithm for Multi-Objective Combined Economic
Energy Dispatching Problems. In Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2016, Vancouver, BC,
Canada, 24–29 July 2016; pp. 3947–3954.

43. Lu, C.; Li, X.; Gao, L.; Liao, W.; Yi, J. An effective multi-objective discrete virus optimization algorithm for flexible job-shop
scheduling problem with controllable processing times. Comput. Ind. Eng. 2017, 104, 156–174. [CrossRef]

44. Leon, F.; Curteanu, S. The Architecture of a Software Framework for Biologically-Inspired Optimization Algorithms. In
Proceedings of the 10th International Conference on Intelligent Systems and Applications (INTELLI 2021), Nice, France, 18–22
July 2021; pp. 10–15.

45. Andrews, K.M.; Delahaye, B.L. Influences on knowledge processes in organizational learning: The psychosocial filter. J. Manag.
Stud. 2002, 37, 797–810. [CrossRef]

46. McEvily, S.K.; Chakravarthy, B. The persistence of knowledge-based advantage: An empirical test for product performance and
technological knowledge. Strat. Manag. J. 2002, 23, 285–305. [CrossRef]

47. Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching–learning-based optimization: An optimization method for continuous non-linear
large scale problems. Inf. Sci. 2012, 183, 1–15. [CrossRef]

48. Rao, R.V.; Savsani, V.J.; Balic, J. Teaching–learning-based optimization algorithm for unconstrained and constrained real-parameter
optimization problems. Eng. Optim. 2012, 44, 1447–1462. [CrossRef]

49. Rao, R.V.; Savsani, V.J. Mechanical Design Optimization Using Advanced Optimization Techniques; Springer Series in Advanced
Manufacturing; Springer: London, UK, 2012.

50. Rao, R.V. Teaching Learning Based Optimization Algorithm: And Its Engineering Applications; Springer International Publishing:
London, UK, 2016; Available online: www.springer.com (accessed on 20 October 2021).

51. Zulkifli, D.S.; Absa, M.; Musyafa, A. Prediction of mechanical properties of light weight brick composition using artificial neural
network on autoclaved aerated concrete. Asian J. Appl. Sci. 2017, 5, 556–567.

52. Goel, G.; Kalamdhad, A.S.; Agrawal, A. Parameter optimisation for producing fired bricks using organic solid wastes. J. Clean.
Prod. 2018, 205, 836–844. [CrossRef]

53. Utomo, D.P.; Perdana, B.W.; Pamungkas, A.; Syaiin, M.; Adhitya, R.Y.; Munadhif, I.; Endrasmono, J.; Soeprijanto, A.; Soelistijono,
R.T. CLC (Cellular Lightweight Concrete) Brick Making Process Using Neural Network and Extreme Learning Method Based on
Microcontroller and Visual Studio. In Proceedings of the International Symposium on Electronics and Smart Devices, Yogyakarta,
Indonesia, 17–19 October 2017; pp. 79–84.

54. Shaban, W.M.; Yang, J.; Elbaz, K.; Xie, J.; Li, L. Fuzzy-metaheuristic ensembles for predicting the compressive strength of brick
aggregate concrete. Resour. Conserv. Recycl. 2021, 169, 105443. [CrossRef]

55. Apreutesei, N.A.; Tircoveanu, F.; Cantemir, A.; Bogdanici, C.; Lisa, C.; Curteanu, S.; Chiselita, D. Predictions of ocular changes
caused by diabetes in glaucoma patients. Comput. Methods Programs Biomed. 2018, 154, 183–190. [CrossRef]

56. Lisa, G.; Wilson, D.A.; Curteanu, S.; Lisa, C.; Piuleac, C.G.; Bulacovschi, V. Ferrocene derivatives thermostability prediction using
neural networks and genetic algorithms. Thermochim. Acta 2011, 521, 26–36. [CrossRef]

57. Ibrahim, J.-E.F.M.; Tihtih, M.; Gömze, L.A. Environmentally-friendly ceramic bricks made from zeolite-poor rock and sawdust.
Constr. Build. Mater. 2021, 297, 123715. [CrossRef]

58. Kurmus, H.; Mohajerani, A. Energy savings, thermal conductivity, micro and macro structural analysis of fired clay bricks
incorporating cigarette butts. Constr. Build. Mater. 2021, 283, 122755. [CrossRef]

59. Erdogmus, E.; Harja, M.; Gencel, O.; Sutcu, M.; Yaras, A. New construction materials synthesized from water treatment sludge
and fired clay brick wastes. J. Build. Eng. 2021, 42, 102471. [CrossRef]

60. Harja, M.; Gencel, O.; Sari, A.; Sutcu, M.; Erdogmus, E.; Hekimoglu, G. Production and characterization of natural clay-free green
building brick materials using water treatment sludge and oak wood ash. Arch. Civ. Mech. Eng. 2022, 22, 79. [CrossRef]

http://doi.org/10.1007/s10064-014-0657-x
http://doi.org/10.1016/j.cor.2006.12.018
http://doi.org/10.1016/j.asoc.2016.02.038
http://doi.org/10.1016/j.advengsoft.2015.11.004
http://doi.org/10.1080/0305215X.2014.994868
http://doi.org/10.1016/j.cie.2016.12.020
http://doi.org/10.1111/1467-6486.00204
http://doi.org/10.1002/smj.223
http://doi.org/10.1016/j.ins.2011.08.006
http://doi.org/10.1080/0305215X.2011.652103
www.springer.com
http://doi.org/10.1016/j.jclepro.2018.09.116
http://doi.org/10.1016/j.resconrec.2021.105443
http://doi.org/10.1016/j.cmpb.2017.11.013
http://doi.org/10.1016/j.tca.2011.03.037
http://doi.org/10.1016/j.conbuildmat.2021.123715
http://doi.org/10.1016/j.conbuildmat.2021.122755
http://doi.org/10.1016/j.jobe.2021.102471
http://doi.org/10.1007/s43452-022-00400-0

	Introduction 
	Materials and Methods 
	Experimental Determinations 
	Modeling Methodology 
	Optimization Methodology 

	Results 
	Neural Network Modeling 
	Single-Objective Optimization 
	Comparison with Classic Population-Based Algorithms 

	Discussion 
	Conclusions 
	Appendix A
	References

