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Abstract: In this work, a combined smoothed particle hydrodynamics and discrete element method
(SPH-DEM) model was proposed to model particle agglomeration in a shear flow. The fluid was
modeled with the SPH method and the solid particles with DEM. The system was governed by three
fundamental dimensionless groups: the Reynolds number Re (1.5~150), which measured the effect
of the hydrodynamics; the adhesion number Ad (6 × 10−5~6 × 10−3), which measured the inter-
particle attraction; and the solid fraction α, which measured the concentration of particles. Based on
these three dimensionless groups, several agglomeration regimes were found. Within these regimes,
the aggregates could have different sizes and shapes that went from long thread-like structures
to compact spheroids. The effect of the particle–particle interaction model was also investigated.
The results were combined into ‘agglomeration maps’ that allowed for a quick determination of the
agglomerate type once α, Re, Ad were known.
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MSC: 76T20

1. Introduction

Particle agglomeration exists widely in both nature and industry. In the mining in-
dustry, for instance, particle aggregation in solid–liquid separation is beneficial for the
acceleration of slurry dewatering and improving thickening and filtration operations [1].
In the pharmaceutical sector, granulation for compression blends is also aided by ag-
glomeration [2]. However, agglomeration can also be detrimental as it causes clogging
of microchannels in microfluidic devices [3], speeds up the erosion of turbine blades in
gas turbine engines [4,5] and reduces the efficiency of drug particle delivery [6]. There-
fore, either to promote it or to avoid it, a deep understanding of particle agglomeration is
indispensable for optimizing particulate processing in both water and air.

According to many experimental investigations, the number of particles in an aggre-
gate typically varies as an exponential function of the radius of gyration of the aggregates,
where the exponent of the function is referred to as the aggregates’ fractal dimension [7–9].
The fractal dimension’s value is determined by the mechanism through which the aggregate
was generated and the stage at which it was formed. Typical values of fractal dimension
are in the range of roughly 1.5 to 3.0 [10]. The fractal dimension influences the aggregate’s
material characteristics, such as its elastic and shear moduli [11–13]. The force network
of aggregate is affected by its fractal structure, which impacts the shear stress required to
cause aggregate fragmentation [14–18].

Although there is extensive experimental research on particle agglomeration, the dy-
namic behavior of primary particles smaller than roughly 10 µm is difficult to image.
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Therefore, numerical simulations of particle agglomeration in multiphase flows are now
widely used to provide an insight into particle behaviour. Shear effects have been ex-
tensively investigated in previous numerical studies on particle agglomeration [19–21].
By using an Eulerian–Lagrangian approach, Hellestø et al. [21] numerically explored the
agglomeration of cohesive particles in a simple shear flow. They found that, when the
hydrodynamic forces dominated compared to adhesion forces, the steady state aggregate
diameter increased with a decreasing shear rate. Another essential consideration was the
effect of inter-particle interactions on aggregate structure. Cohen [22] explored the influence
of particle interaction surface energy on aggregate structure. As expected, it was found that
high surface energy corresponded to the formation of large aggregates.

Recently, some researchers have used an Eulerian–Lagrangian (a combined computa-
tional fluid dynamics (CFDs) and DEM) method to investigate agglomeration or deagglom-
eration in both laminar and turbulent flows [20,21,23–28]. These studies only accounted
for momentum exchange between the fluid–solid phases and not for the physical presence
of the particles in the fluid (the particles were ‘transparent’ to the flow). In this paper we
coupled two discrete particle methods, SPH [29] and DEM [30], to model all interactions
(i.e., fluid–fluid, fluid–particle and particle–particle) occurring in the system. The SPH
method has the advantage of utilizing a Lagrangian meshless technique, which made
detecting the interface between particles or aggregates simple, avoiding the complications
of tracking the interface location [31,32]. This novel SPH-DEM approach has been widely
validated for a broad range of complex fluid–solid interaction problems [33–36]. Moreover,
it was used and also validated by Rahmat et al. [37], but they used an overly simplistic
representation of the particle–particle interaction. We improved this here by using two of
the most common adhesion contact models: the Johnson–Kendall–Roberts (JKR) [38] and
the Derjaguin–Muller–Toporov (DMT) [39] models. To our knowledge, the effect of these
two popular contact models on agglomeration types has not been investigated. The pro-
posed SPH-DEM model was used to investigate the effect of various important parameters
on particle agglomeration in a shear flow, such as the Reynolds number, adhesion number
and the solid volume fraction.

2. Methods

In this study, we used discrete multiphysics (DMP) for modeling solid–liquid flows.
In general, DMP can combine several particle methods together (for instance SPH, coarse
grained molecular dynamics and DEM). In this paper, we combined SPH for the liquid
phase and DEM for the solid particles [40]. Only a brief introduction to both SPH and DEM
is provided since the methods were described in earlier work [29,30].

In general, all particle methods solve the Newton equation of motion:

mi
dvi
dt

= mi
d2ri
dt2 = ∑

i 6= j
Fi,j + ∑ FE (1)

where mi is the mass of particle i, ri its position, vi its velocity, Fi,j is the interparticle force
between particle i and j and FE is an external force. This equation is common to all particle
methods; the difference between SPH and DEM lies in the term Fi,j.

2.1. SPH (Liquid Phase)

Smoothed particles hydrodynamics (SPH) is a meshless particle-based algorithm, pro-
posed by Lucy, Gingold and Monaghan in 1977 [31,41]. Here, it was utilized to simulate the
solid–fluid two-phase flow. Individual particles in the SPH domain were given properties
such as velocity, position, density and pressure, which were updated at every time step.
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The SPH method discretizes the Navier–Stokes’s equation into a form that is compara-
ble with Equation (1) [29]:

Fi = mi
dvi
dt

= −∑
j

mimj

(
pi

ρ2
i
+

pj

ρ2
j
+ Πij

)
∇iWij (2)

where Fi is the sum of the forces applied to the particle i, mj is the mass of particle j, ρi is
the density of particle i, p is the pressure. W is the smoothing kernel function that defines
how the inter-particle interaction changes with their distance rij = ri − rj. Πij is the artificial
viscosity. For W, the Lucy kernel is used herein [42]:

W(r < h) =
105

16πh3

[
1 + 3

r
h

][
1− r

h

]3
(3)

where h is the smoothing length and indicates how far each particle is influenced by the
nearby particles.

The artificial viscosity below is used [42]:

Πij = −βh
ci + cj

ρi + ρj

vij · rij

r2
ij + εh2

(4)

where β is a dimensionless factor influencing the dissipation strength, ci and cj are the
sound speeds of particles i and j, respectively, and ε = 0.01 prevents singularities when
particles are relatively close to each other.

An equation of state allows the calculation of the pressure p as a function of local
density ρ [43]. In this research, the Tait equation [29] is used:

p =
c2

0ρ0

7

[(
ρ

ρ0

)7
− 1

]
(5)

where c0 is a reference speed and ρ0 is a reference density.

2.2. DEM (Solid–Solid Interaction)

Equation (1) was also used to simulate the interaction between two real particles.
In this case, the DEM for solid–solid interactions was used. DEM particles are not point
particles. Each solid particle i is subjected to the force and moment of the other solid
particles in contact with it. For this reason, we needed to solve Equation (1) in conjunction
with the equation for the conservation of angular momentum:

Ii
dωi
dt

= ∑
i 6= j

Ri Fi,j (6)

where Ii, ωi, Ri and Fi,j are the moment of inertia, the angular velocity, the radius of the
particle i and the inter-particle force, respectively.

Here, the inter-particle forces Fi,j are the contact forces and include (i) the non-adhesive
elastic contact after a particle–particle collision and (ii) the adhesive contact between
two spherical particles.

The non-adhesive elastic contact can be described by Hertzian theory [44]. In the
Hertz model, the normal elastic force is computed as follows:

Fne,Hertz = knR1/2
e f f δ3/2

ij n (7)

where Re f f =
Ri Rj

Ri+Rj
is the effective radius, which, for simplicity, is denoted as R from here

on. kn is the spring constant. δij = Ri + Rj −
∣∣rij
∣∣ is the particle overlap, Ri, Rj are the radius

of particle i and j, respectively, and rij = |rj − ri| is the vector separating the two particle
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centers and n = rij/rij. Since the elastic modulus and the shear modulus of the two particles
were the same in this study, kn = 4/3Ee f f . Here,

Ee f f = E =

(
1− ν2

i
Ei

+
1− ν2

j

Ej

)−1

(8)

where Ee f f is the effective Young’s modulus, with νi, νj and Ei, Ej, the Poisson ratios and
Young’s modulus of the particles of types i and j.

The deformations become more difficult when adhesion forces are introduced. The Johnson–
Kendall–Roberts (JKR) theory [38] and the Derjaguin–Muller–Toporov (DMT) theory [39]
are two modern theories of adhesion contact mechanics between two spherical particles.
The DMT model assumes that, during particle contact, attractive forces do not change the
surface profile [39]. The assumption of the JKR model is that adhesion only occurs inside a
flattened contact zone [38]. DMT theory is applicable to very small and hard bodies with
low surface energies, whereas JKR theory better describes easily deformable, large bodies
with high surface energies [45]. In this study, to make the results more general, both models
were used and compared.

In the DMT model, the normal, elastic force is simply Hertzian with an additional
attractive cohesion term:

Fne,dmt =

(
4
3

E R1/2δ3/2
ij − 4πγR

)
n (9)

where γ is surface energy of solid particles.
In the JKR model, the normal, elastic force is computed as:

Fne,jkr =

(
4Ea3

3R
− 2πa2

√
4γE
πa

)
n (10)

where a is the radius of the contact zone related to the overlap δ based on the following:

δ = a2/R− 2
√

πγa/E (11)

The following damping component was also needed to add to the normal force:

Fn,damp = −ηnvn,rel (12)

where vn,rel =
(
vj − vi

)
· nn is the component of relative velocity along n and ηn is the

normal damping factor.
The damping term used a damping viscoelastic model [44]. Therefore, the normal

damping factor is given by the following:

ηn = ηn0ame f f (13)

where ηn0 is the normal damping coefficient, a is the contact radius, given by (a) a =
√

Rδ for
the DMT model and (b) δ = a2/R− 2

√
πγa/E for the JKR model. me f f = mimj/

(
mi + mj

)
is the effective mass.

The combination of the elastic and damping elements yields the total normal force:

Fn = Fne + Fn,damp (14)

Apart from the normal contact force, the tangential contact force was also required.
Based on the Mindlin tangential contact model [46,47], the tangential force is given by
the following:

Ft = −min
(
µtFn0,

∣∣−ktaξ + Ft,damp
∣∣)t (15)
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Here, µt is the tangential friction coefficient. kt is the tangential stiffness coefficient.
ξ is the tangential displacement collected over the contact’s full duration.

Fn0 is the normal force value given by the following:

Fn0 =
∣∣∣Fne + 2Fpull-off

∣∣∣ (16)

where Fpull-off = 3πγR for the JKR model and Fpull-off = 4πγR for the DMT model.
The tangential damping force Ft,damp is computed as follows:

Ft,damp = −ηtvt,rel (17)

where ηt is the tangential damping prefactor and is calculated by scaling the normal
damping ηn, here ηt = −ηn was used. vt,rel is the relative tangential velocity at the point
of contact.

2.3. Solid–Fluid Interactions

To simulate the fluid–solid interaction, the forces between fluid and solid particles
must be defined. These forces must guarantee no slips, no penetration and continuity of
stresses between the fluid–solid interface. These conditions [40] are usually expressed in
continuum mechanics as follows:(

∂

∂t
u− v

)
· n = 0 (no penetration) (18)

(
∂

∂t
u− v

)
× n = 0(no slip) (19)

σ sn = σ f (−|r|) (continuity of stresses) (20)

where v is the fluid velocity, u the displacement of the solid, n the direction normal to the
boundary and σ f and σ s are the fluid and solid stresses, respectively.

These conditions needed to be ‘translated’ in terms of forces Fi,j in order to be intro-
duced in the DMP model.

In SPH simulations, non slip conditions at the rigid walls are approximated by mod-
eling the walls as layers of ‘frozen’ (i.e., forces are calculated normally, but positions are
not updated) fluid particles. Here, this approach was used between the walls and the fluid.
However, it could not be used between the fluid particles and the solid particles of the
agglomerates because agglomerates needed to be free to move into the flow. Nevertheless,
if the fluid particles ‘saw’ the solid particles as fluid particles, we had the same situation
that occurs at rigid SPH walls, but without restricting the motion of the solid particles.
In other words, to achieve non slip conditions, the fluid saw the agglomerates as moving
rigid boundaries with the same shape of the agglomerate.

No penetration was achieved by adding repulsive forces between the solid and liquid
particles. Generally, SPH also includes repulsive forces to reduce particle overlap (e.g.,
Equation (2)). Usually, these forces are not strong enough to fully remove overlaps be-
tween solid and liquid particles and, therefore, additional repulsive forces are necessary.
According to the flow, different types of additional repulsive forces were used, see for
instance [48–51]. In this present study, however, velocities were not particularly high and
no additional force was required.

Finally, the continuity of stresses in particle methods was automatically enforced by
Equation (1). More details on boundary solid –liquid conditions in DMP can be found in
the literature (e.g., [52–54]).

2.4. Software

In 1993, Steve Plimpton created a large-scale atomic/molecular massively parallel sim-
ulator (LAMMPS) [55]. This open-source software LAMMPS was used for the simulations
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of the DMP model. Many researchers have enhanced and expanded LAMMPS since its
initial release, incorporating mesh-free computational methods such as DEM and SPH,
as well as others [42,56]. LAMMPS is a molecular dynamics (MD) algorithm that simulates
groups of particles in solids, liquids and gases. Using different boundary conditions and
inter-particle potentials, it can simulate microscopic, mesoscopic or macroscopic systems.
Generally, LAMMPS solves Newton’s motion equations about a group of interaction parti-
cles. To meet certain research needs, custom features in the LAMMPS source code can be
implemented by using LAMMPS input script commands. Then information, such as the
position and velocity of the particles, is outputted. However, LAMMPS could not carry
out in-depth analysis of the simulation and could not visualize and plot our output data;
however, this could be performed by Ovito software [57]. This powerful software played
an important role in obtaining scientific insights from the data. Without the appropriate
visualization and analysis software package, key information would have stayed unknown
and unavailable.

2.5. Dimensionless Analysis

Based on the Buckingham π theorem, a physically relevant equation containing n
physical variables could be reformulated in terms of a collection of p = n − k dimensionless
parameters Π1, Π2, . . . Πp, where k is the number of physical dimensions involved.

In the case under consideration, the results were best expressed as a mathematical
function f of the type

f (〈n〉t, γ, α, d, U, H, µ, ρ, ρP, t) = 0 (21)

where all the variables and their respective physical units are listed in Table 1. Since there
were 10 variables and 3 units (kg, m, s), Equation (21) could be rewritten based on the
7 dimensionless groups. However, in the case considered, the fluid mechanical properties
µ and ρ of the fluid (water), the size of the computational domain H and the agglomera-
tion time t were fixed. Therefore, these parameters were constant, and we only needed
4 dimensionless groups that could be associated with a relation of the type

〈n〉t = ϕ(α, Re, Ad) (22)

Mathematics 2022, 10, 1931 7 of 15 
 

 

could be provided by carrying out a parametric study to understand how 〈𝑛〉௧ changed 
with 𝛼, Re and Ad. 

3. Results 
3.1. Simulation setup 

Figure 1 shows the computational domain and the initial status at zero time. Four 
particle types were included in the system. The fluid particles (green) were located be-
tween a top wall (yellow) and a bottom wall (blue, stationary) along the y direction. To 
generate shear flow in the channel, the top wall, along the x direction, had constant ve-
locity U. The solid particles (red) were randomly located within the fluid domain based 
on their volume fractions. Boundary conditions along the x and z directions were peri-
odical. The Reynolds number Re was varied by changing the values of the velocity U of 
the top wall. 

 
Figure 1. Geometry of the system and initial status (time = 0). Four particle types are coloured. The 
top wall (yellow, constant velocity U along x direction) and bottom wall (blue, stationary) gener-
ated a simple shear flow. Solid particles (red) were randomly located within the fluid (green) do-
main based on their volume fractions. 

To investigate how solid particle aggregates evolved, simulations were performed 
under different parameters, as shown in Table 2. 

Table 2. Parameters used in the simulation of the structural evolution of solid particle agglomer-
ates. 

Fluid density 1000 kg/m3 
Fluid dynamic viscosity 0.001 Pa.s 
Solid particle diameter 6 µm 
Particle density  1000 kg/m3 

Number of SPH fluid particles 
526–601 (depending on solid volume fraction: 1.2–
4.2%)  

Number of solid particles 
47–157 (depending on solid volume fraction: 1.2–
4.2%) 
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Figure 1. Geometry of the system and initial status (time = 0). Four particle types are coloured.
The top wall (yellow, constant velocity U along x direction) and bottom wall (blue, stationary)
generated a simple shear flow. Solid particles (red) were randomly located within the fluid (green)
domain based on their volume fractions.



Mathematics 2022, 10, 1931 7 of 15

Table 1. Variables for dimensional analysis.

Variable Units Description

(1) 〈n〉t -

Number of particles in the average aggregate
after time t, namely average aggregate size,
which is the average overall aggregates after
time t when the steady state was reached

(2) γ kg s−2 Surface energy
(3) α - Solid volume fraction
(4) d m Particle diameter
(5) U m s−1 Wall velocity (Table 2)
(6) H m Domain size in the y direction (Figure 1)
(7) µ kg m−1 s−1 Viscosity of the liquid
(8) ρ kg m−3 Density of the liquid
(9) ρp kg m−3 Density of the solid particle
(10) t s Agglomeration time

Table 2. Parameters used in the simulation of the structural evolution of solid particle agglomerates.

Fluid density 1000 kg/m3

Fluid dynamic viscosity 0.001 Pa·s
Solid particle diameter 6 µm

Particle density 1000 kg/m3

Number of SPH fluid particles 526–601 (depending on solid volume fraction:
1.2–4.2%)

Number of solid particles 47–157 (depending on solid volume fraction:
1.2–4.2%)

Number of wall particles 980

Mass of each fluid particle 1.4 × 10−12 kg

Mass of each solid particle 1.1 × 10−13 kg

Initial distance between fluid particles, sc 1 × 10−5–2 × 10−5 m

Smoothing length h 2.6 × 10−5–5.2 × 10−5 m

Sound speed c0 1 m/s

Reynolds number 1.5–150

Surface energy density 1.1 × 10−6–1.1 × 10−8 J/m2

Solid volume fraction 1.2–4.2%

Poisson’s ratio 0.33

Time step 5.7 × 10−6 s

Computational domain along x, y and z
direction in order: W × H × L 7.5 × 10−5 m × 2 ×10−4 m × 7.5 × 10−5 m

These dimensionless groups can be defined in different ways. 〈n〉t and α are already
dimensionless, Re is the Reynolds number defined as

Re =
ρUH

µ
(23)

and Ad the adhesion number
Ad =

γdρP

µ2 (24)

Re, as usual, represents the ratio between inertial and viscous forces in the fluid;
Ad represents the ratio between the interparticle adhesion forces and the viscous forces.
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However, given that ρ, H and µ were constant, it is probably easier in the next sections to
interpret Re and Ad simply as a dimensionless wall velocity and a dimensionless a surface
energy, respectively.

Based on this dimensionless analysis, instead of carrying out a parametric study to
understand how 〈n〉t changed with all parameters in Table 1, the same information could
be provided by carrying out a parametric study to understand how 〈n〉t changed with α,
Re and Ad.

3. Results
3.1. Simulation Setup

Figure 1 shows the computational domain and the initial status at zero time. Four parti-
cle types were included in the system. The fluid particles (green) were located between a top
wall (yellow) and a bottom wall (blue, stationary) along the y direction. To generate shear
flow in the channel, the top wall, along the x direction, had constant velocity U. The solid
particles (red) were randomly located within the fluid domain based on their volume
fractions. Boundary conditions along the x and z directions were periodical. The Reynolds
number Re was varied by changing the values of the velocity U of the top wall.

To investigate how solid particle aggregates evolved, simulations were performed
under different parameters, as shown in Table 2.

3.2. Preliminary Results

To produce fluid resolution-independent results, how the number of solid particles
in the average aggregate 〈n〉t changed with fluid resolution was investigated. In these
preliminary results, the primary solid particles always had the same size and only the fluid
particle resolution was increased.

The evolution of average aggregate size with different fluid resolutions (ratio between
fluid and solid particles) is shown in Figure 2. The critical factor in this resolution study
was the number of fluid particles that surrounded a solid agglomerate. If there were too
few, it was difficult to resolve the fluid dynamics around the agglomerate in sufficient detail.
As primary particles agglomerated, the size of the agglomerate increased. Therefore, as the
simulation progressed the limitation of an inadequate initial resolution tended to decrease.
For this reason, only the results during the initial phase when the agglomerate size was
relatively small were compared. Figure 2 shows that the results did not change considerably
when the initial distance between fluid particles, sc was decreased from 1.11 × 10−5 m to
1.00 × 10−5 m, which corresponded to a decrease in the ratio between the number of solid
and liquid particles from 8% to 5%. Given the random position of the initial solid particle
distribution, the agglomeration profiles at higher resolutions were not expected to converge
to exactly the same curve. Hence, considering the balance between accuracy and computa-
tional costs, sc = 1.11 × 10−5 m was selected as the reference fluid particle resolution and
was employed throughout this study, unless stated otherwise. At the very beginning of the
simulation, when only small agglomerates were in the fluid, the fluid around the particles
was probably still under resolved, but as the agglomerate grew this problem fixed itself.
Therefore, the goal of the resolution analysis was to establish a resolution whose initial
underperformance did not sensibly affect the later stages of the simulation.

3.3. Particle Agglomeration

Simulations were performed with different values of Reynolds number, adhesion number
and solid particle volume fraction to investigate the structural behavior of solid aggregates.
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in the x axis is the number of frames for visualization using Ovito software. Here, 600 frames at the
end of simulation corresponded to 60 s.

3.3.1. Effect of Re and Ad

In the simulations, the average aggregate size attained a steady size after initial growth.
This steady state could be reached in three different ways, depending on whether shear or
adhesion dominated, or if both mechanisms were at play. The first occurred when shear
prevailed. When particles have low surface energy, there is little agglomeration. Even when
small agglomerates formed, they were quickly broken apart by the hydrodynamic forces.
This led to many dispersed primary particles at the steady state. The second occurred
when agglomeration prevailed. Aggregates stopped growing only after they cleaned the
entire surrounding area and there were no particles left for further agglomeration. This led
to a single spheroidal aggregate within the computational domain. The final mechanism
occurred when agglomeration and fragmentation reached a dynamic equilibrium that
resulted in a constant average size, but with shapes ranging from squashed spheres to
strings of primary particles. Figure 3 shows several aggregates forming at a solid volume
fraction of 4.2% for different values of Re and Ad. At large adhesion numbers, adhesion
forces were dominant and agglomeration prevailed. At small adhesion numbers, solid
particles do not stick to each other, leading to very dispersed systems.

The simulations also showed that dispersed systems tended to concentrate particles
towards the center of the channel, while large aggregates were preferentially located near
the walls. This observation was consistent with previous studies dedicated to the inertial
migration of rigid spheres in shear flow and it was the result of competition between
wall-induced and shear-gradient-induced lift forces [58–62].

Figure 3 gives a visual representation of the aggregates; Tables 3 and 4 provide a
quantitative analysis. Table 3 shows the relative average aggregate size at the steady state
defined as

n∗ =
〈n〉t
N

(25)

where N is the total number of primary solid particles at the steady-state for different Re
and Ad at α = 4.2%.
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Table 3. Relative average aggregate size n* for different Reynolds Re and adhesion Ad numbers at a
solid particle volume fraction 4.2%.

Re
Ad

6 × 10−5 2 × 10−4 6 × 10−4 2 × 10−3 6 × 10−3

150 0.00762 0.00765 0.00767 0.00857 0.50000

50 0.00723 0.00736 0.00785 0.01827 1.00000

15 0.00834 0.01024 0.02104 0.07389 0.50000

5 0.01097 0.02177 0.07062 0.14729 0.39706

1.5 0.02921 0.07343 0.16667 0.20000 1.00000

Table 4. Scaled average radius of gyration Rg* for different Reynolds Re and adhesion Ad numbers at
a solid particle volume fraction 4.2%.

Re
Ad

6 × 10−5 2 × 10−4 6 × 10−4 2 × 10−3 6 × 10−3

150 0.15 0.09 0.12 0.20 2.98

50 0.12 0.13 0.13 0.55 4.02

15 0.21 0.35 1.28 2.00 4.92

5 0.41 1.20 2.15 3.80 7.57

1.5 1.39 2.37 4.66 5.77 17.35

Table 4 shows the scaled average radius of gyration at the steady state defined as

R∗g =
2
〈

Rg
〉

d
(26)
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where d is the diameter of a solid particle; Rg is the radius of gyration of each aggregate
and is computed by the formula

Rg =

√
1
M ∑

i
mi(ri − rcm)

2 (27)

where M is the total mass of each aggregate, rcm is the center-of-mass position of each
aggregate and the sum is over all particles in each aggregate.

Rg* = 0 is a single primary particle, while a dimer has Rg* = 1. As Rg* increased,
the number of branches of the aggregate shape increased and it became more irregular.

The information from Figure 3 and Tables 3 and 4 are combined into a single figure
(Figure 4) that shows how, based on Re and Ad, the system could be subdivided into
different regimes.

Mathematics 2022, 10, 1931 11 of 15 
 

 

 
Figure 4. Agglomeration regime map. Phase diagram illustrating the observed cases as a function 
of the Reynolds and adhesion numbers at a solid particle volume fraction 4.2%. 

Figure 4 shows three different regimes, i.e., low (n* < 0.015), intermediate (0.015 < n* 
< 0.1) and high (n* > 0.1) agglomeration. Low agglomeration occurred where shear pre-
vailed; intermediate agglomeration occurred where agglomeration and fragmentation 
reached a dynamic equilibrium; high agglomeration occurred where agglomeration 
prevailed. Based on the aggregate shape, the high agglomeration area could be further 
subdivided into three regions. In the high-Re region the aggregate shape was a prolate 
spheroid. In the middle-Re region, the aggregates were cylindrical. Finally, at low-Re the 
shape was string-like. 

3.3.2. Effect of α 
The same procedure was used to identify the agglomeration regimes for a different 

volume fraction, α = 2.4%. 
Figure 5 also presents three agglomeration regimes, i.e., low, intermediate and high 

agglomeration. The major difference between Figures 4 and 5 is in the low-Re region of 
the high agglomeration area. While at α = 4.2% a single long string formed, at α = 2.4% 
there several shorter strings. Due to the lower density, there were fewer particles for ag-
glomeration and the shorter strings did not merge into a single chain. 

 
Figure 5. Agglomeration regime map. Phase diagram illustrating the observed cases as a function 
of the Reynolds and adhesion numbers at α = 2.4%. The simulation results of solid volume fraction 

Figure 4. Agglomeration regime map. Phase diagram illustrating the observed cases as a function of
the Reynolds and adhesion numbers at a solid particle volume fraction 4.2%.

Figure 4 shows three different regimes, i.e., low (n* < 0.015), intermediate (0.015 < n* < 0.1)
and high (n* > 0.1) agglomeration. Low agglomeration occurred where shear prevailed;
intermediate agglomeration occurred where agglomeration and fragmentation reached
a dynamic equilibrium; high agglomeration occurred where agglomeration prevailed.
Based on the aggregate shape, the high agglomeration area could be further subdivided
into three regions. In the high-Re region the aggregate shape was a prolate spheroid.
In the middle-Re region, the aggregates were cylindrical. Finally, at low-Re the shape
was string-like.

3.3.2. Effect of α

The same procedure was used to identify the agglomeration regimes for a different
volume fraction, α = 2.4%.

Figure 5 also presents three agglomeration regimes, i.e., low, intermediate and high
agglomeration. The major difference between Figures 4 and 5 is in the low-Re region of
the high agglomeration area. While at α = 4.2% a single long string formed, at α = 2.4%
there several shorter strings. Due to the lower density, there were fewer particles for
agglomeration and the shorter strings did not merge into a single chain.
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Figure 5. Agglomeration regime map. Phase diagram illustrating the observed cases as a function of
the Reynolds and adhesion numbers at α = 2.4%. The simulation results of solid volume fraction at
α = 1.2% and α = 2.4% were similar. For simplicity and to avoid repeated comparisons, here we only
compared simulation results at α = 2.4% and α = 4.2% in order to investigate the effect of α.

3.3.3. Effect of the Adhesion Model

Up to this point, the results presented have been based on the JKR adhesion model
(Equation (10)). In this section, the simulations were performed with the DMT model
(Equation (9)) for comparison. Figure 6 shows the agglomeration regimes obtained with
the DMT model at α = 4.2%. In general, it shows a similar map to the JKR model. In the
high agglomeration area, the JKR model tended to generate branched aggregates or particle
chains while the DMT model predicted relatively regular (more compact with fewer or no
branches at all) small aggregates. This was due to two factors. The first was that the JKR the-
ory uses a smaller pull-off force, 3πgR (compared to 4πgR in DMT theory). The second was
that the JKR theory hypothesizes that particles do not move apart immediately, but stretch
while keeping adhesion, until a tensile force reaches up to 3πgR, at which point particles
separate. The stretch prolonged the adhesion duration, enabling particles to re-aggregate
as a result of collisions with other adjacent particles. This indicated that the adhesion
models had an important effect on the shape of the aggregate structures. Different types of
physical agglomeration (e.g., polymer flocculation, coagulation, hydrophobic attraction)
complied with different adhesion models. Although only two popular adhesion models
were studied, the methodology presented in this paper could be easily extended to other
adhesion models provided that a functional form for the inter-particle forces Fi,j is known.
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4. Conclusions

This study developed a numerical tool for modeling agglomeration of solid particles
suspended in shear flow. It was found that the system was governed by three fundamental
dimensionless groups: the Reynolds number Re, which measured the effect of the hydrody-
namics; the adhesion number Ad, which measured the ‘stickiness’ of the particles; and the
solid fraction α, which measured the concentration of particles. Based on these dimen-
sionless groups, three different agglomeration regimes were found: high agglomeration,
intermediate agglomeration and low agglomeration, depending on whether adhesion or
hydrodynamics dominated or were in balance. Within these three regimes, the aggregates
could have different shapes that changed from long thread-like structures to compact
spheroids. This information was gathered into ‘agglomeration maps’ that allowed quick
determination of the agglomerate type once α, Re, Ad were known.

The agglomerate shape and size were also mapped to two of the most common
adhesion models used in DEM (i.e., JKR and DMT). The JKR model allows particles to
separate and therefore demonstrated stretchier behavior than the DMT model. Different
types of inter-particle interactions follow different adhesion models. While focusing on the
JKR and DMT models, this study also provided a methodology that could be applied to a
variety of interactions. If necessary, the proposed approach could be used to extend the
agglomeration map to other adhesion models or to larger ranges of α, Re and Ad.

This study has the potential not only to more comprehensively and accurately under-
stand particle aggregate structures, but also to provide engineering guidance for optimizing
particulate processes, such as dewatering in the mining industry.

Since the dynamic behavior of primary particles smaller than roughly 10 µm is hard
to image experimentally, comparison with experimental results is currently difficult to
carry out. As imaging techniques continue to develop, once the dynamic behavior of the
aforementioned particles can be imaged, a comparison of the experimental data with our
simulation results will be carried out in our future studies.
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