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Abstract: Most physical phenomena are formulated in the form of non-linear fractional partial
differential equations to better understand the complexity of these phenomena. This article introduces
a recent attractive analytic-numeric approach to investigate the approximate solutions for nonlinear
time fractional partial differential equations by means of coupling the Laplace transform operator
and the fractional Taylor’s formula. The validity and the applicability of the used method are
illustrated via solving nonlinear time-fractional Kolmogorov and Rosenau–Hyman models with
appropriate initial data. The approximate series solutions for both models are produced in a rapid
convergence McLaurin series based upon the limit of the concept with fewer computations and more
accuracy. Graphs in two and three dimensions are drawn to detect the effect of time-Caputo fractional
derivatives on the behavior of the obtained results to the aforementioned models. Comparative
results point out a more accurate approximation of the proposed method compared with existing
methods such as the variational iteration method and the homotopy perturbation method. The
obtained outcomes revealed that the proposed approach is a simple, applicable, and convenient
scheme for solving and understanding a variety of non-linear physical models.
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Laplace power series method; inverse Laplace transform; time-Caputo fractional derivative

MSC: 35R11

1. Introduction

The subject of fractional calculus is not new. It is a generalization of classical calculus
that deals with the ordinary differentiation and integration of arbitrary order. It goes
back to Leibniz in a letter to L’Hospital in the late seventeenth century. The main idea of
fractional calculus is that natural phenomena modeling is not in integer operators; it is in
fractional operators. So, the fractional calculus focuses on behaviors that cannot be modeled
by traditional theory [1–7]. In the past, a lot of prominent contributions were made to the
subject of the theory and applications of fractional partial differential equations (FPDEs).
These equations are more effectively used to analyze and describe several phenomena
in various fields such as mechanical systems, dynamical systems, control theory, mixed
convection flows, heat transfer, unification of diffusion, image processing, and wave propa-
gation phenomenon [8–15]. Nevertheless, no method gives an explicit solution for FPDEs
due to the intricacies of the fractional calculus that includes these equations. Recently,
numerical techniques such as the Adomian decomposition method (ADM), variational
iteration method (VIM), reproducing kernel method (RKM), Laplace variational iteration
method (LVIM), Laplace Adomian decomposition method (LADM), and residual power
series method (RPSM) are used widely to find approximate solutions of many nonlinear
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fractional differential equations that do not have exact analytic solutions. For more infor-
mation regarding the methods and numerical techniques for solving fractional differential
equations [16–22]. On the other hand, RPSM has been widely used to find out the solutions
to linear and nonlinear issues of fractional differential, and it is used to find out the solution
for the system of FPDEs [22]. Additionally, it is used for well-known partial differential
equations of fractional order, such as fractional Newell–Whitehead–Segel equation [23],
time-fractional Fokker–Planck equations [24], fractional Kundu–Eckhaus and massive
Thirring models [25], coupled fractional resonant Schrödinger equation [26], and fuzzy
fractional IVPs [27–32]. The proposed algorithm is straightforward, accurate, and powerful
and creates a series of solutions for different models that occur in applied mathematics
without terms of perturbation, discretization, and linearization.

Creating approximation solutions for nonlinear time FPDEs using the aforementioned
numeric-analytic methods and others is a significant matter for scholars. Thus, there has
become an insistent requirement for efficient semi-analytic methods to construct precise
solutions for both linear and nonlinear fractional models. Motivated by this, the primary
contribution of this work is to create accurate approximate solutions in a closed-form series
for a certain class of nonlinear time FPDEs in light of the time-Caputo fractional derivative
sense via extending the application of the Laplace RPSM. This method is proposed and
proved by El-Ajou [31] to investigate the exact solitary solutions for a class of nonlinear
time-FPDEs. It depends basically on treating the main problem in Laplace space with the
help of RPSM, where the unknown coefficients could be found via the concept limit, unlike
the RPSM which uses the fractional derivatives in each step to find these coefficients [33].
The proposed method has been successfully employed to produce exact and precise ap-
proximate solutions by involving fast convergent power series for emerging realism models
in physical phenomena due to its features, which are that it is easy, straightforward, han-
dles directly to various kinds of initial conditions, needs no to linearization or restrictive
assumptions, does not need major computational requirements and is performed with less
time and more accuracy. More applications, analysis, and advanced techniques used to
process and solve linear and non-linear real-life models are found in the references [34–47].

The structure of the article is arranged as follows. In Section 2, essential definitions,
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs)
of fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to
show the applicability and accuracy of our approach. Finally, Section 5 is devoted to
the conclusions.

2. Basic Concepts and Notations

In this section, we review the essential definitions and theorems of fractional deriva-
tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems
related to Laplace transform which will be used mainly in the next section.

Definition 1 (See Ref. [3]). For
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a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

∈ R+, the Riemann–Liouville fractional integral operator for a
real-valued functionW(x, t) is denoted by
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∂tn , and n ∈ N.

Consequently, for n− 1 <
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j=0 Dj

t(x, 0+) tj

j! , for W ∈ Cn[a, b], n−1 <
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≤ n,
n ∈ N and a, b ∈ R.

Definition 3 (See Ref. [31]). LetW(x, t) is a piecewise continuous function on I × [0 , ∞) and
of exponential order δ. Then, the Laplace transformation of the functionW(x, t) is denoted and
defined as follows:

$(x, s) = L[W(x, t)] :=
∫ ∞

0
e−stW(x, t)dt, s > δ,

whereas the inverse Laplace transformation of the functionW(x, s) is defined as follows:

W(x, t) = L−1[$(x, s)] :=
∫ c+i∞

c−i∞
est$(x, s)ds, c = Re(s) > δ0,

where δ0 lies in the right half plane of the absolute convergence of the Laplace integral.

Lemma 1 (See Ref. [31]). Let W(x, t) and ϕ(x, t) are piecewise continuous functions on
I × [0 , ∞) and of exponential order δ1 and δ2, respectively, where δ1 < δ2. Suppose that
$(x, s) = L[W(x, t)], Φ(x, s) = L[ϕ(x, t)], and a, b are constants. Then, the following
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1. L[aW(x, t) + bϕ(x, t)] = a$(x, s) + bΦ(x, s), x ∈ I, s > δ1.
2. L−1[a$(x, s) + bΦ(x, s)] = aW(x, t) + bϕ(x, t), x ∈ I, t ≥ 0.
3. L

[
eatW(x, t)

]
= $(x, s− a), x ∈ I, s > a + δ1.

4. lim
s→∞

s$(x, s) =W(x, 0), x ∈ I.

Lemma 2 (See Ref. [31]). LetW(x, t) be a piecewise continuous function on I × [0 , ∞) and of
exponential order δ, and $(x, s) = L[W(x, t)]. Then,

1. L[
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Theorem 1 (See Ref. [31]). Let W(x, t) be a piecewise continuous function on I × [0 , ∞)
and of exponential order δ. Suppose that the function $(x, s) = L[W(x, t)] has the following
fractional expansion:

$(x, s) =
∞

∑
n=0

hn(x)
snα+1 , x ∈ I, s > δ, 0 <
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Remark 1. The inverse Laplace transformationW(x, t) = L−1[$(x, s)] in Theorem 1 is in the
following form:

W(x, t) =
∞

∑
n=0

Dn
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, 0 < α ≤ 1, t > 0.

Theorem 2 (See Ref. [31]). LetW(x, t) be a piecewise continuous function on I × [0 , ∞) and
of exponential order δ and $(x, s) = L[W(x, t)] can be represented as the fractional expansion
in Theorem 1. If

∣∣∣sL[D(n+1)a
t W(x, t)

]∣∣∣ ≤ M(x), on I × (δ , γ] where 0 <
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remainder Rn(x, s) of the FE in Theorem 1 satisfies the following inequality:

|Rn(x, s)| ≤ M(x)
s1+(n+1)
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Proof. We notice that ∀ 0 < t < T < 1,

‖ W(x, t)−Wk(x, t) ‖ = ‖
∞
∑

m=k+1
Wm(x, t) ‖ ≤

∞
∑

m=k+1
‖ Wm(x, t ‖) ≤‖ }(η) ‖‖

∞
∑

m=k+1
Cm ‖ =
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�

3. Methodology of Laplace RPSM

In this section, we clarify the principle of the Laplace RPSM algorithm to solve nonlin-
ear time fractional PDEs. Our strategy to use the proposed scheme depends on coupling the
Laplace transform operator and fractional RPSM. More specifically, consider the following
initial value problem of nonlinear time fractional PDEs:{

D
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t W(x, t) = Nx[W(x, t)],
W(x, 0) = f (x),

(1)

where Nx is a nonlinear operator relative to x of degree r, x ∈ I, t ≥ 0, D
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∈ (0, 1], and W(x, t) is an unknown function to
be determined.

To construct the approximate solution of (1) by using the Laplace RPSM, one can
perform the following procedure:

Step A: Apply the Laplace transform on both sides of (1), and utilizing the initial data
of (1), as well as depending on Lemma 2, part (2), we get:

$(x, s) = f (x)
s −

1
s
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L{Nx[W(x, t)]},
where $(x, s) = L[W(x, t)](s), s > δ.

(2)
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Step B: According to Theorem 1, we assume that the approximate solution of the
Laplace Equation (2) takes the following fractional expansion:

$(x, s) =
f (x)

s
+

∞

∑
n=1

hn(x)
sn
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+1 , x ∈ I, s > δ ≥ 0, (3)

and the k-th Laplace series solution takes the following form:

$k(x, s) =
f (x)

s
+

k

∑
n=1

hn(x)
sn

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

+1 , x ∈ I, s > δ ≥ 0. (4)

Step C: We define the k-th Laplace fractional residual function of (2) as

L
(

Res$k (x, s)
)
= $k(x, s)− f (x)

s
+

1
s
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L{Nx[W(x, t)]}, (5)

and the Laplace residual function of (2) are defined as:

lim
k→∞
L
(

Res$k (x, s)
)
= L(Res$(x, s)) = $(x, s)− f (x)

s
+

1
s
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L{Nx[W(x, t)]}. (6)

As in [31–33], some useful facts of Laplace residual function which are essential in
finding the approximate solution are listed as follows:

• lim
k→∞
L
(

Res$k (x, s)
)
= L(Res$(x, s)), for x ∈ I, s > δ ≥ 0.

• L(Res$(x, s)) = 0, for x ∈ I, s > δ ≥ 0.
• lim

s→∞
sk
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+1L
(

Res$k (x, s)
)
= 0, for x ∈ I, s > δ ≥ 0, and k = 1, 2, 3, . . .

Step D: Substitute the k-th Laplace series solution (4) into the k-th Laplace fractional
residual function of (5).

Step E: The unknown coefficients hk(x), for k = 1, 2, 3, . . ., could be founded by solving
the system lim

s→∞
sk
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+1L
(

Res$k (x, s)
)
= 0. Then, we collect the obtained coefficients in terms

of fractional expansion series (4) $k(x, s).
Step F: Running the inverse Laplace transform operator on both sides of the obtained

Laplace series solution to get the approximate solutionWk(x, t), of the main Equation (1).

4. Numerical Examples

In this section, the superiority, efficiency, and applicability of the Laplace RPSM are
demonstrated by testing two non-linear time fraction IVPs. It is worth mention here that
all numerical computations and symbolic have been carried out using MATHEMATICA 12
software package.

Example 1. Consider the following nonlinear time-fractional Kolmogorov IVP:{
D
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t W(x, t)− (x + 1)DxW(x, t)− x2etD2
xW(x, t) = 0,

W(x, 0) = x + 1,
(7)

where 0 <
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≤ 1, and (x, t) ∈ [0, 1]×R. The exact solutions for standard case
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= 1, is given as
W(x, t) = (x + 1)et.

By applying the Laplace transform operator on the both sides of time-fractional
Kolmogorov equation of (7) and using part 2 in Lemma 2 and the initial data-space of (7),
we get the following Laplace fractional equation:

$(x, s) =
x + 1

s
+

x + 1
s
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{
L−1

{
1

s− 1

}
D2

xL−1{$}
}

, (8)
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where $(x, s) = L[W(x, t)].
Considering the last discussion, the k-th Laplace series, $k(x, s) for (8) is expressed as

the form:

$k(x, s) =
x + 1

s
+

k

∑
n=1

hn(x)
sn
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.
(11)

Next, multiply both sides of (11) by s
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+1, and then solve the system
lim
s→∞

s
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s + x+1

s
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+1 .
For k = 2, in (10), then the 2-nd Laplace residual function can be expressed as

L(Res$2(x, s)) = x+1
s
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+1 +
h2(x)
s2
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+1 −
x+1
s
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Dx

(
x+1

s + x+1
s

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

+1 +
h2(x)
s2

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

+1

)
− x2

s

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

L
{
L−1

{
1

s−1

}
D2

xL−1
{

x+1
s + x+1

s

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

+1 +
h2(x)
s2

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

+1

}}
= x+1

s

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

+1 +
h2(x)
s2

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

+1 −
x+1
s

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

(
1
s +

1
s

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

+1 +
h′2(x)
s2

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

+1

)
− x2h′′2 (x)

(s−1)2

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

+1s

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

(12)

After that, we multiply the result of Equation (12) by the factor s2

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

+1 to get the
following equation:

s2

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

+1L(Res$2(x, s)) = h2(x)− x− 1− (x + 1)h′2(x)
s

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

−
x2h′′2 (x)

(s− 1)2

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

+1s1−

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

. (13)

By solving lim
s→∞

s2

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

+1L(Res$2(x, s)) = 0, yields that: h2(x) = x + 1. So, the 2-nd

Laplace series solution of (8) could be written as: $2(x, s) = x+1
s + x+1

s

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

+1 +
x+1

s2

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

+1 .
Similarly, for k = 3, we have

s3

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

+1L(Res$3(x, s) )
= s3

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

+1
(

x+1
s

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

+1 +
x+1

s2

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

+1 +
h3(x)
s3

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

+1

− x+1
s

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

Dx

(
x+1

s + x+1
s

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

+1 +
x+1

s2

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

+1 +
h3(x)
s3

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

+1

)
− x2

s

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

L
{
L−1

{
1

s−1

}
D2

xL−1
{

x+1
s + x+1

s

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

+1 +
x+1

s2

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  
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Lastly, we apply the inverse Laplace transform for the obtained expansion (15) to
conclude that the k-th approximate solution of the nonlinear time-fractional Kolmogorov
IVP (7) has the form:

Wk(x, t) = (x + 1)
k

∑
n=0

tn
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= 1 in (16), we get the Maclaurin series expansion of
the closed formW(x, t) = (x + 1)et, which is fully in agreement with the exact solution.

Numerical results of the 10-th approximate solutions for the nonlinear time-fractional
Kolmogorov IVP (7) are computed and summarized in Table 1 at fixed values of the
variable x, and some selected grid points in [0, 1] with step size of 0.25, and different values
of fractional order
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∈ {1, 0.95, 0.85, 0.75, 0.65}. From the table, it can be
found that the present method provides us with an accurate approximate solution, which is
in good agreement with each other for all values of t in [0, 1], especially when approaching
the initial values. Further, numerical comparisons are performed in Table 2 to validate the
accuracy of our approach by establishing the recurrence errors |W8(x, t)−W7(x, t)| for
the obtained approximate solution of IVP (7) at various values of
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Table 1. Results of the 10-th approximate solution at different values of
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0

0.0 1.00 1.00 1.00 1.00 1.00
0.25 1.2840254167 1.3168989383 1.3960863710 1.4990355063 1.6365268759
0.50 1.6487212707 1.7072557012 1.8456231911 2.0217199431 2.2527959051
0.75 2.1170000155 2.2042026866 2.4091674423 2.6683879567 3.0068075604
1.0 2.7182818011 2.8399806687 3.1254929139 3.4858483992 3.9554385524

0.5

0.0 1.00 1.00 1.00 1.00 1.00
0.25 1.9260381250 1.9753484075 2.0941295565 2.2485532594 2.4547903138
0.50 2.4730819060 2.5608835519 2.7684347867 3.0325799147 3.3791938577
0.75 3.1755000232 3.3063040300 3.6137511635 4.0025819351 4.5102113406
1.0 4.0774227017 4.2599710030 4.6882393708 5.2287725988 5.9331578286

Table 2. The recurrence errors |W8(x, t)−W7(x, t)| of the tenth approximate solution for Example 1.

ti

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

= 0.75

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

= 0.85

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

= 0.95

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

= 1.00

0.16 2.3301689× 10−8 1.1468189× 10−9 5.1702642× 10−11 1.0651924× 10−11

0.32 1.4913081× 10−6 1.2779060× 10−7 1.0030869× 10−8 2.7269635× 10−9

0.48 1.6986931× 10−5 2.0133509× 10−6 2.1859095× 10−7 6.9889089× 10−8

0.64 9.5443717× 10−5 1.4239767× 10−5 1.9461063× 10−6 6.9810262× 10−7

0.80 3.6408889× 10−4 6.4936813× 10−5 1.0609201× 10−5 4.1610159× 10−6

0.80 1.0871636× 10−3 2.2434864× 10−4 4.2409205× 10−4 1.7891607× 10−5

Figure 1 shows the graphs of the exact and the tenth approximate curves solutions for
the nonlinear time-fractional Kolmogorov IVP (7) at various
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values. Obviously, one can
see that the obtained approximate solutions for different values of fractional order simulate
the solution for the classical case. Additionally, the exact and approximate solutions match
at
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= 1, and this confirms the effectiveness and performance of our approach. While
Figure 2 demonstrates the comparison of the geometric behavior between the exact solution
and the obtained 10-th approximate solution to the nonlinear time-fractional Kolmogorov
IVP (7) at various
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values for (x, t) ∈ [0, 1]2. From these 3D surface plots, we see that
the solution behaviors for different Caputo fractional derivatives on their domain are in
close agreement with each other, particularly for classical derivative. Moreover, the total
calculation cost comparison of the given figures in Example 1 is reported in Table 3.
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for IVP (7), with t ∈ [0, 1], and x ∈ [0, 1], at various values of
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Table 3. Total computational cost for the obtained figures in Example 1.

ID Image Size
(KB)

Maximum
Memory

(MB)

Tracing Time
(s)

Total Cost
(MB×S)

Figure 1 a 11.5 48 4.4 211.2
b 11.2 48 4.2 201.6

Figure 2

a 30.6 49 4.5 220.5
b 34.7 50 4.4 220.0
c 37.4 54 5.0 270.0
d 36.2 51 4.5 229.5

Example 2. Consider the following nonlinear time-fractional Rosenau–Hyman IVP:{
D
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xW −WDxW − 3DxWD2

xW = 0,
W(x, 0) = − 8c

3 cos2 x
4 ,

(17)

where 0 <

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

and residual power series method (RPSM) are used widely to find approximate solutions 
of many nonlinear fractional differential equations that do not have exact analytic solu-
tions. For more information regarding the methods and numerical techniques for solving 
fractional differential equations [16–22]. On the other hand, RPSM has been widely used 
to find out the solutions to linear and nonlinear issues of fractional differential, and it is 
used to find out the solution for the system of FPDEs [22]. Additionally, it is used for well-
known partial differential equations of fractional order, such as fractional Newell–White-
head–Segel equation [23], time-fractional Fokker–Planck equations [24], fractional 
Kundu–Eckhaus and massive Thirring models [25], coupled fractional resonant Schrö-
dinger equation [26], and fuzzy fractional IVPs [27–32]. The proposed algorithm is 
straightforward, accurate, and powerful and creates a series of solutions for different 
models that occur in applied mathematics without terms of perturbation, discretization, 
and linearization. 

Creating approximation solutions for nonlinear time FPDEs using the aforemen-
tioned numeric-analytic methods and others is a significant matter for scholars. Thus, 
there has become an insistent requirement for efficient semi-analytic methods to construct 
precise solutions for both linear and nonlinear fractional models. Motivated by this, the 
primary contribution of this work is to create accurate approximate solutions in a closed-
form series for a certain class of nonlinear time FPDEs in light of the time-Caputo frac-
tional derivative sense via extending the application of the Laplace RPSM. This method is 
proposed and proved by El-Ajou [31] to investigate the exact solitary solutions for a class 
of nonlinear time-FPDEs. It depends basically on treating the main problem in Laplace 
space with the help of RPSM, where the unknown coefficients could be found via the con-
cept limit, unlike the RPSM which uses the fractional derivatives in each step to find these 
coefficients [33]. The proposed method has been successfully employed to produce exact 
and precise approximate solutions by involving fast convergent power series for emerg-
ing realism models in physical phenomena due to its features, which are that it is easy, 
straightforward, handles directly to various kinds of initial conditions, needs no to linear-
ization or restrictive assumptions, does not need major computational requirements and 
is performed with less time and more accuracy. More applications, analysis, and advanced 
techniques used to process and solve linear and non-linear real-life models are found in 
the references [34–47]. 

The structure of the article is arranged as follows. In Section 2, essential definitions, 
properties, and theorems about fractional calculus, Laplace transform, and Laplace frac-
tional expansion (FE) are shown. The methodology of Laplace RPSM for solving nonlinear 
time-FPDEs is investigated in Section 3. In Section 4, two initial value problems (IVPs) of 
fractional-order Kolmogorov equation and Rosenau–Hyman equation are solved to show 
the applicability and accuracy of our approach. Finally, Section 5 is devoted to the conclu-
sions. 

2. Basic Concepts and Notations 
In this section, we review the essential definitions and theorems of fractional deriva-

tives in the sense of Caputo. Additionally, we revise the primary definitions and theorems 
related to Laplace transform which will be used mainly in the next section. 

Definition 1. (See Ref. [3]) For 𝒶 ∈ ℝା, the Riemann–Liouville fractional integral operator for 
a real-valued function 𝒲(𝑥, 𝑡) is denoted by 𝓘௧ఈ and defined as: 

𝓘௧𝒶𝒲(𝑥, 𝑡) = ൞ 1𝛤(𝒶) න 𝒲(𝑥, 𝜂)(𝑡 − 𝜂)ଵି𝒶 𝑑𝜂௧
଴ , 0 ≤ 𝜂 < 𝑡, 𝒶 > 0,𝒲(𝑥, 𝑡), 𝒶 = 0.  

≤ 1, and (x, t) ∈ [0, 1] × R. The exact solutions for standard case
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According to the Laplace RPSM, we firstly operate the Laplace transform to nonlinear
time-fractional Rosenau–Hyman of (17), and using the initial data-space of (17), we get

:
$(x, s) = 8c

3s cos2 x
4 + 1
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one can get h1(x) = 2c2

3 sin x
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$1(x, s) = −8c
3s

cos2 x
4
− 2c2

3s
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To find h2(x), we consider that k = 2, in the Laplace residual Equation (20), and by
multiplying the obtained equation by the factor s2
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Continue in the similar manner for k = 4, and by utilizing the result
lim
s→∞
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By repeating the previous algorithm for arbitrary k, and using MATHEMATICA
Software Package 12, we can find out the unknown coefficient functions hk(x), in the
fractional expansion (19) has the following general forms:
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1
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1
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− 1
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(26)

Therefore, the k-th Laplace series solution of (18) is given by the following expansion:

$k(x, s) = − 8c
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= 1, in (31), then the general form of the approximate solution of (17)
can be written as:

W(x, t) = − 4c
3

(
1 + sin x

2

(
∞
∑

n=0
(−1)n( ct

2
)2n+1 1

(2n+1)!

))
− 4c

3 cos x
2

(
∞
∑

n=0
(−1)n( ct

2
)2n 1

(2n)!

)
. (32)

Which is fully in agreement with the Maclaurin series expansion of the exact solution
W(x, t) = − 8c

3 cos2( x−ct
4
)
.
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The efficiency and accuracy of the Laplace RPSM are demonstrated by calculating the
absolute errors |W(x, t)−W7(x, t)| , for standard case
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= 1, at fixed values of the spatial
coordinate variable x, and some chosen grid points of t, in [0, 1], as shown in Table 4. As we
can see from the table, the obtained approximate solution coincides with the exact solution,
by using only the seventh terms of the approximate solution.

Table 4. Numerical results for Example 2 at
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5 , with different values of t.

xi ti W(x,t) W7(x,t) |W(x,t)−W7(x,t)|

0

0.15 −1.0664266846661268 −1.0664266846661268 0.0
0.30 −1.0657069546321090 −1.0657069546321067 2.220446049250313× 10−15

0.45 −1.0645081242730636 −1.0645081242730066 5.706546346573305× 10−14

0.60 −1.0628312724553954 −1.0628312724548266 5.688782778179302× 10−13

0.75 −1.0606779082325560 −1.0606779082291666 3.389288849575678× 10−12

0.90 −1.0580499694869983 −1.0580499694724268 1.457145515360025× 10−11

π
6

0.15 −0.1387518027223361 −0.1387518027223363 2.220446049250313× 10−16

0.30 −0.1496922557134731 −0.1496922557134746 1.498801083243961× 10−15

0.45 −0.1609779597794714 −0.1609779597795144 4.293787547737793× 10−14

0.60 −0.1725987585484345 −0.1725987585488619 4.274081089050696× 10−13

0.75 −0.1845441940858514 −0.1845441940883893 2.537886567566261× 10−12

0.90 −0.1968035163060297 −0.1968035163169100 1.088035217478022× 10−11

For the purpose of numerical comparisons, Table 5 shows the absolute errors of the
5-th approximate solution to the nonlinear time-fractional Rosenau–Hyman IVP (17) by
Laplace RPSM, Variational Iteration Method (VIM), and Homotopy Perturbation Method
(HPM) [34] at standard case
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= 1, for fixed value of x and some chosen mesh points of
t. The numerical simulation given in Table 5 reveals that the absolute errors obtained by
Laplace RPSM are smaller than other errors, and this emphasizes that the Laplace RPSM is
more accurate in finding the exact solution of the nonlinear time-fractional Rosenau–Hyman
IVP (17).

Table 5. Numerical comparison of 5-th approximate solution IVP (17), at
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= 1, x = π, and c = 0.5.

ti Laplace RPSM VIM HPM

0.1 1.11022× 10−15 5.0000× 10−10 1.0000× 10−10

0.2 1.03251× 10−13 5.0000× 10−10 1.7360× 10−9

0.3 1.76559× 10−12 5.0000× 10−10 1.3182× 10−8

0.4 1.32255× 10−11 1.0000× 10−10 5.5542× 10−8

0.5 6.30599× 10−11 4.0000× 10−10 1.6948× 10−7

0.6 2.25934× 10−10 7.0000× 10−10 4.2165× 10−7

0.7 6.64599× 10−10 1.2000× 10−9 9.1117× 10−7

0.8 1.69218× 10−9 2.1000× 10−9 1.7761× 10−6

0.9 3.85878× 10−9 4.0000× 10−9 3.1998× 10−6

1.0 8.06643× 10−9 8.6000× 10−9 5.4173× 10−6

On the other hand, to show the effect of the fractional derivative to nonlinear time-
fractional Rosenau–Hyman IVP (17), the graphs of the exact and 7-th approximate solutions
for different values of
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is established in Figure 3. Further, the geometric behavior of the
exact and 7-th approximate solutions are plotted in 3D surface plots for t ∈ [0, 1], and
x ∈ [0, 2π], at various values of values of
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moves over (0, 1), and that the graphs of the behavior of the obtained
7-th approximate solution are consistent with each other, especially when considering the
standard derivative.
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5. Conclusions

In this article, the approximate analytical solution is constructed and analyzed for
nonlinear time-fractional Kolmogorov, and Rosenau–Hyman equations with suitable initial
conditions utilizing the Laplace RPSM under time-Caputo differentiability. The present
approach is a modification of the fractional RPSM via coupling it to the Laplace trans-
form operator. The benefit of utilizing the Laplace RPSM is that it gives more accurate
convergence McLaurin series and needs a small size of computation without involving the
discretization, perturbation, or any other physical restrictive conditions. Two well-known
physical applications are tested to validate the applicability and superiority of the proposed
method. The obtained approximate solutions are discussed via graphics and numeric
simulation. The obtained results are compared with other well-known existing methods in
the literature. Therefore, the results confirm that the Laplace RPSM is a straightforward
and convenient tool to deal with the range of various non-linear time fractional-PDEs that
arise in engineering and science problems. In future studies, the Laplace RPSM can be
extended to find exact and approximate solutions for systems of FPDEs. Consequently,
the application of the Laplace RPSM can be extended to handle physical models and
dynamical models.
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