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Abstract

:

Let  Σ  be the class of functions   f ( z )   of the form   f  ( z )  =  1 z  +  ∑  k = 0  ∞   a k   z k   , which are analytic in the punctured disk. Using the differentiations and integrations, new operator    D n  f  ( z )    is introduced for   f ( z ) ∈ Σ  . The object of the present paper is to discuss some interesting properties for    D n  f  ( z )    and some properties concerned with different boundary points of the open unit disk. Moreover, some simple examples for our results are shown.
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1. Introduction


Let  Σ  be the class of functions   f ( z )   of the following form:


  f  ( z )  =  1 z  +  ∑  k = 0  ∞   a k   z k   



(1)




which are analytic in the punctured disk    U 0  =  { z ∈ C : 0 < | z | < 1 }  .   For   f ( z ) ∈ Σ ,   Uralegaddi and Somanatha [1] consider the following operator:


      D 0  f  ( z )    = f ( z ) ,        D 1  f  ( z )    = D f  ( z )  =  1 z  +  ∑  k = 0  ∞   ( k + 2 )   a k   z k  ,        D 2  f  ( z )    = D  ( D f  ( z )  )  =  1 z  +  ∑  k = 0  ∞    ( k + 2 )  2   a k   z k  ,     








and


      D n  f  ( z )  = D  (  D  n − 1   f  ( z )  )  =  1 z  +  ∑  k = 0  ∞    ( k + 2 )  n   a k   z k  ,     



(2)




for   n ∈ N = { 1 , 2 , 3 , … }   by using the expansions of functions. Here, we introduce operators    D n  f  ( z )    and    D  − n   f  ( z )    by using the differentation and integration as follows:


      D 0  f  ( z )    = f ( z ) ,        D 1  f  ( z )    = D f  ( z )  =  1 z     z 2  f  ( z )   ′  =  1 z  +  ∑  k = 0  ∞   ( k + 2 )   a k   z k  ,        D 2  f  ( z )    = D  ( D f  ( z )  )  =  1 z  +  ∑  k = 0  ∞    ( k + 2 )  2   a k   z k  ,     








and


      D n  f  ( z )  = D  (  D  n − 1   f  ( z )  )  =  1 z  +  ∑  k = 0  ∞    ( k + 2 )  n   a k   z k  ,     



(3)




for   n ∈ N .  



Our operator    D n  f  ( z )    in (3) is the same as    D n  f  ( z )    in (2) due to Uralegaddi and Somanatha [1]. Moreover, we define the following:


      D  − 1   f  ( z )    =  1  z 2    ∫ 0 z  t f  ( t )  d t =  1 z  +  ∑  k = 0  ∞    1  k + 2     a k   z k  ,        D  − 2   f  ( z )    =  D  − 1    (  D  − 1   f  ( z )  )  =  1 z  +  ∑  k = 0  ∞     1  k + 2    2   a k   z k      








and


      D  − n   f  ( z )  =  D  − 1    (  D  − n + 1   f  ( z )  )  =  1 z  +  ∑  k = 0  ∞     1  k + 2    n   a k   z k      



(4)




for   n ∈ N .  



With the above operators    D n  f  ( z )    and    D  − n   f  ( z )  ,   we define    D n  f  ( z )    as follows:


      D n  f  ( z )  =  1 z  +  ∑  k = 0  ∞    ( k + 2 )  n   a k   z k      



(5)




for   n ∈ Z = { … , − 2 , − 1 , 0 , 1 , 2 , … } .  



Example 1.

Let us consider function   f ( z ) ∈ Σ   such that the following is the case:


       D n  f  ( z )      =    ( 1 − z )   2 ( 1 − α )   z           =  1 z  +  ∑  k = 0  ∞     ∏  j = 0  k   ( 2 − 2 α − j )    ( k + 1 ) !     ( − 1 )  k   z k       



(6)







for   0 ≤ α < 1 .   Then, we have the following.


       D  n − 1   f  ( z )  =   1 −   ( 1 − z )   3 − 2 α      ( 3 − 2 α )   z 2         



(7)






       D  n + 1   f  ( z )  =    ( 1 −  ( 3 − 2 α )  z )    ( 1 − z )   1 − 2 α    z  .      



(8)









We also introduce the subordinations of functions by Pommerenke [2]. Let   f ( z )   and   g ( z )   be analytic in the open unit disk   U .   Then, we say that function   f ( z )   is subordinate to   g ( z ) ,   written   f ( z ) ≺ g ( z ) ,   if there exists an analytic function   w ( z )   in  U  such that   w ( 0 ) = 0 ,    | w ( z ) | < 1   ( z ∈ U ) ,   and   f ( z ) = g ( w ( z ) )   for all   z ∈ U .   In particular, if   g ( z )   is univalent in   U ,   then   f ( z ) ≺ g ( z )   if and only if   f ( 0 ) = g ( 0 )   and   f ( U ) ⊆ g ( U ) .  




2. Properties of the Operator    D n  f  ( z )   


Discussing our problems for    D n  f  ( z )  ,   we have to recall here the following lemma due to Miller and Mocanu [3,4] (refining the old one in Jack [5]).



Lemma 1.

Let function   w ( z )   given by the following:


   w  ( z )  =  a k   z k  +  a  k + 1    z  k + 1   + … ,  ( k ∈ N )    



(9)




be analytic in  U  with   w ( 0 ) = 0 .   If   | w ( z ) |   attains its maximum value on the circle   | z | = r < 1   at a point    z 0    ( 0 < |   z 0   | < 1 )  ,   then there exists a real number   m ≥ k   such that the following is the case.


      z 0   w ′   (  z 0  )    w (  z 0  )   = m   



(10)






   R e  1 +    z 0   w  ′ ′    (  z 0  )     w ′   (  z 0  )     ≥ m .   



(11)









Applying the above lemma, we derive the following theorem.



Theorem 1.

A function   f ( z ) ∈ Σ   satisfies the following:


   z  D n  f  ( z )  ≺   1 − ( 3 − 2 α ) z   1 − z      ,    ( z ∈ U )    



(12)







if and only if


   R e ( z  D n  f  ( z )  ) < 2 − α    ,    ( z ∈ U )  ,   



(13)




where   0 ≤ α < 1   and   n ∈ Z .  





Proof. 

We consider a function   f ( z ) ∈ Σ  , which satisfies subordination (12). Then, there exists an analytic function   w ( z )   in  U  such that   w ( 0 ) = 0 ,    | w ( z ) | < 1  ( z ∈ U )   and the following is the case.


  z  D n  f  ( z )  =   1 − ( 3 − 2 α ) w ( z )   1 − w ( z )      ,    ( z ∈ U )  .  



(14)







It follows from (14) that the following is the case.


   | w  ( z )  |  =    1 − z  D n  f  ( z )     ( 3 − 2 α )  − z  D n  f  ( z )     < 1    ,    ( z ∈ U )  .  



(15)







This implies that the following is the case.


  Re ( z  D n  f  ( z )  ) < 2 − α    ,    ( z ∈ U )  .  











Conversely, if   f ( z )   satisfies (13), then we take an analytic function   w ( z )   such that   w ( 0 ) = 0 ,    | w ( z ) | < 1  ( z ∈ U )   and the following is the case.


  w  ( z )  =   1 − z  D n  f  ( z )     ( 3 − 2 α )  − z  D n  f  ( z )       ,    ( z ∈ U )  .  



(16)







It follows from (16) that the following is the case:


  z  D n  f  ( z )  =   1 − ( 3 − 2 α ) w ( z )   1 − w ( z )      ,    ( z ∈ U )   








that is, we obtain the following.


  z  D n  f  ( z )  ≺   1 − ( 3 − 2 α ) z   1 − z      ,    ( z ∈ U )  .  



(17)







□





Taking   n = 1   in Theorem 1, we have the following corollary.



Corollary 1.

A function   f ( z ) ∈ Σ   satisfies the following:


   2 f  ( z )  + z  f ′   ( z )  ≺   1 − ( 3 − 2 α ) z   1 − z      ,    ( z ∈ U )    



(18)







if and only if the following is the case


   R e ( 2 f  ( z )  + z  f ′   ( z )  ) < 2 − α    ,    ( z ∈ U )  ,   



(19)




where   0 ≤ α < 1 .  





Theorem 2.

If   f ( z ) ∈ Σ   satisfies the following:


   R e     D  n + 2   f  ( z )     D  n + 1   f  ( z )     <   9 − 9 α + 2  α 2    2 ( 2 − α )      ,    ( z ∈ U )    



(20)




for some real   α   ( 0 ≤ α < 1 ) ,   then


   Re     D  n + 1   f  ( z )     D n  f  ( z )     < 2 − α    ,    ( z ∈ U )    



(21)







where   n ∈ Z .  





Proof. 

We consider a function   w ( z )   by the following:


     D  n + 1   f  ( z )     D n  f  ( z )    =   1 − ( 3 − 2 α ) w ( z )   1 − w ( z )      ,    ( w  ( z )  ≠ 1 )   



(22)




for   f ( z ) ∈ Σ   and   0 ≤ α < 1 .   Then,   w ( z )   is analytic in  U  and   w ( 0 ) = 0 .   It follows from (22) that the following is the case:


     D  n + 2   f  ( z )     D  n + 1   f  ( z )    =   1 − ( 3 − 2 α ) w ( z )   1 − w ( z )   −    ( 3 − 2 α )  z  w ′   ( z )    1 − ( 3 − 2 α ) w ( z )   +   z  w ′   ( z )    1 − w ( z )   ,  



(23)




because


  z   (  D n  f  ( z )  )  ′  =  D  n + 1   f  ( z )  − 2  D n  f  ( z )   



(24)




and


  z   (  D  n + 1   f  ( z )  )  ′  =  D  n + 2   f  ( z )  − 2  D  n + 1   f  ( z )  .  



(25)







Therefore, our condition (20) implies the following.


     Re     D  n + 2   f  ( z )     D  n + 1   f  ( z )         = Re    1 − ( 3 − 2 α ) w ( z )   1 − w ( z )   −    ( 3 − 2 α )  z  w ′   ( z )    1 − ( 3 − 2 α ) w ( z )   +   z  w ′   ( z )    1 − w ( z )             <   9 − 9 α + 2  α 2    2 ( 2 − α )      ,    ( z ∈ U )  .     



(26)







We suppose that there exists a point    z 0  ∈ U   such that the following is the case.


   max   | z | ≤ |   z 0   |     | w  ( z )  | = | w   (  z 0  )   | = 1    ,     ( w  (  z 0  )  ≠ 1 )  .  



(27)







Then, Lemma 1 says that   w  (  z 0  )  =  e  i θ      ( 0 ≤ θ < 2 π )    and the following is the case.


   z 0   w ′   (  z 0  )  = m w  (  z 0  )     ,    ( m ≥ 1 )  .  



(28)







It follows from the above that the following is the case.


     Re     D  n + 2   f  (  z 0  )     D  n + 1   f  (  z 0  )         = Re    1 −  ( 3 − 2 α )   e  i θ     1 −  e  i θ     −    ( 3 − 2 α )  m  e  i θ     1 −  ( 3 − 2 α )   e  i θ     +   m  e  i θ     1 −  e  i θ               = 2 − α −   ( 3 − 2 α ) m ( cos θ − ( 3 − 2 α ) )   1 +   ( 3 − 2 α )  2  − 2  ( 3 − 2 α )  cos θ   −  m 2           > 2 − α +   ( 1 − α ) m   2 ( 2 − α )            ≥   9 − 9 α + 2  α 2    2 ( 2 − α )   .     



(29)







This contradicts condition (26). Thus, we say that there is no    z 0     ( 0 < |   z 0   | < 1 )    such that   | w (  z 0  | = 1 .   This shows that the following is the case:


   | w  ( z )  |  =    1 −    D  n + 1   f  ( z )     D n  f  ( z )         D  n + 1   f  ( z )     D n  f  ( z )    −  ( 3 − 2 α )     < 1    ,    ( z ∈ U )  ,  



(30)




that is, we obtain the following.


  Re     D  n + 1   f  ( z )     D n  f  ( z )     < 2 − α    ,    ( z ∈ U )  .  











This completes the proof of the theorem. □





Making   n = 0   in Theorem 2, we have the following corollary.



Corollary 2.

If   f ( z ) ∈ Σ   satisfies the following:


   R e    4 f  ( z )  + 5 z  f ′   ( z )  +  z 2   f  ′ ′    ( z )    2 f  ( z )  + z  f ′   ( z )     <   9 − 9 α + 2  α 2    2 ( 2 − α )      ,    ( z ∈ U )    



(31)







for some real   α   ( 0 ≤ α < 1 ) ,   then


   R e    z  f ′   ( z )    f ( z )    < − α    ,    ( z ∈ U )  .   



(32)









Example 2.

If we consider function   f ( z ) ∈ Σ   given by the following:


      D  n + 1   f  ( z )     D n  f  ( z )    =   1 − ( 3 − 2 α ) z   1 − z      ,    ( z ∈ U )    











for   0 ≤ α < 1 ,   then we know that


   R e     D  n + 1   f  ( z )     D n  f  ( z )     < 2 − α    ,    ( z ∈ U )    











and


   R e     D  n + 2   f  ( z )     D  n + 1   f  ( z )     <   9 − 9 α + 2  α 2    2 ( 2 − α )      ,    ( z ∈ U )  .   













Remark 1.

Uralegaddi and Somanatha [1] proved that if   f ( z ) ∈ Σ   satisfies the following:


     R e     D  n + 2   f  ( z )     D  n + 1   f  ( z )     < 2 − α    ,    ( z ∈ U )      











for some real   α   ( 0 ≤ α < 1 ) ,   then


      R e     D  n + 1   f  ( z )     D n  f  ( z )     < 2 − α    ,    ( z ∈ U )  .      











Since the following is the case


        9 − 9 α + 2  α 2    2 ( 2 − α )   > 2 − α    ,    ( 0 ≤ α < 1 )  ,      











Theorem 2 is better than their result.





Next, we derive the following theorem.



Theorem 3.

If   f ( z ) ∈ Σ   satisfies the following:


   R e     D  n + j + 1   f  ( z )     D  n + j   f  ( z )    −    D  n + 1   f  ( z )     D n  f  ( z )     <   1 − α   2 ( 2 − α )      ,    ( z ∈ U )    



(33)







for some real   α   ( 0 ≤ α < 1 ) ,    n ∈ Z   and   j ∈ N ,   then the following is the case.


   R e     D  n + j   f  ( z )     D n  f  ( z )     < 2 − α    ,    ( z ∈ U )  .   



(34)









Proof. 

We define a function   w ( z )   by the following:


     D  n + j   f  ( z )     D n  f  ( z )    =   1 − ( 3 − 2 α ) w ( z )   1 − w ( z )      ,    ( w  ( z )  ≠ 1 )   



(35)




for   f ( z ) ∈ Σ .   Then,   w ( z )   is analytic in  U  and   w ( 0 ) = 0 .   It follows from (35) that the following is the case.


     Re     D  n + j + 1   f  ( z )     D  n + j   f  ( z )    −    D  n + 1   f  ( z )     D n  f  ( z )         = Re  −    ( 3 − 2 α )  z  w ′   ( z )    1 − ( 3 − 2 α ) w ( z )   +   z  w ′   ( z )    1 − w ( z )             <   1 − α   2 ( 2 − α )      ,    ( z ∈ U )  .     



(36)







We suppose that there exists a point    z 0  ∈ U   such that the following is the case.


   max   | z | ≤ |   z 0   |     | w  ( z )  | = | w   (  z 0  )   | = 1    ,     ( w  (  z 0  )  ≠ 1 )  .  



(37)







Then, applying Lemma 1, we write that   w  (  z 0  )  =  e  i θ      ( 0 ≤ θ < 2 π )    and the following is the case.


   z 0   w ′   (  z 0  )  = m w  (  z 0  )     ,    ( m ≥ 1 )  .  



(38)







Thus, we observe the following.


     Re     D  n + j + 1   f  (  z 0  )     D  n + j   f  (  z 0  )    −    D  n + 1   f  (  z 0  )     D n  f  (  z 0  )         = Re  −    ( 3 − 2 α )  m w  (  z 0  )    1 −  ( 3 − 2 α )  w  (  z 0  )    +   m w (  z 0  )   1 − w (  z 0  )             = Re  −   ( 3 − 2 α ) m    e  − i θ   −  ( 3 − 2 α )    +  m   e  − i θ   − 1             =   ( 3 − 2 α ) m ( ( 3 − 2 α ) − cos θ )   1 +   ( 3 − 2 α )  2  − 2  ( 3 − 2 α )  cos θ   −  m 2           >   ( 1 − α ) m   2 ( 2 − α )            ≥   ( 1 − α )   2 ( 2 − α )   .     



(39)







This contradicts condition (36). Therefore,   | w ( z ) | < 1   for all   z ∈ U .   This implies the following.


  Re     D  n + j   f  ( z )     D n  f  ( z )     < 2 − α    ,    ( z ∈ U )  .  











This completes the proof of the theorem. □





Setting   n = 0   and   j = 1   in Theorem 3, we have the following corollary.



Corollary 3.

If   f ( z ) ∈ Σ   satisfies the following:


   R e    4 f  ( z )  + 5 z  f ′   ( z )  +  z 2   f  ′ ′    ( z )    2 f  ( z )  + z  f ′   ( z )    −   z  f ′   ( z )    f ( z )    <   9 − 5 α   2 ( 2 − α )      ,    ( z ∈ U )    



(40)







for some real   α   ( 0 ≤ α < 1 ) ,   then


   R e    z  f ′   ( z )    f ( z )    < − α    ,    ( z ∈ U )  .   



(41)










3. Properties Concerning with Different Boundary Points


For s different boundary points    z ℓ     ( ℓ = 1 , 2 , 3 , … , s )    with    |   z ℓ   | = 1 ,    we write the following:


   β s  =  1 s   ∑  ℓ = 1  s  F  (  z ℓ  )  ,  



(42)




where   F  ( z )  = z  D n  f  ( z )  ,   β s  ∈  e  i γ   F  ( U )  ,   β s  ≠ 1 ,  −  π 2  ≤ γ ≤  π 2  .  



Now, we show the following theorem.



Theorem 4.

If   f ( z ) ∈ Σ   satisfies the following:


       D  n + 1   f  ( z )     D n  f  ( z )    − 1  <    |   e  i γ   −  β s   | ρ     1 + |   e  i γ   −  β s   | ρ       ,    ( z ∈ U )    



(43)




for some real   β s   with    β s  ≠ 1   such that    z ℓ    ( ℓ = 1 , 2 , 3 , … , s )  ,   and for some real   ρ > 1 ,   then the following is the case:


    | z   D n  f  ( z )  −  1 | < |   e  i γ   −  β s   | ρ    ,    ( z ∈ U )  ,    



(44)







where   n ∈ Z .  





Proof. 

Define a function   w ( z )   by the following.


  w  ( z )  =    e  i γ   z  D n  f  ( z )  −  β s     e  i γ   −  β s    − 1 =   z  D n  f  ( z )  − 1   1 −  e  − i γ    β s       ,    ( z ∈ U )  ,  



(45)







Since the following is the case:


       D  n + 1   f  ( z )     D n  f  ( z )       =    z  D n  f  ( z )   ′    D n  f  ( z )    + 1          =    ( 1 −  e  − i γ    β s  )  z  w ′   ( z )    1 +  ( 1 −  e  − i γ    β s  )  w  ( z )    + 1 ,     



(46)




we have the following.


        D  n + 1   f  ( z )     D n  f  ( z )    − 1     =     ( 1 −  e  − i γ    β s  )  z  w ′   ( z )    1 +  ( 1 −  e  − i γ    β s  )  w  ( z )              <    |   e  i γ   −  β s   | ρ     1 + |   e  i γ   −  β s   | ρ       ,    ( z ∈ U )  .     



(47)







We suppose that there exists a point    z 0    ( 0 < |   z 0   | < 1 )    such that the following is the case.


   max   | z | ≤ |   z 0   |     | w  ( z )  | = | w   (  z 0  )   | = ρ > 1 .   



(48)







Then, we can write that   w  (  z 0  )  = ρ  e  i θ      ( 0 ≤ θ < 2 π )    and the following:


   z 0   w ′   (  z 0  )  = m w  (  z 0  )     ,    ( m ≥ 1 )   



(49)




by Lemma 1. This provides us with the following.


        D  n + 1   f  (  z 0  )     D n  f  (  z 0  )    − 1     =    ( 1 −  e  − i γ    β s  ) m ρ   1 + ( 1 −  e  − i γ    β s  ) ρ             ≥    |   e  i γ   −  β s   | m ρ     1 + |   e  i γ   −  β s   | ρ             ≥    |   e  i γ   −  β s   | ρ     1 + |   e  i γ   −  β s   | ρ    .     



(50)







This contradicts condition (47). Thus, there is no    z 0    ( 0 < |   z 0   | < 1 )    such that   | w (  z 0  | = ρ > 1 .   This implies the following.


   | w  ( z )  |  =    z  D n  f  ( z )  − 1   1 −  e  − i γ    β s     < ρ    ,    ( z ∈ U )  .  



(51)







This completes the proof of the theorem. □





Example 3.

We consider a function   f ( z ) ∈ Σ   such that the following is the case:


      f  ( z )  =  1 z  +  a j   z j      ( j = 0 , 1 , 2 , … )       



(52)







for   z ∈ U   with the following.


       0 < |   a j   | <   j   ( j + 2 )   n + 1    .      



(53)







Then, we know the following:


          D  n + 1   f  ( z )     D n  f  ( z )    − 1  =     ( j + 1 )    ( j + 2 )  n   a j   z  j + 1     1 +   ( j + 2 )  n   a j   z  j + 1      <    ( j + 1 )    ( j + 2 )  n   |  a j  |    1 −   ( j + 2 )  n   |  a j  |         



(54)







for   z ∈ U .   Consider the following five boundary points    z ℓ    ( ℓ = 1 , 2 , 3 , 4 , 5 )    such that the following:


    z 1  =  e  − i   a r g (  a j  )   j + 1     ,   



(55)






    z 2  =  e  i   π − 6 a r g (  a j  )   6 ( j + 1 )     ,   



(56)






    z 3  =  e  i   π − 4 a r g (  a j  )   4 ( j + 1 )     ,   



(57)






    z 4  =  e  i   π − 3 a r g (  a j  )   3 ( j + 1 )       



(58)







and the following is obtained.


    z 5  =  e  i   π − 2 a r g (  a j  )   2 ( j + 1 )     .   



(59)







For the above boundary points, we observe the following:


    z 1   D n  f  (  z 1  )  = 1 +   ( j + 2 )  n   a j   e  − i a r g (  a j  )   = 1 +   ( j + 2 )  n   |  a j  |  ,   



(60)






       z 2   D n  f  (  z 2  )      = 1 +   ( j + 2 )  n   a j   e  i   π − 6 a r g (  a j  )  6             = 1 +   ( j + 2 )  n     3  + i  2   |  a j  |  ,      



(61)






       z 3   D n  f  (  z 3  )      = 1 +   ( j + 2 )  n   a j   e  i   π − 4 a r g (  a j  )  4             = 1 +   ( j + 2 )  n     2   ( 1 + i )   2   |  a j  |  ,      



(62)






       z 4   D n  f  (  z 4  )      = 1 +   ( j + 2 )  n   a j   e  i   π − 3 a r g (  a j  )  3             = 1 +   ( j + 2 )  n    1 +  3  i  2   |  a j  |  ,      



(63)







and


       z 5   D n  f  (  z 5  )      = 1 +   ( j + 2 )  n   a j   e  i   π − 2 a r g (  a j  )  2             = 1 +   ( j + 2 )  n  i  |  a j  |  .      



(64)







Thus,   β 5   is given by the following.


      β 5     =  1 5   ∑  ℓ = 1  5  F  (  z ℓ  )           =  1 5   ∑  ℓ = 1  5   z ℓ   D n  f  (  z ℓ  )           = 1 +     ( j + 2 )  n   ( 3 +  2  +  3  )   ( 1 + i )   10   |  a j  |  .      



(65)







This shows the following:


       |   e  i γ   −  β 5   | =      ( j + 2 )  n   2   ( 3 +  2  +  3  )   10   |  a j  |  .      



(66)







with   γ = 0 .   For such   β 5   and   γ ,   we take   ρ > 1   satisfying the following equation.


         ( j + 1 )    ( j + 2 )  n   |  a j  |    1 −   ( j + 2 )  n   |  a j  |    ≤    |   e  i γ   −  β 5   | ρ     1 + |   e  i γ   −  β 5   | ρ    .      



(67)







Such ρ satisfies the following:


     ρ    ≥   10 ( j + 1 )    2   ( 3 +  2  +  3  )   ( 1 +    ( j + 2 )   n + 1    |   a j   | )             ≥  10   2   ( 3 +  2  +  3  )             > 1      



(68)







with the following being the case.


       0 < |   a j   | <   j   ( j + 2 )   n + 1    .      



(69)







For such   β 5   and   ρ > 1 ,   we have the following.


       | z   D n   f  ( z )  − 1 |        = |  ( j + 2 )   n   a j   z  j + 1    |           ≤    |   e  i γ   −  β 5   | ρ      ( j + 1 )  +  ( j + 2 )  |   e  i γ   −  β 5   | ρ              < |   e  i γ   −  β 5   | ρ .       



(70)









Next, our result follows.



Theorem 5.

If   f ( z ) ∈ Σ   satisfies the following:


    z  D  n + 1   f  ( z )  − 1  < 2  |  e  i γ   −  β s  |  ρ    ,    ( z ∈ U )    



(71)




for some   β s   with    β s  ≠ 1   such that    z ℓ    ( ℓ = 1 , 2 , 3 , … , s )  ,   and for some real   ρ > 1 ,   then the following is the case:


    | z   D n  f  ( z )  −  1 | < |   e  i γ   −  β s   | ρ    ,    ( z ∈ U )  ,    



(72)




where   n ∈ Z .  





Proof. 

We define function   w ( z )   by the following.


     w ( z )     =    e  i γ   z  D n  f  ( z )  −  β s     e  i γ   −  β s    − 1          =    e  i γ    ( z  D n  f  ( z )  − 1 )     e  i γ   −  β s             =   e  i γ     e  i γ   −  β s      ∑  k = 0  ∞    ( k + 2 )  n   a k   z  k + 1    .     



(73)







Then,   w ( z )   is analytic in  U  with   w ( 0 ) = 0 ,   since the following is the case.


     z  D n  f  ( z )  = 1 +  ( 1 +  e  − i γ    β s  )  w  ( z )  ,     



(74)






     z  D  n + 1   f  ( z )      =   (  z 2   D n  f  ( z )  )  ′           = 1 +  ( 1 +  e  − i γ    β s  )   ( w  ( z )  + z  w ′   ( z )  )  .     



(75)







It follows from (71) that the following is the case.


      | z   D  n + 1    f  ( z )  − 1 |      =   ( 1 +  e  − i γ    β s  )  w  ( z )   1 +   z  w ′   ( z )    w ( z )               < 2 |   e  i γ   −  β s   | ρ .      



(76)







Suppose that there exists a point    z 0    ( 0 < |   z 0   | < 1 )    such that the following is the case.


   max   | z | ≤ |   z 0   |     | w  ( z )  | = | w   (  z 0  )   | = ρ > 1 .   



(77)







Then, Lemma 1 implies that   w  (  z 0  )  = ρ  e  i θ      ( 0 ≤ θ < 2 π )    and the following is the case.


   z 0   w ′   (  z 0  )  = m w  (  z 0  )     ,    ( m ≥ 1 )  .  



(78)







Thus, we see that the following is the case:


      |   z 0   D  n + 1   f  (  z 0  )   − 1 |      =   ( 1 +  e  − i γ    β s  )  w  (  z 0  )   1 +    z 0   w ′   (  z 0  )    w (  z 0  )               =  ( 1 + m )  |   e  i γ   −  β s   | ρ            ≥ 2 |   e  i γ   −  β s   | ρ      



(79)




which contradicts (76). Therefore,   | w ( z ) | < ρ   all   z ∈ U .   This shows us that the following is the case.


   | w  ( z )  |  =     e  i γ    ( z  D n  f  ( z )  − 1 )     e  i γ   −  β s     < ρ    ,    ( z ∈ U )  .  



(80)







This completes the proof of the theorem. □





Taking   n = 0   in Theorem 5, we have the following corollary.



Corollary 4.

If   f ( z ) ∈ Σ   satisfies the following:


    | 2 z f  ( z )  +   z 2   f ′   ( z )  −  1 | < 2 |   e  i γ   −  β s   | ρ    ,    ( z ∈ U )     



(81)







for some   β s   with    β s  ≠ 1   such that    z ℓ    ( ℓ = 1 , 2 , 3 , … , s )  ,   and for some real   ρ > 1 ,   then the following is the case.


    | z f  ( z )  − 1 | < |   e  i γ   −  β s   | ρ    ,    ( z ∈ U )  .    



(82)









Finally, we show the following theorem.



Theorem 6.

If   f ( z ) ∈ Σ   satisfies the following:


   R e     D  n + 1   f  ( z )     D n  f  ( z )     < 2 − α +   1 − α   2 ( 1 − α + c )      ,    ( z ∈ U )    



(83)







for some real   α  ( 0 ≤ α < 1 )   and   c > 0 ,   then we have the following:


   R e     D  n + 1   F  ( z )     D n  F  ( z )     < 2 − α    ,    ( z ∈ U )  ,   



(84)







where   n ∈ Z   and


   F  ( z )  =  c  z  c + 1     ∫ 0 z   t c  f  ( t )  d t .   



(85)









Proof. 

It follows from (85) that we have the following:


  c f  ( z )  =  ( c + 1 )  F  ( z )  + z  F ′   ( z )   



(86)




and


  c  D n  f  ( z )  =  ( c − 1 )   D n  F  ( z )  +  D  n + 1   F  ( z )  .  



(87)







Thus, we have the following.


     Re     D  n + 1   f  ( z )     D n  f  ( z )         = Re       D  n + 2   F  ( z )     D  n + 1   F  ( z )    +  ( c − 1 )     ( c − 1 )     D n  F  ( z )     D  n + 1   F  ( z )    + 1             < 2 − α +   1 − α   2 ( 1 − α + c )      ,    ( z ∈ U )  .     



(88)







Now, we define a function   w ( z )   by the following.


        D  n + 1   F  ( z )     D n  F  ( z )    =   1 − ( 3 − 2 α ) w ( z )   1 − w ( z )      ,    ( w  ( z )  ≠ 1 )  .     



(89)







Then,   w ( z )   is analytic in  U  and   w ( 0 ) = 0 .   Since the following is the case:


     z   (  D n  F  ( z )  )  ′  =  D  n + 1   F  ( z )  − 2  D n  F  ( z )      



(90)




and


     z   (  D  n + 1   F  ( z )  )  ′  =  D  n + 2   F  ( z )  − 2  D  n + 1   F  ( z )  ,     



(91)




we obtain the following.


     Re     D  n + 1   f  ( z )     D n  f  ( z )         = Re       D  n + 2   F  ( z )     D  n + 1   F  ( z )    +  ( c − 1 )     ( c − 1 )     D n  F  ( z )     D  n + 1   F  ( z )    + 1             = Re  3 − 2 α −   2 ( 1 − α )   1 − w ( z )   +   2  ( α − 1 )  z  w ′   ( z )    ( 1 − w ( z ) ) ( c − ( c + 2 − 2 α ) w ( z ) )             < 2 − α +   1 − α   2 ( 1 − α + c )      ,    ( z ∈ U )  .     



(92)







Supposing that there exists a point    z 0    ( 0 < |   z 0   | < 1 )    such that the following is the case.


   max   | z | ≤ |   z 0   |     | w  ( z )  | = | w   (  z 0  )   | = 1 .   



(93)







We can write that   w  (  z 0  )  =  e  i θ      ( 0 ≤ θ < 2 π )    and the following:


   z 0   w ′   (  z 0  )  = m w  (  z 0  )     ,    ( m ≥ 1 )   



(94)




by Lemma 1. This provides us with the following:


     Re     D  n + 1   f  (  z 0  )     D n  f  (  z 0  )         = Re  3 − 2 α −   2 ( 1 − α )   1 −  e  i θ     +   2  ( α − 1 )  m  e  i θ      ( 1 −  e  i θ   )   ( c −  ( c + 2 − 2 α )   e  i θ   )              = Re  2 − α +   2 ( 1 − α ) m    ( 1 −  e  i θ   )   (  ( c + 2 − 2 α )  − c  e  − i θ   )              ≥ 2 − α +   1 − α   2 ( 1 − α + c )       



(95)




for   0 ≤ θ < 2 π .   This contradicts condition (92) of the theorem. Therefore, there is no    z 0    ( 0 < |   z 0   | < 1 )    such that   | w (  z 0  ) | = 1   in   U .   It follows from (89) that the following is the case:


      | w  ( z )  |  =       D  n + 1   F  ( z )     D n  F  ( z )    − 1      D  n + 1   F  ( z )     D n  F  ( z )    −  ( 3 − 2 α )     < 1    ,    ( z ∈ U )  ,     



(96)




that is, we have the following.


     Re     D  n + 1   F  ( z )     D n  F  ( z )     < 2 − α    ,    ( z ∈ U )  .     











□
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