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Abstract: Over the years, research studies have shown there is a key connection between the microbial
community in the gut, genes, and immune system. Understanding this association may help discover
the cause of complex chronic idiopathic disorders such as inflammatory bowel disease. Even though
important efforts have been put into the field, the functions, dynamics, and causation of dysbiosis
state performed by the microbial community remains unclear. Machine learning models can help
elucidate important connections and relationships between microbes in the human host. Our study
aims to extend the current knowledge of associations between the human microbiome and health and
disease through the application of dynamic Bayesian networks to describe the temporal variation of
the gut microbiota and dynamic relationships between taxonomic entities and clinical variables. We
develop a set of preprocessing steps to clean, filter, select, integrate, and model informative metage-
nomics, metatranscriptomics, and metabolomics longitudinal data from the Human Microbiome
Project. This study accomplishes novel network models with satisfactory predictive performance
(accuracy = 0.648) for each inflammatory bowel disease state, validating Bayesian networks as a
framework for developing interpretable models to help understand the basic ways the different bio-
logical entities (taxa, genes, metabolites) interact with each other in a given environment (human gut)
over time. These findings can serve as a starting point to advance the discovery of novel therapeutic
approaches and new biomarkers for precision medicine.

Keywords: computational methods; bioinformatics; Bayesian networks; human microbiome; omics;
machine learning; interpretable artificial intelligence

MSC: 62H22

1. Introduction

Although microbiome research is currently being studied for many applications, such
as in ecology, agriculture, biotechnology, and plant health [1–4], there is a particular grow-
ing interest in medicine to understand how the community of bacteria in the human body
shapes our health. Not only understanding “who is there”, but also “what are they doing”,
“how are they doing it”, and their interaction with the human host. Over the past decade,
the microbiome has been receiving increasing attention, especially with international initia-
tives like the Human Microbiome Project launched by the National Institute of Health in
the United States [5] or MetaHIT [6] funded by the European Commission. With the rise of
high-throughput technologies and omic sciences, there has been increasing evidence that
the human microbiome plays an important role in many disease statuses, such as obesity,
autoimmune disorders, asthma/allergies, diabetes, C. difficile infection, and colorectal can-
cer among many others, generating significant attention in clinical applications for current
and emerging diseases. This is, among others, due to the increasing published studies
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proving that the dysbiosis of microbes in different parts of the human body (oral, skin, gut,
vaginal, etc.) is related to numerous health conditions and their risk and severity [7–15].

1.1. Dynamic Longitudinal Data

Nevertheless, to reveal valuable insights for clinical applications, realistic and accurate
analyses of the microbiota must be done. The community has raised some concerns with
current studies of human microbiome research. Most studies only focus on describing the
static taxonomic composition of the human microbiome, overlooking temporal variability,
thus causing major drawbacks in real-world clinical applications, as many diseases are
characterised by periods of remission and exacerbation in symptoms. Therefore, this work
will mainly focus on investigating the dynamics of the human microbiome (i.e., analysing
longitudinal data), which is, in fact, its real nature. A series of studies have remarked the
importance of developing robust time-series analysis to uncover insights into microbial
interactions and dynamics [16,17]. In [18], the authors studied the potential of time-varying
communities in response to perturbations and obtained results that pointed out how
longitudinal analysis can reveal insights into microbial ecosystem dynamics and aid to
explain why perturbations (external or internal factors) modulate microbiome dynamics
and stability. Furthermore, several studies have pointed out the need for integrating omic
datasets (e.g.,: metatranscriptomics, metabolomic, etc.) to help unravel taxonomic and
functional changes [19–21].

The main challenges and opportunities encountered in the field of microbiome data
analysis can be grouped into four areas:

1. Data size: Current datasets lack large-scale data, suffering from economic and logistic
constraints that limit and affect data collection standards. Further advantages could
be taken once we define how to decode large-scale microbiome data in a precise and
efficient manner [22].

2. Comparability and reproducibility: The lack of validated clinical models and differ-
ences in methodologies is preventing the translation of valuable results into real-world
clinical practice.

3. Inherent characteristics of microbiome data: Sparsity, compositionality, and high
variability are the main statistical properties that describe microbiome data hence
leading to several computational challenges. High-throughput RNA-seq technologies
used in the process of generating microbiome data from the sample often introduce
technical artifacts that translate into errors and noise. Thus, the bottleneck has shifted
from data generation to data analysis. Moreover, microbiome data is compositional,
so instead of looking at the absolute abundances of cells, we are mapping reads, and
there is a fixed sequencing depth, i.e., four reads/sample, given by the technology
used to obtain the sequences.

4. Interpretability: Incorporating phylogenetic and functional relationships among or-
ganisms into unified dynamic models of the human microbiome is crucial. Studies
need to integrate multi-omic datasets to fully understand microbes and their interac-
tions instead of exploring unique taxonomic composition analysis.

1.2. State of the Research Field

Machine learning (ML) methods are a well-suited solution for handling microbiome
analysis, unlocking its full biological and clinical potential. Traditional biostatistical ana-
lytical methods are sometimes ineffective and limited compared to ML techniques, given
the inherently noisy and highly variable nature of microbiome data. It has not been until
recent years that more studies have started to explore the power of ML methods to predict
host traits from microbiome patterns [23–27]. Bayesian networks (BNs) are a powerful ML
tool to model the interaction of many microbial communities in the human gut by inferring
complex networks from noisy data to predict clinical outcomes of relevance in a biologically
interpretable manner. Microbiome data exhibits strong temporal fluctuations that we are
interested in modelling. The use of dynamic Bayesian networks (DBNs) can help us handle
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this characteristic behavior of the system by providing information about the ordering and
dependencies between the time points or showing how one taxon/pathway/metabolome
influences another over time. Despite the increasing interest in microbiome research, to the
best of our knowledge, only a few studies have applied BNs to human microbiome data
(Table 1) [28–35].

Table 1. State of the art of BNs models applied to human microbiome datasets. Studies appear in
chronological order.

# Study Method Dataset Longitudinal
Data Meta-Omics Goal

1 [28] DBNs Premature infant
gut [36] � �

Build a DBN model to identify
important relationships

between microbiome taxa and
predict future changes in
microbiome composition

2 [29] BNs Vaginal
microbiome [37] � �

Demonstrate associations
between women’s sexual and

menstrual habits,
demographics, vaginal

microbiome composition, and
symptoms and diagnostics of

bacterial vaginosis (BV)

3 [30] DBNs Infant gut [36] � � Obtaining inferences from
time-series data

4 [31] BNs Twins UK [38] � �
Possible causal relationships

between metabolites and body
mass index (BMI)

5 [32] BNs Rectal cancer [32] � �
Reveal differential microbial

communities and functions in
terms of therapeutic responses

6 [33]

BNs with the
incremental

dynamic analysis
(IDA) method

Colorectal cancer
[14,39] � �

Identify key species that are
likely to be causal agents of

colorectal cancer (CRC)

7 [34]
BNs with

co-occurrence
networks (CoNs)

Infant gut [36],
vaginal [37], oral

data [5]
� � Make an inference about

colonisation order

8 [35] DBNs

IBDMD
(inflammatory
bowel disease
multi-omics

database) [40]

� �

Infer temporal relationships
between entities in a microbial

community and extend
(Lugo-Martinez et al., 2019) to

other omics

The first report on the use of DBNs for human microbiome data analysis, according
to authors, was [28]. Their work is the pioneer study to build a DBN model to capture
the influence of individual microbial classes on each other over time. The most important
pitfalls of this study were the simplification of data and models, or vastly reducing the size
of the data by aggregating the data at certain taxonomic levels. Moreover, the study was
limited to taxonomic analysis only (non-multi-omic), so the exact nature of the biological
mechanisms underlying taxonomic relationships remain unknown. Subsequent studies
in the literature were either limited to using traditional BNs [29,31,32] (data analysed was
static) or to the analyses of a single omic data set [33,34], thus, lacking a holistic view of the
microbial community. Nevertheless, their preliminary work reported interesting results
such as the confirmation of the importance of vaginal pH and Gardnerella as influencers
on the Nugent score (bacterial vaginosis diagnostic) or the identification of key species
likely to cause colorectal cancer (CRC). Finally, [35] extended the previous research group’s
activity [30] to account for multi-omic dataset integration. Their work employs four types
of omic data: taxa, genes, host genes, and metabolites. From the studied literature, none of
the existing studies cover all of the objectives set for this study, so we believe that, although
similar work has been presented in recent years, the specific focus of our work is novel and
will provide relevant insights to the community.
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1.3. Interpretability

We could arguably state that, although not a novel trend, explainable artificial intel-
ligence (XAI) is of broad and current interest. In recent years, innovative ML algorithms,
such as deep learning, have become increasingly complex and sophisticated [41,42]. Conse-
quently, there is an unprecedent need, requested by non-experts in the domain, of devel-
oping transparent and understandable models. Especially in the clinical field, explaining
the reasoning behind the decisions and results is crucial for applicability in medicine [43].
To the best of our knowledge, this line of research had not been applied to microbiome
research until the last two years and only in a few publications: [44,45] and [46].

1.4. Main Aim and Contributions of the Work

The present approach answers this need by generating ML prediction models based
on probabilistic graphical models (BNs) and prior biological domain knowledge (input
restrictions), which will help scientists obtain interpretable intelligent systems to benefit
human health. This work pursues the development of a computational methodology
for human microbiome research that is explainable and transparent in dynamic scenar-
ios, i.e., with longitudinal data. More specifically, the aim of this work is to serve as a
general-purpose framework/protocol to study microbiome characteristics using ML that
would be easy to use for either microbiology experts or computer scientists. A set of
preprocessing steps were developed to successfully clean, filter, select, integrate, and model
informative metagenomics, metatranscriptomics, and metabolomics longitudinal data from
the Human Microbiome Project. A summary of the main contributions of this work is
presented in Table 2.

Table 2. Main contributions of this study.

# Contributions

1 Statistical analysis of longitudinal, multi-omic human microbiome data

2 State-of-the-art review of interpretable artificial intelligence approaches
(models and tools) for human microbiome data

3 Identification of temporal interactions and connections between the
biological entities: microbial taxa, microbial metabolic pathways, metabolites

4 Address both taxonomic composition and functional profile
5 Network model for each specific disease state (UC, CD)

6 Novel proposed preprocessing framework for the IBD Human Microbiome
Project data to serve as an analysis tool for non-ML experts

To sum up, this study highlights the potential of network-based approaches (such as
probabilistic graphical models) applied to microbiome research, given the complexity and
sparsity of the data [47], as a XAI solution.

In this first introductory section, we have reviewed the current state of the research
field, presented the aim and contributions of the work, and highlighted the purpose of the
study. The rest of the paper is organised as follows. In Section 2, we will briefly describe
the main methods applied and present the proposed framework. Section 3 summarises
our main findings. Conclusions drawn from the project and future research is discussed in
Section 4, and Section 5 concludes the paper.

2. Materials and Methods

In this section, we explain the proposed framework of the study and describe the
mathematical and computational models used. It starts with a description of the dataset
used and continues with the pre-processing steps followed. The section ends up presenting
the predictive ML model used.

The dataset used in this study is publicly available from the Inflammatory Bowel
Disease Multiomics database (IBDMDB) iHMP study [40], which follows 132 subjects over
the period of one year to generate integrated longitudinal molecular profiles of host and
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microbial activity during disease (up to 24 time points each). Raw sequence data can be
downloaded from the BioProject NCBI site with accession code PRJNA398089. This dataset
provides the most comprehensive description to date of host and microbial activities in
inflammatory bowel diseases. Participants were classified attending to their disease status:
non-IBD controls, Crohn’s disease (CD), and ulcerative colitis (UC). This was one of the
few datasets that met our complete selection criteria: (i) longitudinal data, (ii) multi-omic,
(iii) human-disease-related, and a (iv) minimum of four measured timepoints for all the
omic types: metagenomics, metatranscriptomics, and metabolomics.

The subjects of interest were filtered by number of measured time points (min. 4) for
each omic type and yielded a total of 93 subjects: n = 47 for CD, n = 23 UC, and n = 23
controls or non-IBD. During further preprocessing, we removed two additional subjects
due to missing time points for metatranscriptomics path abundance. Therefore, the data
used for downstream analysis contained a total of 91 subjects. A brief description of the
datasets used in the present study can be seen in Table 3.

Table 3. Structure of data files used in the present study from the Human Microbiome Project
II–IBD study [40].

Data Type File Name File Description File Dimension

Metadata hmp2_metadata.csv
Full sample metadata table;

samples as rows and metadata
as columns

178 × 490

Metabolomics iHMP_metabolomics.csv Metabolomics profiles 81,867 × 553

Metagenomics taxonomic_profiles.tsv MetaPhlAn2 taxonomic
profiles 1479 × 1639

Metatranscriptomics pathabundance_relab.tsv MTX pathway abundances
with stratification 6061 × 736

Data inspection, statistical analyses (e.g.,: normalisation or differential abundance
analysis), and visualisation tasks were performed using the ‘R’ programming language
and environment [RStudio version 4.2.0, including phyloseq and Bioconductor package
among others]. Two of the most important metrics to explore the biological diversity of
microbiome data are α diversity and β diversity. These two metrics allow us to study, on
the one hand, diversity within a sample and observe how dysbiosis states (UC and CD)
manifest an expected lower diversity measure compared to a healthy state [48] and, on the
other hand, how samples vary against each other, considering the whole distribution of
species in a community, in order to discern between clusters (non-IBD and IBD), e.g., to
understand if sample A from patient A (UC) is more similar in composition to sample B
from patient B (non IBD) or C from patient C (CD). α diversity measurement is constrained
by the sequencing depth (total number of reads per sample). Rarefying (e.g., through vegan
R package: rarefy), selecting the appropriate sample depth, is necessary before calculating
α diversity. By computing α diversity (Figure 1) to study diversity within a sample, we
could observe how dysbiosis states (UC and CD) manifested an expected lower diversity
measure compared to a healthy state [40,48].
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sity, and Simpson (from left to right). CD cluster is shown in red, UC in blue, and non-IBD subjects 
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The results of comparing beta diversities from a qualitative and quantitative strate-
gy are shown in Figure 2. Both Jaccard and Bray–Curtis indexes are reported, although 
similar results are obtained. Commonly, Jaccard index is recommended when dealing 
with large spatial scales and datasets with presence/absence of data. Bray–Curtis on the 
other hand is preferred when considering abundances.  

 
Figure 2. Beta diversity for the IBD dataset. Jaccard distance vs. Bray–Curtis dissimilarity. Once β 
diversity has been measured, the dataset can be visualised by principal coordinate analysis 
(PCoA). PCoA is an ordination technique widely described in the literature for analysing the com-

Figure 1. Comparison of α diversity measured by observed species, Chao1 index, Shannon diversity,
and Simpson (from left to right). CD cluster is shown in red, UC in blue, and non-IBD subjects in green.
Healthy control samples are significantly different from IBD samples. Shannon and Simpson indicate
the uniformity of the abundance of different species in a sample. Figure generated using RStudio.

The results of comparing beta diversities from a qualitative and quantitative strategy
are shown in Figure 2. Both Jaccard and Bray–Curtis indexes are reported, although similar
results are obtained. Commonly, Jaccard index is recommended when dealing with large
spatial scales and datasets with presence/absence of data. Bray–Curtis on the other hand is
preferred when considering abundances.
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Figure 2. Beta diversity for the IBD dataset. Jaccard distance vs. Bray–Curtis dissimilarity. Once β

diversity has been measured, the dataset can be visualised by principal coordinate analysis (PCoA).
PCoA is an ordination technique widely described in the literature for analysing the composition of
different microbiomes. β diversity analysis elucidate dissimilarities between samples (UC, CD and
healthy). Figure generated using R.
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These kinds of metrics are useful to build a preliminary idea of our data. However,
given the complexity and diversity of microbiome data, further computational tools and
analysis need to be applied to fully understand our data.

The preprocessing stage involved the interpretation of data format, the definition
of data structures for their management, and correction tasks, including the elimination
of noise and errors among others. An original preprocessing script was developed in
Python to prepare the dataset that will be used for further analysis. The original datasets
corresponding to the whole genome shotgun sequencing were loaded in CSV and TSV
formats. The resulting ad hoc scripts are publicly available through the following link
https://github.com/muia2021pl/Preprocessing_HumanMicrobiome (accessed on 29 April
2022). A total of five datasets are imported with the following feature sets, grouped by type:

• Clinical features (metadata): subject identification (e.g., “Subject ID”), time steps for
sample time series (e.g., “week”), phenotype/cluster of each sample (“diagnosis”),
external perturbations (“antibiotic”)

• Metabolomic features: metabolic concentrations, mass-to-charge ratio (m/z) (continuous)
• Metagenomic features: taxonomic profile (continuous) corresponding to the relative

abundance in percentage or counts per million
• Metatranscriptomic features: relative abundance of each metabolic pathway (continu-

ous). The information is divided into two different datasets: HMP2 and HMP2 pilot.
Data matrix (tables) will be preprocessed and expressed as abundances

Pre-processing tasks involved the removal of subjects with limited measured time
points, rearranging indexes and columns, adding data-type identifiers to each variable and
removing clinical variables (columns) with missing data. Additionally, log transformation
and normalisation were applied to the data (for continuous variables). A normalisation
method was used to remove technical bias in compositional data. Microbiome data are
compositional for technical, biological, and computational reasons, thusly interpreted into
relative counts. Moreover, each omic technology and data type has a variable number of
columns and identified features. There are a number of standard normalisation methods
used in the literature with this same final goal [49,50]. However, The use of log-ratios
transformation is recommended for microbial taxa data normalisation [51,52]; therefore,
the method of choice for our datasets, implemented in the ad hoc pre-processing Python
script was centered log-ratios (CLR) transformation [53].

The CLR method is defined for a composition vector xj as follows:

clr
(
xj
)
=

[
ln

x1,j

g(xj)
, . . . , ln

xD,j

g
(
xj
)] (1)

where xj is the j-th sample, and g
(
xj
)
=
(

∏D
i=1 xi,j

) 1
D is the geometric mean (row-wise) of

composition x. The CLR transformation converts the relative abundance (or operational
taxonomic unit counts) to ratios between all parts by calculating the geometric mean of all
values (whole composition).

One major challenge with integrating multi-omics is that combining different types
of biological information increases the number of analysed features while keeping the
number of observations/samples (subjects) constant. Feature subset selection [54] can
therefore improve the prediction accuracy of our model. As a preprocessing dimension-
ality reduction step, predictor variables with zero variance were filtered out using the
VarianceThreshold() class from the sklearn.feature_selection module (scikit-learn 1.1.1.).
We removed features with a training set variance equal to zero. Firstly, univariate feature
selection filter algorithms were applied, which work by selecting features based on uni-
variate statistical tests. SelectKBest() (scikit-learn 1.0.2 in Python) was used to select the k
most important features with the highest scores based on Chi-squared statistics, ANOVA,
and mutual information (MI). Chi2 ANOVA and MI scikit-learn Python implementations
offer a good solution to deal with sparsity without making the data dense (without casting

https://github.com/muia2021pl/Preprocessing_HumanMicrobiome
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it internally to dense numpy arrays). Feature importance using random forest (RF) was
also implemented. This embedded method combines filter and wrapper methods offering
higher accuracy and a more generalisable approach. Additionally, 10-fold cross-validated
linear support vector classifier (LinearSVC()) to create a linear support vector machine
(SVM) model in scikit-learn was chosen as the external estimator implemented with Python
scikit-learn package (scikit-learn 1.1.1). For performance assessment purposes, the four
methods will be compared to perform feature subset selection on the full dataset for each
omic type (Table 4). The set of informative features that were utilised for downstream ML
analysis was obtained from the RF feature importance results.

Table 4. Classification accuracy of univariate feature subset selection techniques. Results shown
for univariate feature selection correspond to k = 200 best features. Feature importance using RF is
also reported.

Data Type FSS Technique Evaluation Metric
(Accuracy)

Metagenomics Univariate Chi2 0.82
Univariate ANOVA 0.78

Univariate MI 0.73
Random forest 0.92

Metabolomics Univariate Chi2 0.67
Univariate ANOVA 0.69

Univariate MI 0.69
Random forest 0.78

Metatranscriptomics Univariate Chi2 0.55
Univariate ANOVA 0.56

Univariate MI 0.50
Random forest 0.68

Disease-State Prediction Model

Once the multi-omic data preprocessing step was completed, the next step was to
learn a graphical structure for temporal data.

Among all the different ML approaches and models, BN-based analysis is certainly
one of the most biologically interpretable, as its resulting networks can be easily under-
stood [55–57]. The need for interpretable artificial intelligence models is highly demanded
by microbiome researchers nowadays. Therefore, in this work, we will focus on the appli-
cation of BN to the human microbiome research field.

A BN can be defined as a probabilistic graphical model used to encode the joint
probability distribution over a set of random variables [58]. By means of a directed acyclic
graph (DAG), probabilistic conditional (in)dependence relations (that can be causal under
some circumstances) are represented by arcs and random variables (Xi) by nodes. This
model offers an intuitive and solid approach to modelling uncertain knowledge. In order
to construct a BN, the structure G which expresses the conditional (in)dependencies among
triplets of variables, and the parameters θ of the model that determine the conditional
probability distributions need to be learned from observational data. Nevertheless, this
task is nontrivial [59] and has aroused considerable interest in the scientific community,
as have many other NP-hard problems. Methods that address the challenge of learning
causal structure from data can be classified into three main groups: constraint-based, score-
based, and hybrid methods. An inductive causation (IC) algorithm [60] provided the first
framework for learning the skeleton for a Bayesian network by using a backward strategy
that starts with a complete graph that will be pruned following the results of statistical
tests for conditional independencies. IC was closely followed by the SGS algorithm [61]
and by the most popular method, the PC algorithm that constitutes both the first practical
implementation and an improvement on the former algorithms. The PC algorithm was
composed of two principal steps: (i) finding the skeleton (detection phase) and (ii) making
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the orientation of the edges (orientation phase). They showed the relevance of causal
Markov and causal faithfulness assumptions for linear models. The Markov blanket of
a random variable X in a BN, under the faithfulness assumption, consists of the union
of the set of nodes (parents, children, and parents of children) of X [60]. Therefore, the
Markov blanket is the minimal set of nodes for which X is conditionally independent of all
other nodes [62].

Other important local methods are: Grow Shrink, GS [63], and Incremental Association
Markov blanket, IAMB [64] both of them follow a forward step-wise selection Markov
blanket detection approach, so they learn in the first place the Markov blanket of each node,
simplifying the identification of neighbours and hence, reducing the number of conditional
independence tests that need to be computed.

Once the structure of the network is known, the conditional probability distributions of
each random variable (node) given its parents can be estimated. One approach to learning
parameters for BN modelling is maximum likelihood estimation. The goal of this statistical
method is to maximise the probability of obtaining D for a specific value of θ, where
D = {x (1), x (2), . . . , x (N)} represents the data set given the BN model G. This operation
results in the likelihood function p(D|G, θ). An alternative approach is to use Bayesian
estimation based on prior knowledge as a prior joint distribution over the parameters
or structures.

When using a BN, we would commonly be interested in capturing reasoning patterns
under uncertainty. BNs allow us to do this by computing the distribution of some set of
variables that we have not observed, a process known as probabilistic inference. In the
simplest case, given an observation (evidence) e, we can query the model to calculate the
posterior probability of a target variable(s) or node Xj: p(xj|e). Multiple methods have
been developed over the years to perform approximate inference [65–67], instead of exact
inference as this latter case implies an intractable problem for densely connected BNs.
Nevertheless, [68] demonstrated that even approximate inference is NP-hard.

An important matter to consider when working with BNs is the type of data being
studied. Variables included in the network can be discrete or continuous and according
to this, a different type of assumptions and parametric distributions will be estimated for
the nodes. In the case of microbiome data, we will typically be dealing with continuous
data. Most commonly used parametric distribution for this case would be Gaussian or
Gaussian mixture model [69] which models all conditional distributions as linear Gaussians
and all continuous nodes jointly follow a multivariate normal distribution N(x|µ, ∑).
However, we could still be presented with the case where we have both continuous and
discrete variables in the same dataset, such as clinical variables (continuous) and pathway
abundances (discrete).

A conditional Gaussian Bayesian network (CGBN) models discrete nodes as probabil-
ity distributions, conditional on the values of their discrete parents and models continuous
nodes as Gaussian distributions linearly dependent upon their Gaussian parents and with
parameters conditional on the values of the discrete parents. If the CGBN has a DAG, G,
over discrete variables ∆ and continuous variables Ψ, where п(X) is the (possible empty)
set of parents of variable X according to G, and there is a set of conditional probability
distributions P over ∆, and a set of conditional linear Gaussian density functions f over Ψ,
then the model results in a multivariate normal mixture density over all variables [70]:

P(∆) f (ψ|∆) = ∏
x∈∆

P(x

∣∣∣∣∣п(x)) ∏
y∈ψ

f (y

∣∣∣∣∣п(y)) (2)

when п(X) is empty, P and f are just (unconditional) probability or density functions, respectively.
Therefore, as seen above, BNs show great potential due to their ability to deal with

uncertainties related to limited short (in time) and sparse data and their power to detect
informative patterns of the underlying system. Moreover, BNs can be self-explanatory, i.e.,
the explanation of the model and reasoning process can be inferred graphically [56].
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Dynamic Bayesian Network

Being able to yield insights into the dynamic behavior of microbiota, identify patterns
of variation in longitudinal microbiome data, and link these to patterns of host status
are key in the advance of microbiome research. In this context, DBNs [71] represent an
important approach for time-series human microbiome data analysis. DBNs extend BNs
to model time-series data (dynamic systems), where at each (discrete) time instance t (or
slice), nodes correspond to random variables at time t, and directed edges correspond to
conditional dependencies in the DAG. The edges of a DBN can be defined as (i) inter-slice
arcs: the arcs that directly connect nodes from two or more consecutive times slices (always
directed forward in time), or (ii) intra-slice arcs: the arcs that connect nodes from the same
time slice. In our DBN-based approach, certain assumptions are used: (i) a first-order
Markov assumption, i.e., the probability of an observation at time t only depends on the
observation at time t-1; (ii) stationarity, i.e., the data is generated by a distribution that
does not change with time. The resulting DBN can be modelled for X t = (Xt

1, . . . , Xt
n) for n

variables at each time slice t = 1, . . . , T, as shown in Figure 3.
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Assuming a first-order Markovian transition model, we have that

P
(

X1, . . . , XT
)
= P(X1

)
∏T

t=2 P
(

Xt
∣∣∣ Xt−1

)
= P

(
X1, . . . , XT

)
(3)

In order to select the right software package to implement the DBN, several existing
options were evaluated and compared first. Table 5 presents the results from the software
package benchmarking. The requirements we needed the selected software to meet and
support consisted of learning and the inference of DBNs in the presence of both discrete
and continuous data.

Table 5. Software packages benchmarking (* only if one discrete parent and no children).

Name Language Data Type Learning Inference

dbnR [72] R Continuous data Yes Yes

Bnlearn [73] R Discrete and
continuous Yes No

Bnfinder [74] Python Discrete and
continuous * Yes Yes

CGBayesNets [75] Matlab Discrete and
continuous Yes Yes

dbnR package is a good alternative option. It covers learning and doing inference
(forecast in the future) over Gaussian DBNs of arbitrary Markovian order. It extends some
of the functionality offered by the ‘bnlearn’ package to learn the networks from data and
perform exact inference. It offers two structure learning algorithms for DBNs and the
possibility to perform forecasts of arbitrary length. A tool for visualising the structure
of the net is also provided via the ‘visNetwork’ package. The only drawback with this
package is the fact that it does not support discrete variables. In our case and in many other
microbiome studies, clinical variables (discrete and continuous) bring valuable information
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to the model and have a key role in the analysis. A solution the author provides in order to
deal with discrete data is to perform clustering on our data, based on our discrete variables
(clinical metadata in our case) and then train a continuous network model for each cluster.

The bnlearn package in R performs Bayesian network structure learning and parameter
learning. This package implements constraint-based (e.g., PC, GS, IAMB, Inter-IAMB . . . ,
etc.), pairwise (ARACNE [76]), score-based (e.g., hill climbing), and hybrid (MMHC [77],
hybrid HPC [78]) structure learning algorithms for discrete, Gaussian, and conditional
Gaussian networks, along with many score functions and conditional independence tests.
In order to implement simulated dynamic functionality (not supported by the package),
we could create a blacklist with restricted edges, in order to prohibit backward edges in
time. Unfortunately, this solution will notably increase running time and computational
resources. Lastly, bnlearn has the additional limitation of not implementing inference.

BNfinder can also be used to infer DBN from time series data. It performs structure
learning using two scoring criteria: Bayesian–Dirichlet equivalence (BDe) [79] and minimal
description length (MDL) [80,81]. These scores, although designed for discrete variables,
are used in this implementation to handle continuous variables under the assumption that
conditional distributions belong to a family of Gaussian mixtures (one discrete parent and
zero children) [75].

CGBayesNets [75] builds a two-stage DBN of the microbiome population dynamics. It
considers current time samples and the immediate previous ones. It performs inference
with mixed continuous and discrete networks as a CGBN, while other packages do not.
CGBayesNets uses Bayesian marginal likelihood to guide a network search for inference. It
also provides functions for employing cross-validation (CV) and bootstrapping for model
performance and verification. CGBayesNets could be used with the goal of finding a
network predictive of the phenotype (case/control status). Still, one limitation of this
package is its inability to support the use of intra-edges. For this reason, this was the
selected software tool to use in our work. A modified version of CGBayesNets implemented
by [30] was used, wherein intra-edges are allowed, and BIC and AIC networks scoring
functions are included.

In the first place, the network structure is learned from the dataset. A number of
parameters need to be set for the learning algorithm. Prior assumed distributions for each
node are needed to determine the posterior probability of the data. For this study:

• Prior equivalent sample size ν = 10.
• Prior assumed standard deviation: σ = 1
• Maximum number of parents =3.

As a filtering strategy, to prune the dataset and reduce the number of variables, we
implement the Bayes factor of association with the phenotype (i.e., disease). Bayes factors
can be computed for the dependence of each variable with the phenotype variable. It
will help to determine the strength of association a variable has with the phenotype of
interest. The Bayes factor is a Bayesian likelihood ratio test that computes the ratio of
posterior probabilities of two quantities: (1) the probability of the variable being statistically
dependent upon the phenotype and (2) the probability of that variable being independent of
the phenotype, both given in log scale. For values >Bayes factor, the variable is more likely
to be associated with the phenotype than not. This is suitable for filtering for domains with
too many variables to be considered by the usual Bayes network methods. The Bayes factor
reduces the dataset to a manageable number of informative variables by limiting further
investigation to variables with log Bayes factor surpassing a predetermined threshold (in
our case 5, 10, and 15).

CGBayesNets provides four types of network learning algorithms: (i) a K2-style
search [82]; (ii) greedy, exhaustive, a hill climbing search (every step adds arc that increases
the likelihood the most); (iii) a pheno-centric search [83]; (iv) simulated annealing [84]. The
theoretical foundation of CGBayesNet can be seen in Appendix A.

The main framework for learning DBNs consists of the following steps (1) combining
time-series data into a larger column matrix with each time-point matrix below the prior
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time-point matrix, (2) learning the BN using StateTrackerSearch() function with the dynamic
Bayes net option enabled to allow cycles and self-loops, (3) unrolling BN into a 2TBN:
a 2-timepoint BN (all arcs are from time-point one to time-point two), (4) unrolling the
dataset from the timeseries matrix, and (5) using normal techniques to make predictions
with unrolled 2TBN.

MakeTSBNData() assembles a 2-stage DBN dataset from times-series data. It takes
input data and arranges it, so the first time a subject id is encountered, it is slotted into the
T0 data. The second time it is encountered, it is slotted into both the T1 and the T0 data.
The last time it is encountered, it is only slotted into the TT data.

Bootstrapping functionality is also implemented in the software that can be used to
compare the performance of networks formed by starting with the phenotype node (‘diag-
nosis’) and then adding, in sequence, the most frequent edge occurring in the bootstrap
networks and measuring the performance of that network on the dataset in cross-validation.
Among models with equal or similar performance, we should opt for the most parsimo-
nious model.

FullBNLearn() performs an ‘exhaustive’ search through possible arcs using a hill
climbing algorithm to learn a CGBN on the data. Though the author refers to it as an
exhaustive search, it is important to note that it does not consider all possible networks but
rather all possible legal arcs between any two nodes. The Bayesian–Dirichlet-equivalent
sample-size uniform (BDeu) measure of the marginal likelihood of the data [79] is used as
the network scoring metric.

It is important to note that we adapted original implementation scripts (code) [75] to
serve our particular purposes, as our data and final goal were different from similar studies
that also used CGBayesNet [28,30,35].

Furthermore, we performed DBN structure, constraining it by using an adjacency
matrix as an input to the model. This matrix is configured in such a way that only allows
edges between specific nodes, therefore reducing complexity and avoiding overfitting. The
selected configuration was based on basic biological knowledge, following [35]’s model
for reproducibility and comparison: clinical variables are independent; taxa is responsible
for the expression of genes, and these genes are involved in metabolic pathways. In the
same way, metabolites produced in ti will impact taxa abundance and growth in the next
time-slice, ti + 1.

Once we have the structure of the DBN, we have to fold our dataset and fit the param-
eters of the DBN. This can be done by calling the LearnParams() function in CGBayesNet to
learn the marginal distributions of each node in the BN, based on the data and the Bayesian
priors. As in [30] and [35], we maximised the likelihood of the data for a given structure
using maximum log-likelihood estimation (MLE).

The model outputs both trivial Graph Format (.tgf) and GraphML (.graphml). For
this implementation, an output file GraphML version of the network will be used, out-
put_file.graphml, which can then be loaded into network visualisation software, such as
Cytoscape [85]. Additionally, an ad hoc script was developed in R to generate a custom
style XML file for the output networks, encoding several properties of the underlying
graph, such as node shape, arc line type, and transparency of abundances to visualise them
in Cytoscape.

Once the model has been fitted, inference over the learned model can be performed.
When using BN, any variable can be used as the target node of the inference. Furthermore,
in this particular case (DBNs) variables in the next time-slices are predicted from the values
in the previous slices.

CGBayesNet implements the Cowell algorithm [86] to perform inference in conditional
linear Gaussian network nodes, as it is a numerically stable approach, combined with a sim-
ple variable elimination algorithm for inference between discrete nodes in the network [87].
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3. Results
3.1. DBN Model

In this study a DBN model of the gut microbial ecosystem was built from the Inflam-
matory Bowel Disease Multi-omics dataset of the Human Microbiome Project.

A two-stage DBN model was implemented, wherein two slices were modelled and
learned at time. Our ultimate purpose was to identify a bacterial signature that describes
the dynamics of adult microbial gut, as well as compare differences in signatures between
subjects with UC, CD, and a health status. In order to do this, we (i) prepared a framework
that covered main microbiome analysis pre-processing steps, (ii) modelled interactions
between different omics, (iii) constructed and learned a dynamic structure for each disease
state (UC and DC) to infer which is the most probable dynamics, i.e., to identify a maximum
a posteriori (MAP), and (iv) constructed a model adding a ‘diagnosis’ node to the network
and studied its outgoing arcs.

3.2. Pre-Processing

The pre-processing steps, implemented through our ad-hoc script, involved filtering
subjects with limited time points, integrating three omic types in one matrix, normalisation,
and feature selection (see Section 2). Feature importance was computed for each omic
data type (Figures 4–6). Based on these pre-processing steps, the resulting dataset used for
modelling consisted of 91 subjects, 200 microbial taxa, 200 expressed metabolic pathways,
and 200 metabolites. As clinical variables, the week in which the sample was obtained,
and the use or not (binary) of antibiotics was included. In addition, the Bayes factor score
was used to further reduce the dataset. Prior biological knowledge was used as input to
the DBN learning algorithm in order to constrain (arcs between nodes, arc directions, and
strength) the resulting output model and prevent overfitting.
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3.3. The Resulting Network

The full network comprised 91 nodes per time slice: 37 microbial taxa, 22 gene
pathways, 29 metabolites, and three clinical variables. We constructed a network model (i)
with and without bootstrapping (10 repetitions due to restricted computational tools), (ii)
with a restriction matrix, and (iii) with different Bayes factor score thresholds (thresholds = 5,
10, 15) explored as part of a hyperparameter tuning phase. Connections with the largest
Bayes factors are more likely to represent a true causal association.

For illustrative purposes, we trained a DBN model on a subset of the 50 best entities of
each omic type and set a maximum number of parents of three. The results for the combined
diagnosis model (the three health conditions in the same model) are shown in Figure 7.
Nodes represent bacterial taxon, metabolites, clinical data, or metabolic pathways. Results
for the independent models for each condition (CD, UC) are also reported in Figures 8 and 9,
respectively. The full names of nodes can be seen in Supplementary Material Table S1.
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type. Green nodes represent time slice ti and purple nodes the consecutive ti+1. Metabolite nodes
are represented by squares, species (taxa) by circles, clinical variables by triangles, and metabolic
pathways by diamonds. The total number of nodes is 182, and the total number of edges is 231.
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3.4. Analysis and Interpretation of Experimental Results

In preliminary results, we did observe that, as expected from results of similar studies
in the literature, IBD is associated with overall community dysbiosis, rather than a specific
bacterial species. For instance, a combination of increase in Actinobacteria and Proteobac-
teria, with a decrease in Clostridium and Faecalibacterium, is observed in subjects with
this condition.

The final network model (Figure 7) may be suggestive of a set of taxa, gene metabolic
pathways, and metabolites whose expression is dysregulated in patients with IBD. Further-
more, some of these attributes can be used for further biological inquiry as predictors of
other attributes, thus used as a predictive model. For instance, metabolites in ti connected
to taxa in ti+1 may be used as predictors. This relationship is found for our UC model
(Figure 10), wherein the following chain was identified:
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NH4_C46:3 TAG (metabolite) in t0 → Alistipes_putredinis in tn
Another stimulating finding (which supports the idea that the proposed model points

in the right direction) is the connection between the methylerythritol phosphate (MEP)
pathway (in ti) and the NH4_C56:1 TAG (metabolite) in ti+1, The end-product of this
pathway, isopentenyl diphosphate (IPP), is known to play a crucial role in inflammation
and disease [88]. The resulting analysis demonstrates the utility of DBNs ability to generate
and test predictive models in human multi-omic microbiome datasets.

We performed comparisons of three different network search algorithms: (i) a K2-style,
(ii) a pheno-centric search, and (iii) simulated annealing. A total of 20 bootstrap realisations
of the dataset were performed and networks at various edge frequencies were computed.
The consensus Markov-blanket had 71 nodes. The resulting best BN (with a total of 3
discrete nodes and 150 continuous nodes) reported a predictive performance of 64.8%,
which is considered satisfactory and admissible in the present context [89].

4. Discussion

Our open implementation consisted of the following steps:

1. The pre-processing of the data set.
2. The fitting of the DBN model in two steps: structure and parameter learning. The

output of this step was a 2-stage dynamic Bayes net class object (DBN).
3. The inference and test of the DBN on a subset of variables given the evidence on the

other variables. The output of this step was the predicted values and log probabilities
of observing a less likely outcome for each variable that the value assigned to that
variable by the input data.
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4. Dynamic Bayesian network visualisation and analysis for the biological interpolation
of results.

The study examines, in an unprecedented exhaustively manner, the current state of
the art of DBNs to solve a current scientific problem of interest: analysing the human micro-
biome temporal changes associated with disease states. A tailored analytical framework for
data pre-processing was developed for the Inflammatory Bowel Disease Multiomics Dataset
from the iHMP project, which covers an unmet need, as, to the best of our knowledge, the
data access, preparation, and integration of these datasets for machine learning models
have not been developed yet. Furthermore, a powerful artificial intelligence approach,
DBNs, was applied to solve the problem with an innovative configuration and approach
by integrating longitudinal multi-omic data for the characterisation of a model for each
disorder (UC, CD) and the healthy state (non-IBD) and also an overall model. An additional
original contribution presented in this manuscript is the practical analysis of the different
software packages currently available to construct the solution. Furthermore, the usefulness
of BNs for microbiome analysis has been presented. The use of prior biological domain
knowledge as an input restrictions matrix allowed us to prove the value of this approach
versus other popular ML models (e.g., RF, DL) in building explainable and interpretable
models. Nevertheless, BNs have a series of limitations. First, heavy assumptions that can
be easily violated are required for valid inference. Second, model search in presence of large
number of variables (as in real human microbiome data) requires massive computational
power, and its performance is affected by the overall sample size. Third, BNs cannot explain
a cyclic or feedback relationship among variables.

The results obtained in terms of performance (accuracy = 0.65) and biological associa-
tions are in line with previous studies found in the literature. However, the focus of this
work was not to build a model that improves state-of-the-art predictive performance, as
numerous ML models, such as fandom forest, already exist, and they are more appropriate
for this objective. The goal was to fill an existing gap by examining the reliability and
power of interpretable ML models for use by non-experts in the domain (AI) in future
clinical investigations as an alternative tool for novel knowledge discovery.

5. Conclusions

In this work, we have successfully achieved a dynamic Bayesian network model that
has implicitly collected temporal relationships that can help clinicians and researchers in
the domain (gut microbiota) explore and discover new biomarkers. A model was obtained
for each state of disease (UC, CD, healthy). Although self-explanatory for clinicians once
visually computed, they could not have been obtained easily by researchers with no prior
knowledge of both the analysis of omic data (bioinformatics) and artificial intelligence
(computer science). As far as the authors are aware, no comprehensive work was dedicated
to this same research objective. Moreover, this is the first study to use DBNs to capture
temporal variability in microbiome data, identifying the 50 most important taxa, metabolic
pathways, and metabolites for each condition.

The proposed methodology, BNs, and, more specifically, DBNs provide valuable
insights and explanation about the predictions and probabilistic dependencies among the
variables. The gut microbiome has been extensively studied, but, due to its high complexity
and inter-individual heterogeneity, it is not yet fully understood. Although ML methods,
and in particular, DBNs, are a promising technique to infer useful insights, there is still
considerable work to be done in some areas.

Limitations and Future Research

In terms of ground truth assessment, the proposed ML model, DBN (CGBayesNet)
was not compared with other DBN algorithms on a gold-standard dataset, as there are
currently no computational tools or benchmark datasets available in the literature for this
evaluation. Moreover, for the selected dataset (IBDMDB), no other available tool reviewed
met the complete criteria to replicate the same analysis performed. Even so, future work
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should aim to test the model in multiple cohorts and potentially different class balances.
For our study, we explored publicly available datasets for reproducibility and replicability
purposes, but, for future studies, an interesting cohort composed of identical twins, thus
not subject to genetic confounding, could be TwinsUK (https://twinsuk.ac.uk/, accessed
on 17 February 2022). Moreover, other microbes such as the skin microbiome, oral cavity
microbiome, or the respiratory system microbiome can produce equally interesting results
and have not been widely explored and characterised yet.

Regarding evaluation and performance assessment, further work needs to be done
by reporting multiple evaluation metrics and performing experimental validation on an
independent cohort to translate research into clinical practice.

Further analysis and interpretation of results by domain experts (e.g., clinicians or mi-
crobiologists) is required to extract new knowledge applicable in clinical settings. Nonethe-
less, we hope this study encourages future collaborations between scientists from different
fields to open interdisciplinary research lines contributing to this promising area of study.
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Appendix A

The theoretical foundation of CGBayesNet is presented in [75]. To determine the best
network model of the data, CGBayesNet computes the marginal likelihood of candidate
network structures, conditioned upon the data, and chooses the network model that
maximises the marginal likelihood. The posterior probability of the Bayesian network
model G, given the data D, is p(G|D)p(D), and it uses Bayes’ theorem to equate p(G|D)p(D)
= p(D|G)p(G), or:

p(G|D) ∝ p(D|G)p(D)

https://twinsuk.ac.uk/
https://www.mdpi.com/article/10.3390/math10121994/s1
https://www.mdpi.com/article/10.3390/math10121994/s1
https://ibdmdb.org/tunnel/public/summary.html
https://www.ncbi.nlm.nih.gov/bioproject/398089
https://www.ncbi.nlm.nih.gov/bioproject/398089
https://ibdmdb.org/cb/browser/
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where p(G) is the prior probability of a network model, and p(D) is the prior probability of
the data, and p(D|G) is the marginal likelihood:

p(D|G) =
∫

p(D|θ, G)p(θ|G)dθ

Here p(D|θ,G) is the likelihood of the data given the network G and distribution
parameters θ, and p(θ|G) is the prior density of the parameters θ. The marginal likelihood
p(D|G) is computed by averaging out the distribution parameters θ from the likelihood
function, p(D|G, θ).

The Bayesian network semantics provides a decomposition of the likelihood as follows:
for a given set of distribution parameters θ, a dataset D of size |D| = d, variables yi in
I = (∆ union Ψ) realising values yik in {yi1, yi2, . . . yid} in D, given parents π(yi) taking
values uik when yi takes value yik:

p(D|G, θ) ∝

[
∏
i∈I

d

∏
k=1

p(yik|π(yik) = uik, θik)

]

where p(yik|π(yi),θik) is the probability of yi having value yik in D with parent values uik
and distribution parameters θ. Distribution parameters for discrete nodes are modelled
with Dirichlet priors, and priors for Gaussian nodes are described below. In the discrete
case, we denote by |yi| and |π(yi)| the number of different values that yi and π(yi) can
assume, respectively; then the discrete nodes have (joint) likelihood:

P(∆| θ) = ∏i∈∆ ∏|π(yi)|
j

Γ
(
αij
)

Γ
(
αij + nij

) ∏|yi |
k

Γ
(

αijk + nijk

)
Γ
(

αijk

)
where nijk is the number of data points satisfying yi = k for π(yi) in configuration j, and αijk
is the hyper parameter of the Dirichlet distribution indicating a prior assumed sample size.
Γ(.) denotes the gamma function. Continuous nodes yi have Gaussian distributions with a
mean that is a linear function of its continuous parents and that depends on its discrete
parents, with a conditional variance σ2

ij = 1/τij. The joint likelihood of the continuous
nodes is then

p(Ψ| θ) = ∏
i∈Ψ

(
τij

2π

) n
2

e[(−
τij
2 )(yik−Xi βij)

T(yik−Xi βij)]

with xij the values of continuous parents of yi in case k, and βij is the vector of regression
parameters given discrete parents of yi = j. CGBayesNet follows [90] and uses a Gamma
prior distribution for τ and a conditional multivariate Gaussian prior density on regression
parameters β. Thus,

τij ∼ Γ(αi1, αi2), p(τ) =
τ

αi1−1
ij e−τij/αi2

αi2
αi1 Γ(αi1)

Furthermore, β is described by

βij
∣∣τij ∼ N

(
βij0,

(
τij I
)−1
)

For the identity matrix I, and βij0 = E(βij|τij). The above equations represent the main
semantics of CGBayesNet.
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