Balancing Cost and Demand in Electricity Access Projects: Case Studies in Ecuador, Mexico and Peru
Abstract
:1. Introduction
2. Problem Description
2.1. Systems Design
2.2. Demand Estimation
2.3. Problem Formulation
- As input data: The location and electricity requirements of demand points as well as the cost and technical characteristics of the equipment;
- As variables: The detailed solution including the equipment to be installed at each point and the microgrid connections between points;
- As an objective function: The maximization of end-users’ satisfaction, considering the project cost as well as the energy and peak power supplied;
- As constraints: The satisfaction of users’ electricity requirements taking into account uncertainty and the technical relationships between the equipment installed and the structure of the distribution microgrids.
3. Mathematical Modeling
3.1. Minimum Satisfaction Fuzzy Model
3.1.1. Input Data
- Indices:
- a
- Used to go through wind turbine options;
- b
- Used to go through battery options;
- c
- Used to go through LV line options;
- d
- Used to go through demand points (when referring to downstream points);
- i
- Used to go through inverter options;
- p
- Used to go through demand points;
- q
- Used to go through demand points (when referring to upstream points);
- s
- Used to go through PV panel options;
- z
- Used to go through PV controller options.
- General parameters:
- A
- Number of wind turbine options (a = 1, …, A);
- B
- Number of battery options (b = 1, …, B);
- C
- Number of LV line options (c = 1, …, C);
- CAa
- Cost (USD) of wind turbine a, including the support structure and a controller (a = 1, …, A);
- CBb
- Cost (USD) of battery b (b = 1, …, B);
- CCc
- Cost (USD/m) of line c, including the support structure (c = 1, …, C);
- CIi
- Cost (USD) of inverter i (i = 1, …, I);
- CM
- Cost (USD) of a meter;
- CSs
- Cost (USD) of panel s, including the support structure (s = 1, …, S);
- CZz
- Cost (USD) of controller z (z = 1, …, Z);
- DB
- Maximum depth of discharge (unit fraction) allowed for the batteries;
- EAp,a
- Energy (Wh/day) provided by wind turbine a located at point p (p = 1, …, N; a = 1, …, A);
- EBb
- Capacity (Wh) of battery b (b = 1, …, B);
- ESs
- Energy (Wh/day) provided by panel s (s = 1, …, S);
- I
- Number of inverter options (i = 1, …, I);
- ICc
- Maximum admissible intensity (A) of line c (c = 1, …, C);
- LMAX
- Maximum distance [m] at which 2 microgrid points can be directly connected;
- Lp,d
- Distance (m) between points p and d (p = 1, …, N; d = 1, …, N);
- N
- Number of demand points (houses, schools, health centers, etc.);
- NA
- Maximum number that can be installed at the same point;
- NS
- Maximum number that can be installed at the same point;
- PIi
- Peak power (W) of inverter i (i = 1, …, I);
- PSs
- Nominal power (W) of panel s (s = 1, …, S);
- PZz
- Peak power (W)of controller z (z = 1, …, Z);
- Qp
- Set of points d that can be the destination of a microgrid line from point p (p = 1, …, N; d = 1, …, N: p ≠ d and Lp,d ≤ LMAX);
- RCc
- Electrical resistance (Ω/m) of line c (c = 1, …, C);
- S
- Number of PV panel options (s = 1, …, S);
- VB
- Requested self-sufficiency (days) of the batteries;
- VMAX
- Maximum voltage (V) above which demand points cannot be supplied;
- VMIN
- Minimum voltage (V) below which demand points cannot be supplied;
- VN
- Nominal voltage (V);
- Z
- Number of PV controller options (z = 1, …, Z);
- α
- Calibration parameter for the objective function;
- ηB
- Efficiency (unit fraction) of the batteries;
- ηC
- Efficiency (unit fraction) of the lines;
- ηI
- Efficiency (unit fraction) of the inverters.
- Parameters that model fuzziness:
- CMAX
- Maximum project cost. This value can be determined solving the deterministic model for the improved demand (EpMAX and PpMAX) [36];
- CMIN
- Minimum project cost. This value can be determined solving the deterministic model for the essential demand (EpMIN and PpMIN) [36];
- EpMAX
- Improved energy demand (Wh/day) requested by demand point p (p = 1, …, N);
- EpMIN
- Essential energy demand (Wh/day) requested by demand point p (p = 1, …, N);
- PpMAX
- Improved peak power demand (W) requested by demand point p (p = 1, …, N);
- PpMIN
- Essential peak power demand (W) requested by demand point p (p = 1, …, N);
- ΔC
- Project cost range. ΔC = CMAX − CMIN;
- ΔEp
- Energy demand (Wh/day) range of point p (p = 1, …, N). ΔEp = EpMAX − EpMIN;
- ΔPp
- Peak power demand (W) range of point p (p = 1, …, N). ΔPp = PpMAX − PpMIN.
3.1.2. Variables
- Integer non-negative:
- xap,a
- Number of wind turbines type a installed at point p (p = 1, …, N; a = 1, …, A);
- xbp,b
- Number of batteries type b installed at demand point p (p = 1, …, N; b = 1, …, B);
- xip,i
- Number of inverters type i installed at demand point p (p = 1, …, N; i = 1, …, I);
- xsp,s
- Number of PV panels type s installed at demand point p (p = 1, …, N; s = 1, …, S);
- xzp,z
- Number of controllers type z installed at demand point p (p = 1, …, N; z = 1, …, Z).
- Real non-negative:
- edp
- Energy (Wh/day) supplied to demand point p (p = 1, …, N);
- fep,d
- Energy flow (Wh/day) between demand points p and d (p = 1, …, N; d ∊ Qp);
- fpp,d
- Power flow (W) between demand points p and d (p = 1, …, N; d ∊ Qp);
- pdp
- Peak power (W) supplied to demand point p (p = 1, …, N);
- vp
- Voltage at demand point p (p = 1, …, N|vp ∊ (VMIN; VMAX)).
- Binary:
- xcp,d,c ∊ {0; 1}
- One if a line type c directly connects demand points p and d; 0 otherwise (p = 1, …, N; d ∊ Qp; c = 1, …, C);
- xgp ∊ {0; 1}
- One if at least one generator (wind turbine and/or PV panel) is installed at demand point p; 0 otherwise (p = 1, …, N);
- xmp ∊ {0, 1}
- One if demand point p belongs to a microgrid (p = 1, …, N).
- Dimensionless real non-negative that model fuzziness:
- λ_C
- Satisfaction with regards to the project cost;
- λ_E
- Satisfaction of the least satisfied point regarding the energy supplied;
- λ_P
- Satisfaction of the least satisfied point regarding the peak power supplied.
3.1.3. Objective Function
3.1.4. Constraints
- General constraints
(2) | ||
(3) | ||
(4) | ||
(5) | ||
(6) | ||
(7) | ||
(8) | ||
(9) | ||
(10) | ||
(11) | ||
(12) | ||
(13) | ||
(14) |
- Constraints that model fuzziness
(15) | ||
(16) | ||
(17) | ||
(18) | ||
(19) | ||
(20) | ||
(21) |
3.2. Average Satisfaction Fuzzy Model
- Dimensionless real non-negative variables that model fuzziness:
- λ_Ep
- Satisfaction of demand point p regarding the energy supplied (p = 1, …, N);
- λ_Pp
- Satisfaction of demand point p regarding the peak power supplied (p = 1, …, N).
- Objective function
- Constraints
(17’) | ||
(18’) | ||
(20’) | ||
(21’) |
4. Case Studies
4.1. Ecuadorian Communities
4.2. Mexican Communities
4.3. Peruvian Communities
4.4. Input Data
5. Results and Discussion
5.1. Results for the Six Case Studies
5.2. Comparison of Assumptions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations (UN). 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Eras-Almeida, A.A.; Egido-Aguilera, M.A. What is still necessary for supporting the SDG7 in the most vulnerable contexts? Sustainability 2020, 12, 7184. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Global Status Report. Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector; International Energy Agency: Paris, France, 2018; ISBN 978-92-807-3729-5. [Google Scholar]
- Madriz-Vargas, R.; Bruce, A.; Watt, M. The future of community renewable energy for electricity access in rural Central America. Energy Res. Soc. Sci. 2018, 35, 118–131. [Google Scholar] [CrossRef]
- Mehrjerdi, H. Modeling, integration, and optimal selection of the turbine technology in the hybrid wind-photovoltaic renewable energy system design. Energy Convers. Manag. 2020, 205, 112350. [Google Scholar] [CrossRef]
- Sima, C.A.; Lazaroiu, G.C.; Dumbrava, V.; Tirsu, M. A hybrid system implementation for residential cluster. In Proceedings of the 2017 International Conference on Electromechanical and Power Systems, Iasi, Romania, 11–13 October 2017; pp. 275–280. [Google Scholar] [CrossRef]
- Hirsch, A.; Parag, Y.; Guerrero, J. Microgrids: A review of technologies, key drivers, and outstanding issues. Renew. Sustain. Energy Rev. 2018, 90, 402–411. [Google Scholar] [CrossRef]
- Domenech, B.; Ferrer-Martí, L.; Pastor, R. Comparison of various approaches to design wind-PV rural electrification projects in remote areas of developing countries. WIREs Energy Environ. 2019, 8, e332. [Google Scholar] [CrossRef] [Green Version]
- Mavromatidis, G.; Orehounig, K.; Carmeliet, J. A review of uncertainty characterization approaches for the optimal design of distributed energy systems. Renew. Sustain. Energy Rev. 2018, 88, 258–277. [Google Scholar] [CrossRef]
- Anoune, K.; Bouya, M.; Astito, A.; Abdellah, A.B. Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review. Renew. Sustain. Energy Rev. 2018, 93, 652–673. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, S.; Zhu, Y.; Wang, D.; Liu, J. Modeling, planning, application and management of energy systems for isolated areas: A review. Renew. Sustain. Energy Rev. 2018, 82, 460–470. [Google Scholar] [CrossRef]
- Lyden, A.; Pepper, R.; Tuohy, P.G. A modelling tool selection process for planning of community scale energy systems including storage and demand side management. Sustain. Cities Soc. 2018, 39, 674–688. [Google Scholar] [CrossRef]
- Soukeyna, M.; Ramdhane, I.B.; Ndiaye, D.; Elmamy, M.; Menou, M.; Yahya, A.M.; Mahmoud, A.K.; Youm, I. Feasibility analysis of hybrid electricity generation system by HOMER for Mauritanian northern coast. Int. J. Phys. Sci. 2018, 13, 120–131. [Google Scholar] [CrossRef]
- Raji, A.K.; Luta, D.N. Modeling and optimization of a community microgrid components. Energy Procedia 2019, 156, 406–411. [Google Scholar] [CrossRef]
- Sima, C.A.; Popescu, M.O.; Popescu, C.L.; Alexandru, M.; Popa, L.B.; Dumbrava, V.; Panait, C. Energy management of a cluster of buildings in a university campus. In Proceedings of the 2021 12th International Symposium on Advanced Topics in Electrical Engineering, Bucharest, Romania, 25–27 March 2021. [Google Scholar] [CrossRef]
- Rojas-Zerpa, J.C.; Yusta, J.M. Application of multicriteria decision methods for electric supply planning in rural and remote areas. Renew. Sustain. Energy Rev. 2015, 52, 557–571. [Google Scholar] [CrossRef]
- Bhagavathy, S.M.; Pillai, G. PV microgrid design for rural electrification. Designs 2018, 2, 33. [Google Scholar] [CrossRef] [Green Version]
- García-Villoria, A.; Domenech, B.; Ferrer-Martí, L.; Juanpera, M.; Pastor, R. Ad-hoc heuristic for design of wind-photovoltaic electrification systems, including management constraints. Energy 2021, 212, 118755. [Google Scholar] [CrossRef]
- Ciupageanu, D.A.; Barelli, L.; Lazaroiu, G. Real-time stochastic power management strategies in hybrid renewable energy systems: A review of key applications and perspectives. Electr. Power Syst. Res. 2020, 187, 106497. [Google Scholar] [CrossRef]
- Riva, F.; Ahlborg, H.; Hartvigsson, E.; Pachauri, S.; Colombo, E. Electricity access and rural development: Review of complex socio-economic dynamics and causal diagrams for more appropriate energy modelling. Energy Sustain. Dev. 2019, 43, 203–223. [Google Scholar] [CrossRef]
- Peters, J.; Sievert, M.; Toman, M.A. Rural electrification through mini-grids: Challenges ahead. Energy Policy 2019, 132, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Good, N.; Ellis, K.A.; Mancarella, P. Review and classification of barriers and enablers of demand response in the smart grid. Renew. Sustain. Energy Rev. 2017, 72, 57–72. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, H.K.; Canyurt, O.E.; Hepbasli, A.; Utlu, Z. An application of genetic algorithm search techniques to the future total exergy input/output estimation. Energy Sources Part A 2006, 28, 715–725. [Google Scholar] [CrossRef]
- Azadeh, A.; Ghaderi, S.F.; Tarverdian, S.; Saberi, M. Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption. Appl. Math. Comput. 2007, 186, 1731–1741. [Google Scholar] [CrossRef]
- Badurally Adam, N.R.; Dauhoo, M.Z.; Elahee, M.K. A simulated-based genetic algorithm for the forecasting of monthly peak electricity demand. Int. J. Oper. Res. 2017, 28, 164–182. [Google Scholar] [CrossRef]
- Badurally Adam, N.R.; Elahee, M.K.; Dauhoo, M.Z. Forecasting of peak electricity demand in Mauritius using the non-homogeneous Gompertz diffusion process. Energy 2011, 36, 6763–6769. [Google Scholar] [CrossRef]
- Domenech, B.; Ferrer-Martí, L.; Pastor, R. Hierarchical methodology to optimize the design of stand-alone electrification systems for rural communities considering technical and social criteria. Renew. Sustain. Energy Rev. 2015, 51, 182–196. [Google Scholar] [CrossRef] [Green Version]
- Suganthi, L.; Iniyan, S.; Samuel, A. Applications of fuzzy logic in renewable energy systems—A review. Renew. Sustain. Energy Rev. 2015, 48, 585–607. [Google Scholar] [CrossRef]
- Onar, S.C.; Oztaysi, B.; Otay, İ.; Kahraman, C. Multi-expert wind energy technology selection using interval-valued intuitionistic fuzzy sets. Energy 2015, 90, 274–285. [Google Scholar] [CrossRef]
- Li, G.; Sun, W.; Huang, G.H.; Lv, Y.; Liu, Z.; An, C. Planning of integrated energy-environment systems under dual interval uncertainties. Int. J. Electr. Power 2018, 100, 287–298. [Google Scholar] [CrossRef]
- Mohammadi, M.; Noorollahi, Y.; Mohammadi-ivatloo, B. Fuzzy-based scheduling of wind integrated multi-energy systems under multiple uncertainties. Sustain. Energy Technol. Assess. 2020, 37, 100602. [Google Scholar] [CrossRef]
- Vahedipour-Dahraie, M.; Rashidizadeh-Kermani, H.; Anvari-Moghaddam, A.; Siano, P. Risk-averse probabilistic framework for scheduling of virtual power plants considering demand response and uncertainties. Int. J. Electr. Power 2020, 121, 106126. [Google Scholar] [CrossRef]
- Wang, J.; Qi, X.; Ren, F.; Zhang, G.; Wang, J. Optimal design of hybrid combined cooling, heating and power systems considering the uncertainties of load demands and renewable energy sources. J. Clean. Prod. 2021, 281, 125357. [Google Scholar] [CrossRef]
- Hossain, M.A.; Chakrabortty, R.K.; Ryan, M.J.; Pota, H.R. Energy management of community energy storage in grid-connected microgrid under uncertain real-time prices. Sustain. Cities Soc. 2021, 66, 102658. [Google Scholar] [CrossRef]
- Galleguillos-Pozo, R.; Domenech, B.; Ferrer-Martí, L.; Pastor, R. Design of stand-alone electrification systems using fuzzy mathematical programming approaches. Energy 2021, 228, 120639. [Google Scholar] [CrossRef]
- Ferrer-Martí, L.; Domenech, B.; García-Villoria, A.; Pastor, R. A MILP model to design hybrid wind-photovoltaic isolated rural electrification projects in developing countries. Eur. J. Oper. Res. 2013, 226, 293–300. [Google Scholar] [CrossRef]
- Pillot, B.; Muselli, M.; Poggi, P.; Dias, J.B. Historical trends in global energy policy and renewable power system issues in Sub-Saharan Africa: The case of solar PV. Energy Policy 2019, 127, 113–124. [Google Scholar] [CrossRef]
- López-González, A.; Domenech, B.; Gómez-Hernández, D.; Ferrer-Martí, L. Renewable microgrid projects for autonomous small-scale electrification in Andean countries. Renew. Sustain. Energy Rev. 2017, 79, 1255–1265. [Google Scholar] [CrossRef]
- Bilgen, B. Application of fuzzy mathematical programming approach to the production allocation and distribution supply chain network problem. Expert Syst. Appl. 2010, 37, 4488–4495. [Google Scholar] [CrossRef]
- Mendel, J.M.; Korjani, M.M. A new method for calibrating the fuzzy sets used in fsQCA. Inf. Sci. 2018, 468, 155–171. [Google Scholar] [CrossRef]
- Gómez-Hernández, D.F.; Domenech, B.; Moreira, J.; Farrera, N.; López-González, A.; Ferrer-Martí, L. Comparative evaluation of rural electrification project plans: A case study in Mexico. Energy Policy 2019, 129, 23–33. [Google Scholar] [CrossRef]
Community | Ecuador | Mexico | Peru | ||||
---|---|---|---|---|---|---|---|
Suraka | Conambo | Tuzal | Villa del Rio | El Alumbre | Alto Peru | ||
Demand Points | Demand points N | 12 | 61 | 18 | 26 | 35 | 26 |
Maximum distance LMAX (m) | 500 | 500 | 500 | ||||
Energy Demand | Essential EpMIN (Wh/day) | 1000 (all) | 100 (other) 750 (houses) 1500 (churches) | 280 (houses) 975 (other) | 280 (houses) | ||
Improved EpMAX (Wh/day) | 1500 (all) | 150 (other) 1125 (houses) 2250 (churches) | 420 (houses) 1463 (other) | 420 (houses) | |||
Peak Power Demand | Essential PpMIN (W) | 600 (all) | 50 (other) 300 (houses) 750(churches) | 200 (houses) 600 (school) 1000 (health c.) | 200 (houses) | ||
Improved PpMAX (W) | 900 (all) | 75 (other) 450 (houses) 1125 (churches) | 300 (houses) 900 (school) 1500 (health c.) | 300 (houses) | |||
Wind Turbines | Options A | n.a. | 6 | 4 | |||
Maximum number NA | n.a. | 28 | 28 | ||||
Energy EApa (Wh/day) | n.a. | 180 to 121,487 | 61 to 16,464 | ||||
Cost CAa (USD) | n.a. | 1565 to 40,242 | 974 to 5132 | ||||
PV Panels | Options S | 1 | 5 | 4 | |||
Maximum number NS | 40 | 52 | 52 | ||||
Energy ESs (Wh/day) | 1179 | 403 to 1048 | 217 to 652 | ||||
Nominal power PSs (W) | 330 | 100 to 260 | 50 to 150 | ||||
Cost CSs (USD) | 350 | 197 to 245 | 451 to 800 | ||||
PV Controller | Options Z | 2 | 4 | 4 | |||
Peak power PZz (W) | 480 to 2880 | 50 to 200 | 50 to 200 | ||||
Cost CZz (USD) | 300 to 700 | 67 to 125 | 67 to 125 | ||||
Batteries | Options B | 2 | 4 | 4 | |||
Capacity EBb (Wh) | 1800 to 3600 | 24,422 to 63,360 | 1500 to 3000 | ||||
Cost CBb (USD) | 300 to 850 | 132 to 387 | 225 to 325 | ||||
Discharge DB (u.f.) | 0.60 | 0.60 | 0.60 | ||||
Self-sufficiency VB (days) | 3 | 2 | 2 | ||||
Efficiency ηB (u.f.) | 0.85 | 0.85 | 0.85 | ||||
Inverters | Options I | 2 | 5 | 4 | |||
Peak power PIi (W) | 600 to 3600 | 450 to 3000 | 300 to 3000 | ||||
Cost CIi (USD) | 400 to 2000 | 60 to 582 | 377 to 2300 | ||||
Efficiency ηI | 0.85 | 0.85 | 0.85 | ||||
Meters | Cost CM (USD) | 50 | 50 | 50 | |||
LV Lines | Options C | 2 | 3 | 2 | |||
Resistance RCc (Ω/m) | 0.0016 to 0.0030 | 0.0017 to 0.0027 | 0.0017 to 0.0027 | ||||
Intensity ICc (A) | 60 to 96 | 89 to 101 | 89 to 101 | ||||
Cost CCc (USD/m) | 3.94 to 6.03 | 4.90 to 5.25 | 4.90 to 5.00 | ||||
Nominal voltage VN (V) | 220 | 220 | 220 | ||||
Minimum voltage VMIN (V) | 210 | 210 | 210 | ||||
Maximum voltage VMAX (V) | 230 | 230 | 230 | ||||
Efficiency ηC (u.f.) | 0.90 | 0.90 | 0.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galleguillos-Pozo, R.; Domenech, B.; Ferrer-Martí, L.; Pastor, R. Balancing Cost and Demand in Electricity Access Projects: Case Studies in Ecuador, Mexico and Peru. Mathematics 2022, 10, 1995. https://doi.org/10.3390/math10121995
Galleguillos-Pozo R, Domenech B, Ferrer-Martí L, Pastor R. Balancing Cost and Demand in Electricity Access Projects: Case Studies in Ecuador, Mexico and Peru. Mathematics. 2022; 10(12):1995. https://doi.org/10.3390/math10121995
Chicago/Turabian StyleGalleguillos-Pozo, Rosa, Bruno Domenech, Laia Ferrer-Martí, and Rafael Pastor. 2022. "Balancing Cost and Demand in Electricity Access Projects: Case Studies in Ecuador, Mexico and Peru" Mathematics 10, no. 12: 1995. https://doi.org/10.3390/math10121995
APA StyleGalleguillos-Pozo, R., Domenech, B., Ferrer-Martí, L., & Pastor, R. (2022). Balancing Cost and Demand in Electricity Access Projects: Case Studies in Ecuador, Mexico and Peru. Mathematics, 10(12), 1995. https://doi.org/10.3390/math10121995