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Abstract: Rural areas in developing countries have the highest concentrations of unelectrified com-
munities. There is a clear link between electricity consumption and the Human Development Index,
as highlighted by the 7th Development Goal of the United Nations. Estimating the energy needs of
the previously nonelectrified population is imprecise when designing rural electrification projects.
Indeed, daily energy demand and peak power assessments are complex, since these values must be
valid over the project’s lifetime, while tight budgets do not allow for the systems to be oversized.
In order to assist project promoters, this study proposes a fuzzy mixed integer linear program-
ming model (FMILP) for the design of wind–PV rural electrification systems including uncertainty
in the demand requirements. Two different FMILP approaches were developed that maximized
the minimum or the average satisfaction of the users. Next, the FMILP approaches were applied
to six Latin American communities from three countries. Compared with the deterministic MILP
(where the energy and peak power needs are considered as specific values), the FMILP results
achieved a better balance between the project cost and the users’ satisfaction regarding the energy and
peak power supplied. Regarding the two approaches, maximizing the users’ minimum satisfaction
obtained globally better solutions.

Keywords: microgrids; rural electrification; fuzzy optimization; developing countries; case studies

MSC: 90C90

1. Introduction

“Ensuring access to affordable, reliable, sustainable and modern energy for all” has
been recognized as the 7th Sustainable Development Goal of the United Nations [1]. Indeed,
a connection exists between the Human Development Index (HDI) and energy access [2]:
for less developed regions, slight increases in electricity consumption lead to huge socioe-
conomic growth, significantly improving the population’s living standards. However, a
significant proportion of the population in rural areas of developing countries still lack
such a service [3].

Extending electricity access through the national grid can have important techno-
economic limitations in rural and remote areas because of the dispersion of demand and
low end-user consumption. In contrast, standalone systems based on renewable energy
are appropriate for isolated communities [4]. In particular, hybrid wind–photovoltaic
(PV) systems can reduce costs and improve supply quality in comparison with single-
technology projects [5]. Hybrid systems have proven to be suitable to address the electricity
needs of residential clusters [6]. Additionally, the combination of individual supplies and
microgrids can help medium-dispersed communities achieve a proper balance between
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extension lines and cost increases [7]. However, the whole design is complex, having to
study many locations and sizes for generators, along with all possible connections among
demand points to form the corresponding microgrids [8]. Hence, decision support tools
are recommended for designing electrification systems correctly [8,9].

There is ample literature dealing with design tools for rural electrification systems
including mathematical models and heuristic algorithms [10–12]. Many works focus on
dimensioning a combination of generation technologies to cover the demand at minimum
cost. The most used software is HOMER [13], which includes a detailed analysis of
the demand, the energy resources and the equipment. For instance, Raji and Luta [14]
used HOMER to design a community microgrid in South Africa, obtaining a technically
and economically viable solution. Other optimization methods, such as integer linear
programming, have also been used to evaluate wind–PV systems [15]. On the other hand,
the distribution of electricity from generators to end users has been less studied [16], with
the particular context of medium-dispersed communities receiving even less attention.
ViPOR [17] considers, through simulated annealing, the location and electricity needs of
each demand point to evaluate whether microgrid extension or individual supply is less
expensive. García-Villoria et al. [18] developed a heuristic process to find the minimum cost
combination of wind and PV technologies as well as microgrids and individual systems to
distribute electricity in remote and medium-dispersed communities.

In the above works, demand was considered as a deterministic value, and the results
are, therefore, subject to the quality of its estimation [19]. Consequently, the estimation of
demand becomes critical, since an underestimation can leave the inhabitants dissatisfied,
while an overestimation can unnecessarily increase the project costs. Inexact predictions will
negatively impact the socioeconomic development of the area and/or produce economically
unsustainable solutions. However, the real demand can be influenced by several factors
such as [11] the local climate and geographic characteristics, the economy and culture,
or the typology of consumers and their lifestyle. Therefore, the estimation of demand is
inevitably subject to uncertainty [20,21].

In order to obtain robust designs regarding demand uncertainty, different approaches
have been developed [22]. A relevant research area has focused on developing predictive
algorithms for future demand estimation. For instance, genetic algorithms have been used
to forecast the electricity requirements of populations in Turkey [23], Iran [24] and Mau-
ritius [25]. For this purpose, social, economic and environmental indicators are gathered,
and optimization algorithms aim to minimize deviation indicators. These algorithms have
also been combined with artificial neural networks to improve the prediction results [26].
Under a different approach, Domenech et al. [27] developed an optimization–multicriteria
methodology to design wind–PV electrification projects, which, first, generates a set of solu-
tions for different demand scenarios and then selects the best one in terms of several criteria.
Nevertheless, the project promoter still has to quantify the demand scenarios as unique
values. From a different perspective, fuzzy logic can help solve complex problems with
data uncertainty in the energy sector [28]. For instance, Onar et al. [29] developed a decision
model with multiple fuzzy criteria for different experts to aid investors in selecting the
most appropriate energy technology. Li et al. [30] proposed a fuzzy programming approach
for planning an electrical energy generating system. Mohammadi et al. [31] introduced
fuzzy elements in an MILP model to help in planning energy systems managing demand
uncertainty. The results can help to achieve a balance between the guaranteed energy,
the system cost and environmental problems. Vahedipour-Dahraie et al. [32] proposed a
risk-averse probabilistic framework to schedule virtual power plants, taking into account
demand response and uncertainty. The model helps to mitigate the negative impacts of
uncertainty on the plant’s performance. Wang et al. [33] developed a stochastic multiob-
jective model to design hybrid energy systems, considering demand and solar radiation
uncertainty through probability distributions.

The reviewed works focused mainly on large- or medium-sized energy systems,
while the analysis of demand uncertainty in the context of small-scale systems for newly
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electrified populations is scarce (Hossain et al.) [34]. As indicated by Domenech et al. [8], ad
hoc tools considering the specific details of end users are required in order to improve the
medium- and long-term sustainability of energy systems for these populations. Galleguillos-
Pozo et al. [35] developed and compared five fuzzy MILP (FMILP) models, considering
different assumptions, to design PV systems that balance the project cost and the demand
satisfaction. This paper combined wind energy, controllers and batteries as well as detailed
novel electrical features to make the most efficient FMILP model for exploring a wider
range of solutions and obtaining better and more detailed electrification options. Hence,
two FMILP models are proposed for designing wind–PV rural electrification projects,
defining the best location and size of equipment for distribution through microgrids and
individual supplies.

Consequently, the project promoters obtained a very powerful tool to assist in decision
making when implementing projects in developing countries as well as robust solutions
that are not dependent on the exact estimation of demand. Two modeling assumptions
were considered and compared for the FMILP model: (a) to ensure that the least satisfied
user was as satisfied as possible; (b) to ensure that the global satisfaction of all users was
as high as possible. To validate the proposed solution procedure, six case studies were
solved: six real communities from three Latin American countries (i.e., Ecuador, Mexico
and Peru). The characteristics of the regions studied vary significantly (i.e., forest, semi-arid
and highland), which tested the model’s performance in different contexts. The solutions
obtained (with FMILP) were compared with those that would have been obtained without
considering demand uncertainty (with MILP). Compared to MILP, the FMILP results
achieved a better balance between the project cost and the users’ satisfaction in terms of the
energy and peak power supplied. Regarding the modeling approaches, maximizing the
minimum satisfaction obtained globally better solutions.

The remainder of the paper is organized as follows: Section 2 describes the specific
problem including the design of wind–PV systems and uncertainty in users’ demand
estimation; Section 3 details the FMILP models for balancing the cost and the demand sup-
plied; Section 4 presents the six case studies and the input data for the validation; Section 5
discusses the results of the case studies; finally, Section 6 highlights the main conclusions.

2. Problem Description

This section first describes the technical considerations of PV–wind electrification
systems (Section 2.1); then, the complexity of estimating the electricity demand of end users
is highlighted (Section 2.2).

2.1. Systems Design

Figure 1 shows the elements of the electrification systems dealt with in this paper
(adapted from [36]). The population was dispersed among the demand points (houses,
schools, health centers, etc.), each at a different location and having its own energy and
peak power requirements. PV panels and wind turbines were used in order to supply
the demand. Controllers protected the charge and discharge of the batteries, where the
energy was stored for supply during non-generation periods. Next, inverters transformed
the DC from the batteries into AC, which is better suited for most appliances. All this
equipment was placed at a generation point, which was the only demand point in the
case of individual systems or one of the demand points in the case of microgrids. The
electricity was distributed at low voltage (LV) among microgrid demand points, using a
radial structure suitable for rural areas in developing countries [17]. In addition, meters
were installed at microgrid points to track users’ consumption.
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Figure 1. Scheme of the rural electrification systems (adapted from [36]).

2.2. Demand Estimation

Determining the energy and peak power demand of end users is complex and involves
quantitative and qualitative information regarding the population as well as the energy
sources prior to electrification [20]. In order to gather such information, local and regional
databases can be consulted, end-users surveyed and interviewed and meetings held with
specific categories of the population (women, children, elders, etc.). In addition, the
surroundings of the community must be examined to identify any other characteristics,
such as climatology or nearby villages, that can influence consumption [37]. Finally, the
future expectations and productive activities to be developed during the project’s lifetime
must also be evaluated [38].

With the above information, the energy and peak power consumption of each demand
point must be assessed; this is a complex task that is, logically, subject to uncertainty.
Moreover, economies of scale and the staggered nature of equipment can lead to small
variations in the demand having a significant impact on the project cost (and vice versa).
Consequently, rather than defining unique values, it is easier for project promoters to deter-
mine both an essential demand, below which the project would not satisfy users’ essential
needs and an improved demand, above which the project would be too expensive [35]. A
balance has to be sought between these two scenarios, maximizing the energy and peak
power supplied on the one hand, while minimizing the project cost on the other.

2.3. Problem Formulation

Considering the above, the model developed to address the problem described must
consider the following elements:

• As input data: The location and electricity requirements of demand points as well as
the cost and technical characteristics of the equipment;

• As variables: The detailed solution including the equipment to be installed at each
point and the microgrid connections between points;

• As an objective function: The maximization of end-users’ satisfaction, considering the
project cost as well as the energy and peak power supplied;

• As constraints: The satisfaction of users’ electricity requirements taking into account
uncertainty and the technical relationships between the equipment installed and the
structure of the distribution microgrids.

3. Mathematical Modeling

In this work, two FMILP models are proposed for designing rural electrification
projects, defining the best location and size of equipment as well as the distribution through
microgrids and individual supplies. The models balance the project cost and the energy
and peak power within the limits defined by the essential and improved demands. In
order to introduce this balance into the models, the end-users’ satisfaction regarding the
energy, peak power and cost are included by means of several variables, normalized on a
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0–1 scale. Hence, the solutions defined the satisfaction values for each of the three issues
examined. For the essential demand (or lower values), the minimum energy and peak
power were supplied to end users; thus, satisfaction was 0. In contrast, the project entailed
the minimum cost; thus, satisfaction was 1. For the improved demand (or higher values),
the maximum energy and peak power were supplied to end users; therefore, satisfaction
was 1. In contrast, the project incurred the maximum cost; thus, satisfaction was 1. Finally,
a linear progression from 0 to 1 was assumed for intermediate scenarios. This behavior was
modeled as in the literature [39,40] and was validated by electrification experts [35].

Next, two FMILP models were developed to optimally design standalone wind–PV
electrification systems for rural communities in developing countries, balancing the project
cost and the demand supplied. The deterministic (nonfuzzy) model can be found in Ferrer-
Martí et al. [36], although slight changes were made to better represent solutions: a wind
controller was added to each wind turbine for the proper tracking of these devices, and the
efficiency of the batteries and inverters was adjusted.

As explained before, the balance between the project cost and the demand supplied
was introduced through several satisfaction variables: λ_C for the cost; λ_E for the energy;
λ_P for the peak power. However, balancing these three issues can be conceived under
different approaches, depending on the relative importance given to each one. Galleguillos-
Pozo et al. [35] compared diverse approaches for a simpler problem (neither considering
wind energy, controllers and batteries nor technical aspects such as voltage drops or
equipment efficiencies, as done here), concluding that the best option is to directly compare
the cost satisfaction (which tends toward cheap and low-demand solutions) with the
average energy and peak power satisfaction (which tends toward expensive and high-
demand solutions), without calibration parameters (which simplifies decision making for
project promoters).

It must be noted that two modeling approaches were proposed regarding energy
and peak power satisfaction. First (Section 3.1) was the maximization of the minimum
satisfaction: the least satisfied demand point was focused on, assuming that if this point was
satisfied, the remaining ones would also be more or equally satisfied. Second (Section 3.2)
was the maximization of the average satisfaction: the focus was on satisfying all of the
demand points as much as possible. The results were then be compared to identify those
better representing the end-users’ preferences.

3.1. Minimum Satisfaction Fuzzy Model

The approach modeled in this section assumed the maximization of the minimum
satisfaction, i.e., the satisfaction of the least satisfied demand point of the community.
The input data, variables, objective function and constraints are described below. In each
subsection, the data and the constraints that introduce fuzziness are highlighted.

3.1.1. Input Data

• Indices:

a Used to go through wind turbine options;
b Used to go through battery options;
c Used to go through LV line options;
d Used to go through demand points (when referring to downstream points);
i Used to go through inverter options;
p Used to go through demand points;
q Used to go through demand points (when referring to upstream points);
s Used to go through PV panel options;
z Used to go through PV controller options.

• General parameters:

A Number of wind turbine options (a = 1, . . . , A);
B Number of battery options (b = 1, . . . , B);
C Number of LV line options (c = 1, . . . , C);
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CAa Cost (USD) of wind turbine a, including the support structure and a controller
(a = 1, . . . , A);

CBb Cost (USD) of battery b (b = 1, . . . , B);
CCc Cost (USD/m) of line c, including the support structure (c = 1, . . . , C);
CIi Cost (USD) of inverter i (i = 1, . . . , I);
CM Cost (USD) of a meter;
CSs Cost (USD) of panel s, including the support structure (s = 1, . . . , S);
CZz Cost (USD) of controller z (z = 1, . . . , Z);
DB Maximum depth of discharge (unit fraction) allowed for the batteries;
EAp,a Energy (Wh/day) provided by wind turbine a located at point p (p = 1, . . . , N;

a = 1, . . . , A);
EBb Capacity (Wh) of battery b (b = 1, . . . , B);
ESs Energy (Wh/day) provided by panel s (s = 1, . . . , S);
I Number of inverter options (i = 1, . . . , I);
ICc Maximum admissible intensity (A) of line c (c = 1, . . . , C);
LMAX Maximum distance [m] at which 2 microgrid points can be directly connected;
Lp,d Distance (m) between points p and d (p = 1, . . . , N; d = 1, . . . , N);
N Number of demand points (houses, schools, health centers, etc.);
NA Maximum number that can be installed at the same point;
NS Maximum number that can be installed at the same point;
PIi Peak power (W) of inverter i (i = 1, . . . , I);
PSs Nominal power (W) of panel s (s = 1, . . . , S);
PZz Peak power (W)of controller z (z = 1, . . . , Z);
Qp Set of points d that can be the destination of a microgrid line from point p

(p = 1, . . . , N; d = 1, . . . , N: p 6= d and Lp,d ≤ LMAX);
RCc Electrical resistance (Ω/m) of line c (c = 1, . . . , C);
S Number of PV panel options (s = 1, . . . , S);
VB Requested self-sufficiency (days) of the batteries;
VMAX Maximum voltage (V) above which demand points cannot be supplied;
VMIN Minimum voltage (V) below which demand points cannot be supplied;
VN Nominal voltage (V);
Z Number of PV controller options (z = 1, . . . , Z);
α Calibration parameter for the objective function;
ηB Efficiency (unit fraction) of the batteries;
ηC Efficiency (unit fraction) of the lines;
ηI Efficiency (unit fraction) of the inverters.

• Parameters that model fuzziness:

CMAX Maximum project cost. This value can be determined solving the deterministic
model for the improved demand (Ep

MAX and Pp
MAX) [36];

CMIN Minimum project cost. This value can be determined solving the deterministic
model for the essential demand (Ep

MIN and Pp
MIN) [36];

Ep
MAX Improved energy demand (Wh/day) requested by demand point p (p = 1, . . . , N);

Ep
MIN Essential energy demand (Wh/day) requested by demand point p (p = 1, . . . , N);

Pp
MAX Improved peak power demand (W) requested by demand point p (p = 1, . . . , N);

Pp
MIN Essential peak power demand (W) requested by demand point p (p = 1, . . . , N);

∆C Project cost range. ∆C = CMAX − CMIN;
∆Ep Energy demand (Wh/day) range of point p (p = 1, . . . , N). ∆Ep = Ep

MAX− Ep
MIN;

∆Pp Peak power demand (W) range of point p (p = 1, . . . , N). ∆Pp = Pp
MAX − Pp

MIN.

3.1.2. Variables

• Integer non-negative:

xap,a Number of wind turbines type a installed at point p (p = 1, . . . , N; a = 1, . . . , A);
xbp,b Number of batteries type b installed at demand point p (p = 1, . . . , N; b = 1, . . . , B);
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xip,i Number of inverters type i installed at demand point p (p = 1, . . . , N; i = 1, . . . , I);
xsp,s Number of PV panels type s installed at demand point p (p = 1, . . . , N; s = 1, . . . , S);
xzp,z Number of controllers type z installed at demand point p (p = 1, . . . , N; z = 1, . . . , Z).

• Real non-negative:

edp Energy (Wh/day) supplied to demand point p (p = 1, . . . , N);
fep,d Energy flow (Wh/day) between demand points p and d (p = 1, . . . , N; d ∈ Qp);
fpp,d Power flow (W) between demand points p and d (p = 1, . . . , N; d ∈ Qp);
pdp Peak power (W) supplied to demand point p (p = 1, . . . , N);
vp Voltage at demand point p (p = 1, . . . , N|vp ∈ (VMIN; VMAX)).

• Binary:

xcp,d,c ∈ {0; 1} One if a line type c directly connects demand points p and d; 0 other-
wise (p = 1, . . . , N; d ∈ Qp; c = 1, . . . , C);

xgp ∈ {0; 1} One if at least one generator (wind turbine and/or PV panel) is in-
stalled at demand point p; 0 otherwise (p = 1, . . . , N);

xmp ∈ {0, 1} One if demand point p belongs to a microgrid (p = 1, . . . , N).

• Dimensionless real non-negative that model fuzziness:

λ_C Satisfaction with regards to the project cost;
λ_E Satisfaction of the least satisfied point regarding the energy supplied;
λ_P Satisfaction of the least satisfied point regarding the peak power supplied.

3.1.3. Objective Function

The objective function (1) aims to maximize the global satisfaction of end users with
the solution obtained. This function includes, on the one hand, the project cost satisfaction
(which tends toward cheap and low-demand solutions) and, on the other, the average
between the energy and peak power satisfactions (which tend toward expensive and high-
demand solutions). In addition, the objective function is calibrated through the α parameter,
which allows for assigning more or less importance to one or another element, depending
on the case study examined. This parameter also enables carrying out sensitivity analyses to
examine the importance of the cost satisfaction vs. the energy and peak power satisfactions.
In this paper, a value of α = 0.5 was considered, according to previous works [35]. Finally,
note that λ_C, λ_E and λ_P are dimensionless variables that represent the satisfaction of
end users in regard to the solution on a 0–1 scale, as in the literature [33]. Their values are
determined after solving the model (Section 5).

[MAX]α · λ_C +
1
2
(1− α)(λ_E + λ_P) (1)

3.1.4. Constraints

• General constraints

This is example two of an equation: Constraints (2), (3) and (4) define the generation
points (xgp = 1), as those are where the wind turbines and/or PV panels are located.
Constraints (2) and (3) also limit the number of generators that can be installed at the
same point. Constraint (5) sizes the batteries installed at each generation point so that
they cover the demand of the point (edp, defined later in the fuzzy constraints) plus the
dependent points through the output LV lines, taking the self-sufficiency requested, the
depth of discharge and the efficiencies into account. Constraints (6) and (7) link the energy
and power flows with the existence of an LV line between any two demand points, p
and d. Constraint (8) establishes the radial structure of the microgrids: demand points
can only have an input LV line, except for generation points, which cannot have any.
Constraints (9) and (10), respectively, define the voltage drop between any two connected
demand points and the maximum intensity that can flow. Constraint (11) sizes solar
controllers according to the nominal power of the PV panels installed at each generation
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point. Constraint (12) means that inverters can only be installed at generation points.
Finally, constraints (13) and (14) force meters to be installed at microgrid-connected points.

A
∑

a=1
xap,a ≤ NA · xgp p = 1, . . . , N (2)

S
∑

s=1
xsp,s ≤ NS · xgp p = 1, . . . , N (3)

A
∑

a=1
xap,a +

S
∑

s=1
xsp,s ≥ xgp p = 1, . . . , N (4)

B
∑

b=1
EBb · xbp,b

DB·ηB·η I
VB +

N
∑

j=1

EMAX
j
ηC

(
1− xgp

)
≥ edp + ∑

d∈Qp

f ep,d
p = 1, . . . , N (5)

f ep,d ≤
(

N
∑

j=1

EMAX
j
ηC

)
C
∑

c=1
xcp,d,c

p = 1, . . . , N; d ∈ Qp (6)

f pp,d ≤
(

N
∑

j=1

PMAX
j
ηC

)
C
∑

c=1
xcp,d,c

p = 1, . . . , N; d ∈ Qp (7)

N
∑

q=1|p∈Qq

C
∑

c=1
xcq,p,c + xgp ≤ 1 p = 1, . . . , N (8)

vp − vd ≥
Lp,d ·RCc · f pp,d

VN −
(
VMAX −VMIN)(1− xcp,d,c

)
p = 1, . . . , N; d ∈ Qp; c = 1, . . . , C (9)

f pp,d

VN −
(

N
∑

j=1

PMAX
j

VMIN ·ηC

)(
1− xcp,d,c

)
≤ ICc

p = 1, . . . , N; d ∈ Qp; c = 1, . . . , C (10)

Z
∑

z=1
PZz · xzp,z ≥

S
∑

s=1
PSs · xsp,s p = 1, . . . , N (11)

xip,i ≤
(

N
∑

j=1

PMAX
p
PIi

)
xgp

p = 1, . . . , N; i = 1, . . . , I (12)

∑
d∈Qq

C
∑

c=1
xcp,d,c ≤

(
PMAX

p − 1
)

xmp p = 1, . . . , N (13)

N
∑

q=1|p∈Qq

C
∑

c=1
xcq,p,c ≤ xmp p = 1, . . . , N (14)

• Constraints that model fuzziness

Constraint (15) defines the cost satisfaction variable (λ_C). The cost of the equip-
ment installed (left side of the inequality: wind turbines, PV panels, controllers, batteries,
inverters, meters and LV lines) ranges between the minimum cost (CMIN, for full satisfac-
tion λ_C = 1) and the maximum cost (CMAX = CMIN + ∆C, for null satisfaction λ_C = 0).
Constraint (16) carries out an energy balance at each demand point. The energy supplied
to a point through the input lines or the generators installed at that point (left side of
the inequality) must be higher than or equal to the energy consumed by the point (edp)
plus the energy supplied to the dependent points through the output lines (last element).
Constraints (17) and (18) define the energy consumption of each demand point. The con-
sumption of a point ranges between the essential demand (Ep

MIN, for null satisfaction
λ_E = 0) to the improved demand (Ep

MAX = Ep
MIN + ∆Ep, for full satisfaction λ_E = 1). In

addition, the efficiency of the LV lines must be considered (or not) depending on whether
it is a point supplied by a microgrid (or a generation point). Considering this, the sum
in brackets is included in both constraints as an upper bound to activate/disable one or
another. Hence, in the case of generation points (xgp = 1), constraint (17) is activated and
(18) disabled. Therefore, the consumption of the point (edp) will be directly a value between
Ep

MIN and Ep
MIN + ∆Ep, depending on the value taken by λ_E. In contrast, for points

supplied through a microgrid, constraint (17) is disabled and (18) activated; therefore, the
consumption (edp) still ranges between Ep

MIN and Ep
MIN + ∆Ep but also considers the LV

lines’ efficiency (ηC). Additionally, note that the inequalities are defined in such a way that
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λ_E takes the satisfaction value of the least satisfied demand point among the N points.
Constraints (19), (20) and (21) are analogous to (16), (17) and (18), respectively, except for
the peak power demand.

N
∑

p=1

A
∑

a=1
CAa · xap,a +

N
∑

p=1

S
∑

s=1
CSs · xsp,s +

N
∑

p=1

Z
∑

z=1
CZz · xzp,z +

N
∑

p=1

B
∑

b=1
CBb · xbp,b+

+
N
∑

p=1

I
∑

i=1
CIi · xip,i +

P
∑

p=1
CM · xmp +

N
∑

p=1
∑

d∈Qp

C
∑

c=1
Lp,d · CCc · xcp,d,c ≤ CMIN + ∆C(1− λ_C)

(15)

N
∑

q=1|p∈Qq

f eq,p + ηB · η I
(

A
∑

a=1
EAp,a · xap,a +

S
∑

s=1
ESs · xsp,s

)
≥ edp + ∑

d∈Qp

f ep,d
p = 1, . . . , N (16)

edp ≥ EMIN
p + ∆Ep · λ_E−

(
N
∑

j=1

EMAX
j
ηC

)(
1− xgp

) p = 1, . . . , N (17)

edp ≥
EMIN

p +∆Ep ·λ_E
ηC −

(
N
∑

j=1

EMAX
j
ηC

)
xgp

p = 1, . . . , N (18)

N
∑

q=1p∈Qq

f pq,p +
I

∑
i=1

PIi · xip,i ≥ pdp + ∑
d∈Qp

f pp,d
p = 1, . . . , N (19)

pdp ≥ PMIN
p + ∆Pp · λ_P−

(
N
∑

j=1

PMAX
j
ηC

)(
1− xgp

) p = 1, . . . , N (20)

pdp ≥
PMIN

p +∆Pp ·λ_P
ηC −

(
N
∑

j=1

PMAX
j
ηC

)
xgp

p = 1, . . . , N (21)

3.2. Average Satisfaction Fuzzy Model

Unlike the above model, which considered the maximization of the least satisfied
demand point, now the maximization of satisfaction of all points is taken into account.
Consequently, a specific satisfaction variable is considered for each point, and the objective
function and some constraints are modified as described below.

• Dimensionless real non-negative variables that model fuzziness:

λ_Ep Satisfaction of demand point p regarding the energy supplied (p = 1, . . . , N);
λ_Pp Satisfaction of demand point p regarding the peak power supplied (p = 1, . . . , N).

• Objective function

The objective function (1’) substitutes (1) in order to maximize the global satisfaction
of end users. This function includes, on the one hand, the project cost satisfaction and, on
the other, the average between the energy and peak power satisfactions for all the demand
points. In addition, a calibration parameter α is included and, in this paper, a 0.5 value was
considered [35].

[MAX]α · λ_C +
1

2N
(1− α)

(
N

∑
p=1

λ_Ep +
N

∑
p=1

λ_Pp

)
(1’)

• Constraints

Constraints (17’), (18’), (20’) and (21’), respectively, substitute (17), (18), (20) and (21).
Note that instead of λ_E and λ_P, now λ_Ep and λ_Pp are used.

edp ≥ EMIN
p + ∆Ep · λ_Ep −

(
N
∑

j=1

EMAX
j
ηC

)(
1− xgp

) p = 1, . . . , N (17’)

edp ≥
EMIN

p +∆Ep ·λ_Ep

ηC −
(

N
∑

j=1

EMAX
j
ηC

)
xgp

p = 1, . . . , N (18’)
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pdp ≥ PMIN
p + ∆Pp · λ_Pp −

(
N
∑

j=1

PMAX
j
ηC

)(
1− xgp

) p = 1, . . . , N (20’)

pdp ≥
PMIN

p +∆Pp ·λ_Pp

ηC −
(

N
∑

j=1

PMAX
j
ηC

)
xgp

p = 1, . . . , N (21’)

4. Case Studies

Six case studies from three different Latin American countries were examined in order
to evaluate the above FMILP models. The main characteristics of the communities and
their population are described as follows: two from the Ecuadorian Amazon (Section 4.1),
two from a semi-arid Mexican area (Section 4.2) and two from the Peruvian highlands
(Section 4.3). Note that the characteristics of the communities varied significantly in order
to test the performance of the proposed solving procedure in different contexts. Finally,
the techno-economic parameters of the equipment considered for the analysis are detailed
(Section 4.4).

4.1. Ecuadorian Communities

The two communities studied were Suraka (2◦02′21′′ S–76◦21′29′′ W) and Conambo
(2◦00′22′′ S–76◦27′08′′ W) (Figure 2). Both have similar standards of living, access to basic
services and cultural characteristics. Regarding basic services, neither of them has access
to drinking water, sewage systems or electricity. Suraka had 12 demand points: nine
houses, two community centers and one school. In contrast, Conambo is a particularly
large community, with 61 demand points: 49 houses, 8 school classrooms and 4 community
centers (i.e., one meeting room, two dining rooms and one waiting room). Finally, according
to the project promoters, wind turbines were not considered for the Amazon communities
because of this technology’s negative environmental impact (mainly, tree felling).

Figure 2. Layout of the Ecuadorian communities.

4.2. Mexican Communities

The communities studied were Tuzal (16◦42′11′′ N–93◦55′02′′ W) and Villa del Rio
(16◦44′42′′ N–93◦55′13′′ W) (Figure 3), located in the state of Chiapas. This state is
in the south of the country and has the lowest HDI: 0.667; there are approximately
6000 communities without access to electricity [41]. Tuzal is 90 km from the regional
capital and had 14 houses, 1 school, 1 community center, 1 store and 1 church. None of the
houses have drinking water; therefore, it must be carried from a nearby well. Access to this
community is difficult because of the mountainous relief. Villa del Rio is 100 km from the
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regional capital and had 20 houses, 1 school, 1 community center, 2 stores and 2 churches.
Access to the community is also difficult because of the mountainous relief and dirt roads.

Figure 3. Layout of the Mexican communities.

4.3. Peruvian Communities

The two studied communities were El Alumbre (6◦52′57′′ S–78◦26′23′′ W) and Alto
Peru (6◦54′25′′ S–78◦37′24′′ W) (Figure 4). The former had 33 houses, 1 school and
1 health center, widely dispersed. Alto Peru had 26 houses, 50% of them concentrated
in 30% of the territory. The wind resource in both communities was variable; in some
parts of the community, the wind resource was high, while other parts had low to mod-
erate wind resource. The solar resource was highly significant, constant and the same for
both communities.

Figure 4. Layout of the Peruvian communities.

4.4. Input Data

Table 1 summarizes the data used for evaluating the proposed solving procedure. The
data are different for the three countries studied. Regarding the essential and improved
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demands, values were defined together with experts from each country, according to the
specific needs of each region’s population. Based on these scenarios, the maximum (CMAX)
and minimum (CMIN) costs for each community are calculated using the deterministic
MILP model [36]. The other data were gathered from commercial catalogues, the literature
review and consultations with project promoters. The models were solved with the ILOG
CPLEX 12.6 on a 2.40 GHz, CPU Intel Core 15-1135G7 computer with 12 GB of RAM.

Table 1. Input data for each community and country.

Community
Ecuador Mexico Peru

Suraka Conambo Tuzal Villa del Rio El Alumbre Alto Peru

Demand
Points

Demand points N 12 61 18 26 35 26

Maximum distance LMAX (m) 500 500 500

Energy
Demand

Essential
Ep

MIN (Wh/day) 1000 (all)
100 (other)

750 (houses)
1500 (churches)

280 (houses)
975 (other) 280 (houses)

Improved
Ep

MAX (Wh/day)
1500 (all)

150 (other)
1125 (houses)

2250 (churches)
420 (houses)
1463 (other) 420 (houses)

Peak
Power

Demand

Essential
Pp

MIN (W) 600 (all)
50 (other)

300 (houses)
750(churches)

200 (houses)
600 (school)

1000 (health c.)
200 (houses)

Improved
Pp

MAX (W)
900 (all)

75 (other)
450 (houses)

1125 (churches)

300 (houses)
900 (school)

1500 (health c.)
300 (houses)

Wind
Turbines

Options A n.a. 6 4

Maximum number NA n.a. 28 28

Energy EApa (Wh/day) n.a. 180 to 121,487 61 to 16,464

Cost CAa (USD) n.a. 1565 to 40,242 974 to 5132

PV
Panels

Options S 1 5 4

Maximum number NS 40 52 52

Energy ESs (Wh/day) 1179 403 to 1048 217 to 652

Nominal power PSs (W) 330 100 to 260 50 to 150

Cost CSs (USD) 350 197 to 245 451 to 800

PV
Controller

Options Z 2 4 4

Peak power PZz (W) 480 to 2880 50 to 200 50 to 200

Cost CZz (USD) 300 to 700 67 to 125 67 to 125

Batteries

Options B 2 4 4

Capacity EBb (Wh) 1800 to 3600 24,422 to 63,360 1500 to 3000

Cost CBb (USD) 300 to 850 132 to 387 225 to 325

Discharge DB (u.f.) 0.60 0.60 0.60

Self-sufficiency VB (days) 3 2 2

Efficiency ηB (u.f.) 0.85 0.85 0.85

Inverters

Options I 2 5 4

Peak power PIi (W) 600 to 3600 450 to 3000 300 to 3000

Cost CIi (USD) 400 to 2000 60 to 582 377 to 2300

Efficiency ηI 0.85 0.85 0.85

Meters Cost CM (USD) 50 50 50

LV Lines

Options C 2 3 2

Resistance RCc (Ω/m) 0.0016 to 0.0030 0.0017 to 0.0027 0.0017 to 0.0027

Intensity ICc (A) 60 to 96 89 to 101 89 to 101

Cost CCc (USD/m) 3.94 to 6.03 4.90 to 5.25 4.90 to 5.00

Nominal voltage VN (V) 220 220 220

Minimum voltage VMIN (V) 210 210 210

Maximum voltage VMAX (V) 230 230 230

Efficiency ηC (u.f.) 0.90 0.90 0.90
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5. Results and Discussion

This section, first of all, discusses the results obtained for the six studied communities
in regard to how balanced solutions were obtained with the proposed FMILP models
(Section 5.1). Then, the two modeling assumptions (i.e., minimum satisfaction and average
satisfaction) are compared to identify the most suitable one (Section 5.2).

5.1. Results for the Six Case Studies

Figure 5 shows the results of satisfaction regarding the cost λ_C (blue), energy λ_E
(green) and peak power λ_P (red) for the six studied communities. The results are organized
in three images per country, using dashed (i.e., Suraka, Tuzal and El Alumbre) or dotted
lines (i.e., Conambo, Villa del Rio and Alto Peru). The results are shown for the four
solutions obtained in each community. The results of the deterministic MILP model are
presented at the extremes of the figure: essential demand (top left) and improved demand
(top right). The results of the FMILP models are presented in the middle: minimum
satisfaction (mid-left) and average satisfaction (mid-right). Hence, for instance, in Suraka
(Ecuador), Figure 5 shows the values of λ_C = 1.00, λ_E = 0.22 and λ_P = 0.16 obtained for
the essential demand with the deterministic MILP model and λ_C = 0.84, λ_E = 0.13 and
λ_P = 1.00 obtained with the minimum satisfaction FMILP model.

Regarding the MILP results, the essential demand solutions have full cost satisfaction
and very low energy satisfaction with, occasionally, high power satisfaction. Indeed, the
essential demand solutions were not limited to null energy and power satisfaction (equal
to 0.0). The reason for this is the staggered nature of the equipment and economies of
scale, which means that, in some cases, a higher energy and/or peak power demand than
needed is supplied without increasing the cost. This varies depending on the community;
for instance, in Tuzal the essential demand MILP model obtained an energy satisfaction of
0.14 and a power satisfaction of 0.90. In contrast, the energy satisfaction in Suraka was 0.22
and the peak power was 0.16. However, improved demand solutions always obtain full
satisfaction for the energy and peak power and null satisfaction when it came to the cost.

Figure 5. Cont.
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Figure 5. Results for the 6 case studies.

Regarding the FMILP solutions, when compared to the essential demand solutions,
they provided similar energy satisfaction (slightly lower or higher, depending on the
community) but with significantly higher peak power satisfaction in exchange for slightly
more expensive solutions. For instance, in Alto Peru energy satisfaction increased from 0.10
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(essential) to 0.26 (minimum) or 0.28 (average) and the peak power from 0.43 (essential) to
0.98 (minimum) or 0.97 (average). These improvements were accomplished with a small
reduction in the cost satisfaction from 1.00 (essential) to 0.77 (minimum) or 0.81 (average).
When compared to the improved demand solutions, the FMILP solutions provided similar
peak power satisfaction but less energy satisfaction to obtain a much higher cost satisfaction.

Thus, the results confirm that the solutions obtained with the FMILP were more bal-
anced than those from the deterministic MILP. In general, the FMILP solutions compensate
for a reduction in one of the satisfaction variables with an increase in one of the other two
satisfaction indicators. Therefore, the use of the FMILP models reduces the negative effects
of uncertainty and obtains robust and globally better solutions in terms of satisfaction.

It is also worth noting that, in all of the Ecuadorian and Mexican communities, the
average satisfaction assumption showed results with an energy satisfaction and equal
peak power satisfaction similar to the minimum satisfaction assumption, but the average
assumption solutions had a higher cost. In contrast, the Peruvian communities showed the
opposite situation. Therefore, the comparison between these two modeling assumptions is
not straightforward and is further examined in Section 5.2.

5.2. Comparison of Assumptions

The above section showed the most balanced solutions obtained with the FMILP
models rather than with the deterministic model. However, the discussion regarding the
minimum satisfaction and the average satisfaction assumptions needs to be examined
in more detail. In this regard, note that the objective functions of the FMILP models
(see Equations (1) and (1’)) balance the cost satisfaction with the average of the energy
and peak power satisfactions. Therefore, the comparison of assumptions in Figure 5 is
not straightforward, since variations in cost satisfaction are not directly proportional to
variations in energy or peak power satisfaction.

In order to deal with this, both assumptions were compared. Figure 6 shows the
12 solutions examined (i.e., six communities with two assumptions per community). For
each solution, two values were calculated: the minimum satisfaction objective function (1),
top image; the average satisfaction objective function (1’), bottom image. For instance, in
Suraka, the minimum satisfaction FMILP was solved, and the obtained value of the objective
function (1) was 1.40 (top). For this solution, the value of the other objective function (1’)
was calculated manually, obtaining 1.41 (bottom). Additionally, also for Suraka, the average
satisfaction FMILP was solved, and the obtained value of the objective function (1’) was
1.49 (bottom). For this solution, the value of the other objective function (1) was calculated
manually, obtaining 1.25 (top).

As shown in Figure 6, logically, the minimum satisfaction solutions (red bars) in the
top image are higher than the average satisfaction solutions (green bars) for all of the
communities; the opposite occurs in the bottom image. However, the differences between
bar sizes were significantly higher for the minimum satisfaction objective function (top)
than for the average satisfaction objective function (bottom). For instance, in Conambo
the difference was 0.19 for the minimum satisfaction objective function (1.33 vs. 1.14),
while it was only 0.05 for the average satisfaction objective function (1.46 vs. 1.51). In El
Alumbre, the differences were even higher: 0.54 (1.44 vs. 0.90) and 0.07 (1.44 vs. 1.51),
respectively. Consequently, the average satisfaction solutions logically obtained top val-
ues for their objective function (1’), but their performance on the minimum satisfaction
objective function (1) was limited. In contrast, the minimum satisfaction solutions are more
recommendable, since they logically obtained the top values in their objective function (1)
and, in addition, they achieved close-to-top values in terms of the average satisfaction
objective function (1’).
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Figure 6. Comparison of the objective function values between assumptions.

In short, as a recommendation for project promoters willing to design an electrification
project for a community without electricity, where demand is difficult to estimate, the
authors suggest solving the two proposed FMILP models; the obtained solutions would
balance, in a different way, the satisfaction regarding the cost, energy and peak power.
Then, a choice can be made between these two solutions based on the very specific details
of each one, taking into account the opinion of experts and the community. However, the
general recommendation is that the minimum satisfaction FMILP model obtains globally
better solutions.

6. Conclusions

Estimating demand in settlements accessing electricity for the first time is complex
and subject to uncertainty. With the current tools, project developers must obtain a unique
electrification solution (the quality of which logically depends on the estimated demand) or
examine different demand values (each one leading to a different solution with a different
cost) and then manually analyze the best one. In both cases, the decision-making process
has limitations that might impact on the performance of the finally implemented solution.



Mathematics 2022, 10, 1995 17 of 19

To overcome this situation, this work developed a tool that enables satisfaction with regard
to the project cost and the energy and peak power supplied to end users to be balanced.

In order to do so, a novel FMILP model was proposed, based on a modeling approach
tested in the literature as efficient, to balance the cost satisfaction and the energy and peak
power satisfaction. Hence, project promoters have a powerful tool for designing rural
electrification projects in developing countries, combining wind and PV technologies as
well as microgrids and individual systems, while taking into account the uncertainty in
demand estimation. Rather than being subject to a specific demand value, the novel FMILP
model enables a range of values to be specified and the most balanced solution is returned.
In addition, two assumptions were modeled: maximizing the minimum satisfaction (focus
on the least satisfied demand point) and maximizing the average satisfaction (global
satisfaction of all points).

The validation of the proposed solving procedure was performed using six case
studies from three Latin American countries (i.e., Ecuador, Mexico and Peru). In particular,
two demand scenarios were defined: an essential demand, to cover basic end-user needs,
and an improved demand, above which solutions would be considered too expensive.
The FMILP solutions (one for each assumption) were compared with those obtained
with a deterministic MILP model. The results show that the MILP models led to low-
supply or expensive solutions, while the FMILP models allowed for a balance between
the cost, energy and peak power to be achieved. Finally, the results for the FMILP models
under the two assumptions were compared. Although the two models can be easily
solved and the best option can then be selected based on specific details, the minimum
satisfaction FMILP model is recommended in the case of promoters wanting a unique
solution, since it obtains the top values for minimum satisfaction as well as close-to-top
values for average satisfaction.

Prior to this work, project promoters could obtain a unique electrification solution,
subject to the quality of the estimation of end-users’ demand. In the case of wanting
to test different demand scenarios, they had to solve each one manually through the
deterministic MILP model and then select the best one after a discussion that might not be
straightforward. In contrast, with the proposed FMILP models, this process is simplified.
Now, project promoters only have to delimit the range of demand values, and the most
balanced solution is directly obtained with each of the two FMILP models developed.
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