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Abstract: This paper describes a new method for testing randomized clinical trials with binary
outcomes, which combines the O’Brien and Fleming (1979) multiple-testing procedure with optimal
allocations and unequal weighted samples simultaneously. The O’Brien and Fleming method of
group sequential testing is a simple and effective method with the same Type I error and power
as a fixed one-stage chi-square test, with the option to terminate early if one treatment is clearly
superior to another. This study modified the O’Brien and Fleming procedure, resulting in a more
flexible new procedure, where the optimal allocation assists in allocating more subjects to the winning
treatment without compromising the integrity of the study, while unequal weighting allows for
different samples to be chosen for different stages of a trial. The new optimal weighted multiple-
testing procedure (OWMP), based on simulation studies, is relatively robust to the added features
because it showed a high preference for decreasing the Type I error and maintaining the power.
In addition, the procedure was illustrated using simulated and real-life examples. The outcomes
of the current study suggest that the new procedure is as effective as the original. However, it is
more flexible.

Keywords: statistical algorithm; sequential group test; O’Brien and Fleming; Type I error and power;
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1. Introduction

Experimental designs were introduced firstly in agricultural projects. Industrial and
laboratory researchers were inspired to adopt them into clinical trials of pharmaceuticals in
humans because of their distinction in monitoring the experimental process to minimize
errors. A clinical trial’s primary purpose is to find the optimum medical treatment by
comparing the benefits of competing therapies at minimal costs and within a short period.
Doing so with the least possible errors is highly critical [1].

The first clinical trial designs utilized classical experimental designs. According to
medical and physiological science progress, there was a need to change some elements
during the trial process. The sample size could be modified, some trials could be terminated
early, or the trial stages adjusted; the classical analysis cannot accommodate these modifica-
tions. Therefore, adaptive designs have been developed. An adaptive design is a method
that involves modification of a current trial’s design or statistical procedure in response
to the data generated from the trials. In addition, they allow investigators to identify
the best treatment under study without compromising its validity and integrity [2]. The
types of adaptive design methods generally considered in clinical trials include an adap-
tive treatment switching design, a group sequential design, a biomarker-adaptive design,
an adaptive randomization design, a drop-the-losers design, a sample size re-estimation
design, and a hypothesis-adaptive design [2].

An interim analysis (a group sequential design) is one of the most popular options.
Using interim analysis has several benefits that can be loosely categorized into ethical,
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administrative, and economic categories. On the other hand, a group sequential design is
morally imperative to control the results of clinical trials, including those involving human
subjects, to minimize individual risks [3].

Since group sequential testing procedures became widely used in medical experiments.
The procedures were crucial to be developed by researchers to generalize and modify
procedures for varying circumstances. By way of example, Maurer and Bretz developed
a class of group-sequential-weighted Bonferroni procedures with multiple endpoints, for
which the correlations of sequential statistics are used. Consequently, the power was
increased, while the family-wise error rate was effectively controlled [4]. On the other
hand, Yiyong Fu presented follow-up work to Maurer and Bretz, proposing a Holm-type
step-down exact parametric procedure for situations in which correlations are unknown.
Further, he briefly outlined an extension of the partially parametric Seneta–Chen method
that is naturally a group sequential design [5]. Zhenming Shun examined an approach that
combined sample size re-estimation, a negative stop (stochastic curtailment), and group
sequential analysis in a single interim analysis conducted with normal data [6].

Urach and Posch also considered an approach to improve critical boundaries for
multi-arm experiments by using multi-arm group sequential designs with a simultaneous
stopping rule. The resulting designs are also intended to optimize their boundaries’ shape
and determine their operating characteristics [7].

Most researchers recently adopted well-known procedures, such as the O’Brien and
Fleming, Pocock, and Haybittle–Peto procedures [8].

For the development of group sequential testing procedures, O’Brien and Fleming
(1979) provided a primary inspiration in this field [9], since they presented a direct and
valuable group sequential testing procedure to compare two treatments in clinical trials.
When one treatment performs better than the other, the trial is terminated using a smaller
sample, where the procedure offers the same Type I error and power rates as a fixed
one-stage chi-square test for categorical data.

The usage of this procedure can be seen in several medical studies. For example,
Motzer used the O’Brien and Fleming stopping boundaries to end his experiment, entitled
“efficacy of everolimus in advanced renal cell carcinoma”, early [10]. In addition, Goldberg’s
study was stopped after 50% of patients responded to his study, entitled “randomized
controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in
patients with previously untreated metastatic colorectal cancer.” [11]. Furthermore, Baily
used it in their designed trial to examine whether male circumcision was protective against
HIV infection [12]. In addition to this, Marcus terminated the Gallium trials earlier by
using the O’Brien and Fleming interim analysis. These trials involved follicular lymphoma
patients [13].

The O’Brien and Fleming multiple testing procedure has been modified several times
by researchers, such as Kung-Jong Lui, who examined the performance of the O’Brien–
Fleming multiple testing procedure when intraclass correlations were presented [14]. Along
with this, he enhanced the original procedure by increasing the number of stages and the
number of treatments. Moreover, in Hammouri’s study (2013), the stopping bounds of
the O’Brien–Fleming procedure were corrected, and the validation was verified after the
correction was applied. When she reviewed the multiple testing methods’ stopping bounds,
a non-monotonicity problem in the critical values was noticed. The solution was that the
number of simulations producing critical values was increased compared to the number of
simulations in the initial process. That facilitated the procedure with monotonic critical
values. Indeed, when more iterations were added to the simulation, the critical values got
larger and made the rejection of the null hypotheses harder, leading to control of the Type
I error. Furthermore, the O’Brien–Fleming procedure was updated in Hammouri’s work
to make it more flexible via three implementations. Each implementation was executed
separately. Two of these three implementations are the optimal allocation, where the idea
is to allocate more patients to the better treatment after each interim analysis. The other
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implementation allows for different sample weights for different stages instead of an equal
sample size within the various stages [15].

O’Brien and Fleming (1979) procedure was built using balanced randomization. In
this paper, the randomization will be changed to an unbalanced one. Randomization is
known to eliminate potential bias and confounders from clinical trials. It is the standard
gold method for statistical power. One asset that can be used with multiple-testing methods
is unbalanced randomization, which seems favorable due to several constraints. Scientists
preferred to use optimal proportions to solve two problems: minimize the number of
failures with the power, which is fixed, and maximize the homogeneity test’s power with a
fixed sample size [16].

Optimal experimental design can be obtained by carefully allocating treatment to
study subjects; subjects are randomized to less toxic or more effective treatment regimens.
There are many different optimal allocation designs for clinical trials available in the
literature. For example, response-adaptive randomization (RAR) design is used to find
the optimal allocations for clinical trials with multiple endpoints. RAR designs can be
traced to Thompson (1933), Robbins (1952), and Zelen (1969) [17–19]. An example of
optimal allocation of patients with RAR designs is the randomized play-the-winner rule.
Hu and Rosenberger’s (2003) method for optimal RAR procedures involved formalizing
the objectives and deriving the optimal allocation proportion for binary responses [20].
Thus, the OWMP will use optimal allocation instead of equal allocation.

One more change will be including the unequal weights in the subsamples. In the
literature, Lehmacher and Wassmer (1999) proposed a method that uses adaptive sample
size calculations in group sequential trials; the method is for the adaptive planning of
sample sizes for group sequential clinical trials [21]. The method was for group sequential
trials that combined the results from separate stages using the normal inverse method.
The method allows for data-driven reassessments of the sample size without exaggerating
the Type I error rate. Next, Proschan and Chi suggested two different two-stage adaptive
designs that keep the Type I error rate steady. Proschan’s adaptive design is essential to
accomplish an anticipated statistical power while restraining the maximum sample size.
Furthermore, Chi’s adaptive design consists of the main stage with adequate power to
reject the null hypothesis and an implementation stage that permits increasing the sample
size if the actual effect size is smaller than anticipated [22].

Usually, when a new method is developed from previous methods, a Monte Carlo
simulation is used to validate the new one. A Monte Carlo simulation is a system for
doing what-if analysis that allows users to measure the reliability of different analyses’
results and inferences. In the 1940s, Jon von Neumann and Ulam developed the Monte
Carlo simulation, a handy statistical tool for evaluating multiple scenarios in-depth to
study uncertain situations. Additionally, simulation studies are associated with pseudo-
random sampling, which creates data from computer experiments. Since data generation
processes are known in advance, simulation studies have the advantage of understanding
and studying the performance of statistical methods [23–25].

In this current study, a new method has been developed that incorporates optimal
allocation and varying sample weights at different stages, together with the O’Brien and
Fleming multiple testing procedure named the optimal weighted multiple-testing proce-
dure. Furthermore, Type I error and power have been studied to determine if the new
method is effective using Monte Carlo simulations.

2. Materials and Methods

The process outlined by O’Brien and Fleming will be reviewed first, since it is the base
for this work. This procedure can be used in any clinical trial comparing two treatments.
The response to each treatment must be measured using a binary outcome where treatments’
outcomes should be collected independently.
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2.1. The O’Brien and Fleming Procedure

A description of the steps for the O’Brien and Fleming procedure is presented here,
along with an explanation of how critical values were calculated for controlling Type I
errors [10]:

2.1.1. Statement of the O’Brien and Fleming Procedure

The data are reviewed and tested periodically, with n1 subjects receiving treatment 1
and n2 subjects receiving treatment 2 for each stage. Since there are K stages, the maximum
number of subjects is N = K(n1 + n2). Where K can take values from one to five. All of
these values are fixed in advance.

Initially, n1 and n2 subjects are assigned to treatment 1 and treatment 2, respectively.
If 1

K χ2
(1) ≥ P (K, α), then the experiment is terminated, and the hypothesis of having a

difference between treatments (Ha) is accepted. Where χ2
(1) is the usual Pearson chi-square,

α is the size of the test, and P (K, α) is a critical value obtained from an O’Brien and
Fleming table (Table 1). Otherwise, if the critical value is not exceeded, the next n1 + n2
subjects are randomized, and their measurements are observed.

Table 1. The O’Brien and Fleming original critical values.

α
Number of Stages (K)

1 2 3 4 5

0.5 0.462 0.656 0.750 0.785 0.819
0.1 2.67 2.859 2.907 2.979 3.087

0.09 2.866 3.031 3.073 3.147 3.283
0.08 3.077 3.197 3.24 3.338 3.467
0.07 3.294 3.363 3.437 3.546 3.663
0.06 3.576 3.652 3.683 3.853 3.889
0.05 3.869 3.928 3.940 4.170 4.149
0.04 4.289 4.231 4.264 4.477 4.584
0.03 4.800 4.722 4.700 4.964 5.045
0.02 5.490 5.392 5.462 5.555 5.789
0.01 6.667 6.574 6.503 6.864 6.838
0.005 7.885 7.818 7.442 7.890 8.037
0.001 10.062 10.240 10.202 11.060 10.600

In general, for the ith test, the study is terminated, and the hypothesis of having a
difference between treatments (Ha) is accepted if i

K χ2
(i) ≥ P (K, α) where χ2

(i) is the usual
Pearson chi-square based on all data collected up to the ith test. If not, the data for next
stage will be collected.

If, after completing K tests, χ2
(K) does not exceed P(K, α), the study is terminated

with the conclusion that the hypothesis of having a difference between treatments (Ha) is
rejected at the α level of significance.

2.1.2. Evaluation of the Stopping Bound

To evaluate the stopping bound, for each i = 1, . . . , K, and j = 1, 2, let πj represents
the success rate for treatment j and let yji be the number of successes with treatment j
occurring after the (i− 1)st test but prior to the ith test. Moreover, define Sji = ∑i

k=1 yjk,

and pji =
Sji
inj

. The hypothesis being tested H0 is that π1 = π2 = π, where π is an unknown

constant between 0 and 1. With this notation, χ2
(i) maybe presented as χ2

(i) = Z2
i , where

Zi =
P1i−P2i

V̂ar(P1i−P2i)
1
2

. Such that:

V̂ar(P1i − P2i) =
S1i + S2i
i2n1n2

(
1− S1i + S2i

i(n1+n2)

)
, (1)
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is the pooled estimate of variance. An approximate expression for Zi, obtained by replacing
the estimate of variance with its expectation is given by:

Z∗i = ∑i
k=1

Uk√
k

(2)

where Ui ∼ NID(0, 1), i = 1, . . . , K. Thus approximate values for P(K, α) may be ob-
tained by generating standard normal variates (U1, . . . , UK) and evaluating the percentiles

of max{Ti}, 1 < i < K, where Ti =
(∑i

k=1 Uk)
2

K . Note that max{Ti} has the same distribution
as max{[W(i/K)] 2}, 1 < i < K, where {W(t)|0 < t < 1} represents Brownian motion. This
algorithm is presented graphically in Figure 1.
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Percentile estimates based on 10,000 samples are listed in Table 1 [16].
As a result of the number of iterations used to generate the O’Brien and Fleming

critical values, they did not exhibit monotonicity behavior. Based on the original algorithm
explained earlier in the methodology, Hammouri has used one million iterations instead
of 10,000 to calculate and correct the critical values and found the following values in
Table 2 [15]:

Table 2. Corrected O’Brien–Fleming critical values.

α
Number of Stages (K)

1 2 3 4 5

0.5 0.4547 0.6546 0.7439 0.8013 0.8431
0.1 2.7042 2.8195 2.9247 3.0047 3.0650

0.09 2.8730 2.9817 3.0877 3.1668 3.2275
0.08 3.0633 3.1646 3.2700 3.3498 3.4114
0.07 3.2814 3.3754 3.4799 3.5594 3.6220
0.06 3.5348 3.6207 3.7251 3.8034 3.8669
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Table 2. Cont.

α
Number of Stages (K)

1 2 3 4 5

0.05 3.8399 3.9152 4.0191 4.0961 4.1602
0.04 4.2177 4.2809 4.3836 4.4599 4.5243
0.03 4.7099 4.7622 4.8587 4.9341 5.0008
0.02 5.4106 5.4537 5.5396 5.6148 5.6827
0.01 6.6393 6.6618 6.7353 6.8021 6.8764
0.005 7.8863 7.9019 7.9529 8.0094 8.0803
0.001 10.8280 10.8527 10.8618 10.9263 10.9820

2.2. Optimal Allocation

Optimal allocation aims to use better resources by allocating more subjects to superior
treatment. In the interim analyses with binary responses, the optimal allocation is widely
used. For the OWMP, the new allocation ratio for both groups will depend on the optimality
criteria, based on the success counts from the previous stage in the interim analysis so that
the allocation might change from stage to stage of the study.

Accordingly, optimal allocation is illustrated as follows:
Let f (PA, PB) be a function to compare two binomial probabilities. Three usually

used functions are the simple difference = PA − PB, the relative risk = PB
PA

and the odds

ratio = PAqB
PBqA

. These functions are estimated by replacing PA by P̂A and PB by P̂B, where P̂A

and P̂B are the proportions of successes observed for group A and group B, respectively.
The delta method can be used to estimate the asymptotic variances of these estimators a
Var { f (PA, PB)}.

The idea is to find the optimal allocation R = nA
nB

that has a fixed asymptotic variance
to minimize the expected number of failures by allocating the patients to better treatment.
The unknown binomial parameters determine the optimal allocation. Rosenberger Stallard,
Ivanova, Harper, and Ricks needed to develop a sequential design to estimate the optimal
design. Let X1, . . . , Xn be a binary response (with two values, success = 1 and failure = 0),
and T1, . . . , Tn are treatment assignment indicators, which have the values of one for
treatment A and zero for treatment B. Then, they wrote NA,n = ∑n

i=1 Ti, NB,n = n− NA,n,
P̂A,n = ∑n

i=1
TiXi
NA,n

, P̂B,n = ∑n
i=1

(1−Ti)Xi
NB,n

, q̂A,n = 1− P̂A,n, and q̂B,n = 1− P̂B,n. Further, they
denoted Fi = {X1, . . . , Xn, T1, . . . , Tn} and conditional expectation as Ei(.) = E(.|Fi) .
They stated the following allocation rule:

Ei−1(Ti) =

√
P̂A,(i−1)√

P̂A,(i−1) +
√

P̂B,(i−1)

(3)

Therefore, this rule substitutes the unknown success probabilities in the optimal
allocation rule with the current estimate of the proportion of successes on each treatment
thus far in the trial. When PA, PB ∈ (0, 1),

NA,n

n
→

√
PA√

PA +
√

PB
, as n→ ∞. (4)

Then they reached the following formula
√

PA√
PA+
√

PB
is the optimal allocation [26]. This

formula will be used in this current study as wi =

√
P(i−1),1√

P(i−1),1 +
√

P(i−1),2
.
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3. The Proposed Procedure OWMP
3.1. The New Methodology

Using the corrected critical values and then combining the procedure with the op-
timal allocation together with different sample weights, the procedure was enhanced
for efficiency.

The method is suggested as follows:
There is a total sample size N, and a number of stages K, as well as the sample weights

{we1, . . . , weK} and α, which are all chosen in advance. where sample weights {we1, . . . , weK}
are used to get each stage sample size ni, where wei > 0 ∀ i = 1, · · · , K, we1 > . . . > weK
and ∑wei = 1. For each K, the sample size for each stage i is calculated as follows:

• For i = 1, . . . , K− 1, ni is calculated as ni = round (wei × N), if n1 is even. Otherwise
n1 = round (wei× N) + 1; because equal allocation is used in the first stage. Furthermore,
equal allocation is used in other stages when the optimal ratio equals zero or one.

• For the last stage K, nK = N − ∑K−1
k=1 nk to cover the rounding that is used in the

previous stages.

Now, for i = 1, treatments A and B are assigned to n11 and n12 subjects, respectively.
Where n11 and n12 must be equal and (n1 = n11 + n12 ). For i = 2, . . . , K, A stage with ni
subjects are divided to ni1 and ni2 subjects assigned to treatment A and B, respectively.

Where ni1 = round(wi × ni) with wi =
√

P(i−1),1√
P(i−1),1 +

√
P(i−1),2

, and P(i−1),1 and P(i−1),2 are

success rates from the previous stage for treatment A, and treatment B, respectively [26].
Therefore, ni2 = (ni − ni1) for all 2 ≤ i ≤ K. Then for each stage i = 1, . . . , K, subjects
are randomized, and their measurements are observed. Each subsample will be added to
the previous subsamples for the same treatment. At that time i

K χ2
(i) is calculated. Where

χ2
(i) is the usual Pearson chi-square statistic. i

K χ2
(i) is compared to P(K, α), where α is the

size of the test, and P(K, α) is a critical value from Table 2. If i
K χ2

(i) ≥ P(K, α), then the

study is terminated, and the null hypothesis is rejected. Otherwise i
K χ2

(i) < P(K, α), and
i = K, the study is terminated, and the null hypothesis fails to be rejected. However, if
i
K χ2

(i) < P(K, α), and i < K, the procedure proceeds to the next stage. The method is
illustrated in Figure 2.

3.2. Type I Error and Power to Validate the OWMP

This section utilizes Monte Carlo simulations to investigate the Type I error and the
power of the OWMP. A theoretical approach can, in many situations, be challenging to
implement, much less to find a precise answer. Using Monte Carlo simulations can provide
an alternative to theoretical analysis. In the case of O’Brien and Fleming, they used an
approximation distribution, so they used simulation to show that a fixed one-stage chi-
square test has the same Type I error rate and power as theirs. So, the same approach was
used in the current work, and all simulations were run using SAS software.

3.2.1. Testing Type I Error Algorithm

In order to calculate the Type I error, success probabilities (P = 0.1, 0.2, 0.3, 0.4, 0.5),
α = 0.99 and 0.95 and critical value P(K, α) were chosen with different sample sizes for all
values of K. In each case of K = 1, . . . , 5, both subsamples are generated from the same
binomial distribution with the same success rate. Assess if the OWMP fails to reject the null
hypothesis of no significant difference between groups or accepts that there is a significant
difference between groups. The latter result is causing a Type I error. After repeating this
500,000 times, the proportion of rejecting H0 is calculated and this represents the Type I
error (Figure 3).
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3.2.2. Result of Testing Type I Error

Simulations were run to calculate the Type I error for the multiple-testing procedure
using SAS code. Sample sizes of various scenarios were considered. Almost identical results
were obtained for all sample sizes that were used. Compared to the usual chi-square, the
OWMP maintained, if not decreased, the Type I error. With higher K, it was observed that
the decreasing trend intensified. The reason is that, with a larger K, the usual chi-square
statistic is multiplied by a factor less than one and it is compared with a larger critical value.
So, rejecting H0 becomes harder. For illustration, results for sample size 250 with α = 0.05
and sample size of 300 with α = 0.01 were reported in Tables 3 and 4, respectively.

Table 3. Type I values resulted from Monte Carlo simulations for α = 0.05 with the OWMP.

P

Number of Stages (K)

1 2 3 4 5

0.1 0.0503 0.0486 0.0458 0.0442 0.0415
0.2 0.0499 0.0487 0.0478 0.0457 0.0430
0.3 0.0499 0.0488 0.0476 0.0461 0.0433
0.4 0.0487 0.0485 0.0477 0.0463 0.0438
0.5 0.0499 0.0500 0.0497 0.0453 0.0422

Table 4. Type I values resulted from Monte Carlo simulations for α = 0.01 with the OWMP.

P

Number of Stages (K)

1 2 3 4 5

0.1 0.0093 0.0088 0.0082 0.0079 0.0075
0.2 0.0098 0.0098 0.0094 0.0089 0.0084
0.3 0.0101 0.0100 0.0094 0.0091 0.0088
0.4 0.0104 0.0100 0.0096 0.0092 0.0089
0.5 0.0094 0.0099 0.0097 0.0094 0.0090

In the first case, with α = 0.05 and a sample size of 250, when K = 1, the values for the
Type I error ranged between 0.0499 and 0.0503. While the number of K increased, the values
of the Type I error monotonically decreased, where the values are between 0.0415 and
0.0438 at K = 5, which is less than 0.05, which is an even more acceptable error than the
usual chi-square procedure.

Likewise, various sample sizes were used to compute the Type I error values result-
ing in the same conclusion. For example, the Type I error values with a sample size of
80 and 580 were calculated. The values ranged between 0.0418 and 0.0506, 0.0438 and
0.0507, respectively, for α = 0.05, and all values of K.

Similarly, Type I error values displayed a monotonic behavior with α = 0.01, since the
values ranged between 0.0093 and 0.0104, in the first case, with K = 1. A decrease in Type I
errors has also been noted, while a rise in K values has been applied, which is satisfactory
since the errors do not exceed 0.0104.

Furthermore, other samples were calculated in order to determine the Type I error val-
ues. For example, values for α = 0.01 and sample sizes of 80 and 630 were calculated. It has
been observed that the error values ranged from 0.0090 to 0.0101 and from 0.0084 to 0.0101,
respectively, indicating that the OWMP is working effectively regarding Type I errors.

3.2.3. Testing Power Algorithm

To evaluate the power values, a probability value P1 = 0.1 was chosen for all cases and
a different success probability P2 was chosen from the set {0.15, 0.2, 0.25, 0.3} with α = 0.01
and α = 0.05, the number of interim analyses being 500,000, and the corrected O’Brien and
Fleming critical values P(K, α). Sample sizes were chosen such that the sample guaranteed
the power values to be equal to 0.8 using the usual chi-square test power calculation.
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In each case of K = 1, . . . , 5, the subsamples are generated from two different binomial
distributions with different P1 and P2 to make sure that the alternative hypothesis is true.
Then, the OWMP was used to examine if Ha (that there is a difference between the two
groups) is rejected, or a significant difference is found and Ha is accepted. After repeating
this 500,000 times, the proportion of accepting Ha is computed, and this is the power rate
(because Ha was assured to be true). The process of computing the power is illustrated in
Figure 3.

3.2.4. Result of Testing Power

The OWMP was able to preserve acceptable power values with the new implemen-
tation. The OWMP was studied for α = 0.05 and 0.01, and several values of N that
guaranteed a power of 0.8, and SAS code was used to calculate the power for each case
with a variety of K values. Tables 5 and 6, Figures 4 and 5 show the power values from the
500,000 simulations.

Table 5. Power values for the OWMP with α = 0.05, P1 = 0.1, and P2 = 0.15, 0.2, 0.25, and 0.3.

P1 Number of Stages (K)

0.1

P2 n 1 2 3 4 5

0.15 1366 0.8020 0.7959 0.7890 0.7857 0.7822
0.2 394 0.8046 0.7977 0.7917 0.7858 0.7786

0.25 200 0.8164 0.8062 0.8008 0.7953 0.7892
0.3 120 0.8133 0.8013 0.7931 0.7795 0.7726

Table 6. Power values for the OWMP with α = 0.01, P1 = 0.1, and P2 = 0.15, 0.2, 0.25, 0.3.

P1 Number of Stages (K)

0.1

P2 N 1 2 3 4 5

0.15 2032 0.8010 0.7994 0.7955 0.7918 0.7875
0.2 588 0.8037 0.8016 0.7943 0.7897 0.7840

0.25 296 0.8113 0.8079 0.8002 0.7941 0.7888
0.3 182 0.8085 0.8057 0.8006 0.7926 0.7841
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The probability value P1 = 0.1 was fixed, and the power rates with various values for
P2 = 0.15, 0.2, 0.25, and 0.3, were studied.

The sample sizes 1366, 396, 200, and 120 for α = 0.05, and 2032, 588, 292, and 182 for
α = 0.01 were used to ensure that the power values were 0.8.

It was noticed that with α = 0.05, the results for the power values with K = 1 were
between 0.8046 and 0.8164. Then, the values showed a decreased behavior when the values
of K were increased because the power values, when K = 5, were between 0.7726 and
0.7892, with marginal errors not more than 0.0274 between the power values and the 0.8.

The power values with K = 1 and α = 0.01, were between 0.8010 and 0.8113. It was
further found that by comparing the power results with the values of K, the power values
monotonically decreased as K values increased. However, the power values when K = 5
were between 0.7840 and 0.7888 with marginal errors not more than 0.0160.

In both α values, the marginal errors are negligible to be considered.

3.3. Calculating Rejection Rates for Each Stage

In this section, for each stage, the null hypothesis rejection rates, along with the sample
sizes required to reject it were calculated.

3.3.1. Calculating Rejection Rates for Each Stage When Ha Is True, and the Difference Is
Presented

The rejections were calculated with a standard power value of 0.8, with the proba-
bilities of success of P1 = 0.1 and P2 = 0.2 with α = 0.01, and the sample size was 588.
Table 7 and Figure 6 demonstrate the needed sample size and the number of rejections of
H0 occurring at stage i with 500,000 iterations.

Table 7. Sample sizes and percentages of rejections of H0 occurring at stage i with 500,000 iterations.
Where P1 = 0.1 and P2 = 0.2 with α = 0.01, and the sample size equals 588.

i

Number of Stages (K)

2 3 4 5

First Stage 488(35%) 338 (3%) 300(0%) 180 (0%)
Second Stage 588 (65%) 488 (55%) 430 (25%) 330 (4%)
Third Stage 588 (42%) 530 (49%) 450 (35%)

Fourth Stage 588 (26%) 530 (38%)
Fifth Stage 588 (23%)
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Figure 6. Percent of rejections of H0 occurring at stage i with 500,000 iterations.

With K = 2.35% of rejections occurred in the first stage, and 65% occurred in the
second stage, so the whole sample size was not needed to reject the H0 hypothesis in more
than a third of the cases. Based on K = 3, the sample size needed to reject the H0 hypothesis
in the second stage was 488, which resulted in a 55% rejection rate. The highest rejection
rate with K = 4 was in the third stage with 49%, and the needed sample size was 530 to
reject H0.

In addition, in 74% of the cases, the whole sample was not needed. At K = 5, the
highest rejection percentage was 38%, with a 530 sample size, and the highest percentage
was at the fourth stage. Rejection occurred in 77% of cases earlier in the process.

3.3.2. Calculating Rejection Rates for Each Stage When H0 Is True, and the Difference Is
Not Presented

The rejections were calculated with α = 0.05, and the sample size was 394. Based
on 500,000 iterations, Table 8 and Figure 7 below illustrate the required sample sizes and
the number of rejections (percentages) at each stage for all values of K. It needs to be
noted that these percentages are out of the 5% rejecting rate. The decision rules for this
multiple-testing procedure are nearly identical to the usual chi-square one-stage procedure
in the absence of early termination when H0 is true.

Table 8. Based on 5% of the 500,000 iterations, values for sample sizes and acceptance rates at stage i
when H0 is true.

i

Number of Stages (K)

2 3 4 5

First Stage 250 (1%) 220 (0%) 200 (0%) 160 (0%)
Second Stage 300 (99%) 270 (12%) 250 (1%) 210 (0%)
Third Stage 300 (88%) 280 (23%) 250 (4%)

Fourth Stage 300 (76%) 280 (26%)
Fifth Stage 300 (70%)



Mathematics 2022, 10, 1996 13 of 19

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 19 
 

 

Figure 6. Percent of rejections of 𝐻଴ occurring at stage i with 500,000 iterations. 

3.3.2. Calculating Rejection Rates for Each Stage when 𝐻଴ Is True, and the Difference Is 
Not Presented 

The rejections were calculated with 𝛼 = 0.05, and the sample size was 394. Based 
on 500,000 iterations, Table 8 and Figure 7 below illustrate the required sample sizes and 
the number of rejections (percentages) at each stage for all values of 𝐾. It needs to be noted 
that these percentages are out of the 5% rejecting rate. The decision rules for this multiple-
testing procedure are nearly identical to the usual chi-square one-stage procedure in the 
absence of early termination when 𝐻଴ is true.  

Table 8. Based on 5% of the 500,000 iterations, values for sample sizes and acceptance rates at stage 𝑖 when 𝐻଴ is true. 

i 

𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐒𝐭𝐚𝐠𝐞𝐬 (K) 
 2 3 4 5 

First Stage 250 (1%) 220 (0%) 200 (0%) 160 (0%) 
Second Stage 300 (99%) 270 (12%) 250 (1%) 210 (0%) 
Third Stage  300 (88%) 280 (23%) 250 (4%) 

Fourth Stage   300 (76%) 280 (26%) 
Fifth Stage    300 (70%) 

 
Figure 7. Percent of accepting 𝐻଴ occurring at stage i with 500,000 iterations. 

4. Examples 
4.1. Example 1: Real Life Example 

Three hundred individuals’ behavior was examined regarding their parents’ smok-
ing status and how it influences their behavior. Participants were chosen based on their 
smoking status: 150 smokers and 150 non-smokers, then their parents’ smoking status 
were recorded. After assigning data for each value of 𝐾 from 1 to 5, OWMP was applied. 
The necessary sample size was also noted when the hypothesis was rejected. For illustra-
tive purposes, both methods were applied when 𝐾 = 4: the original O’Brien and Fleming 
method, as well as the OWMP. 

Briefly, the procedure is explained for 𝐾 = 4: 𝑤𝑒ଵ = 40%, 𝑤𝑒ଶ = 25%, 𝑤𝑒ଷ = 20%, 𝑤𝑒ସ = 15%, and by using the weighted formula, we got: 𝑛ଵ = 120, 𝑛ଶ = 76, 𝑛ଷ = 60, 𝑛ସ = 44. 
For the first subsample:  𝑛ଵଵ and 𝑛ଵଶ equal 60 because the subsample was divided 

equally. The chi-square statistic equals 1.534 after multiplying it by one fourth, which is 
not greater than the critical value of 4.0961, so we failed to reject 𝐻଴. 

Figure 7. Percent of accepting H0 occurring at stage i with 500,000 iterations.

4. Examples
4.1. Example 1: Real Life Example

Three hundred individuals’ behavior was examined regarding their parents’ smoking
status and how it influences their behavior. Participants were chosen based on their
smoking status: 150 smokers and 150 non-smokers, then their parents’ smoking status were
recorded. After assigning data for each value of K from 1 to 5, OWMP was applied. The
necessary sample size was also noted when the hypothesis was rejected. For illustrative
purposes, both methods were applied when K = 4: the original O’Brien and Fleming
method, as well as the OWMP.

Briefly, the procedure is explained for K = 4: we1 = 40%, we2 = 25%, we3 = 20%,
we4 = 15%, and by using the weighted formula, we got: n1 = 120, n2 = 76, n3 = 60,
n4 = 44.

For the first subsample: n11 and n12 equal 60 because the subsample was divided
equally. The chi-square statistic equals 1.534 after multiplying it by one fourth, which is not
greater than the critical value of 4.0961, so we failed to reject H0.

For the second stage, with n2 = 76, n21 and n22 are needed to be recalculated by using
the optimal allocation. Where n21 = round(w2 × 76) with wi =

√
19√

19+
√

13
.

The optimal allocation resulted in n21 = 42 and n22 = 34, with the chi-square statistic
equal to 23.05, which is larger than the critical value after multiplying it by 2/4. Thus, H0
is rejected.

Only two stages out of four stages, with only 196 out of the 300 participants, were
needed to end the experiment and get a significant difference between the two treat-
ments. In addition, using the original O’Brien and Fleming method, the following results
were observed:

For the original procedure, equal subsamples are used as follows: n1 = n2 = n3 = n4 = 76
For the first stage, with n11 = n12 = 38, the chi-square statistic equals 0.163. Multiply-

ing it by one-fourth resulted in a value that is not greater than the critical value of 4.096, so
a significant difference was not found.

For the second stage, with n21 = n22 = 38, and the chi-square statistic for the cumula-
tive data equals 5.856. Multiplying it by two-fourths resulted in a value that is not greater
than the critical value, so a significant difference was not found again.

For the third stage, with n31 = n32 = 38, the chi-square statistic for the cumulative
data equals 39.097. Multiplying it by third-fourth results in a value that is greater than the
critical value, so a significant difference was found with using 228 participants in three
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stages, compared to 196 with two stages by using OWMP, which means OWMP reached
the same conclusion with fewer stages and participants than the original procedure.

Table 9 was recapped in Figure 8 to summarize the results.

Table 9. The results of the OWMP for a real-life example.

i Critical Values n1 n2 X1 X2 Total Sample Size Usual Chi-Square i
K χ2

(i)

Result of Case 1 (K = 1)
(we1 = 100%)

1 3.84 150 150 91 14 300 86.9 86.9

Result of Case 2 (K = 2)
(we1 = 60%, we2 = 40%)

1 3.92 90 90 37 13 180 15.95 7.975

Result of Case 3 (K = 3)
(we1 = 40%, we2 = 35%, we3 = 25%)

1 4.02 60 60 19 13 120 1.534 0.5113

2 4.02 118 108 63 13 226 41.201 27.467

Result of Case 4 (K = 4)
(we1 = 40%, we2 = 25%, we3 = 20%, we4 = 15%)

1 4.02 60 60 19 13 120 1.534 0.3835

2 4.02 102 94 47 13 196 25.951 12.976

Result of Case 5 (K = 5)
(we1 = 30%, we2 = 25%, we3 = 20%, we4 = 15%, we5 = 10%)

1 4.16 45 45 13 11 90 0.227 0.0454

2 4.16 85 81 32 13 166 9.791 0.0226

3 4.16 121 105 64 13 226 41.074 24.644
X1 : success probability of treatment A, X2 : success probability of treatment B.
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We can see a difference with only 180 patients, which is less than the 300 patients that
would have been used in a conventional clinical trial.
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4.2. Example 2: Computational Example

Simulated data of 400 subjects for two groups were used, with a success rate of
0.23 and 0.4 for group 1 and group 2, respectively (consequently, the alternative hypothesis
is correct). Data from this trial were simulated, and the case when K equals three (K = 3)
was studied in detail, where we1 = 45%, we2 = 35%, we3 = 20%, and by using the weighted
formula, n1 = 180, n2 = 140, and n3 = 80.

For the first subsample: n11 = n12 = 90, because the subsample was divided equally
into the two groups in the first step. The chi-square statistic equals 0.88 after multiply-
ing it by one-third. The result is not greater than the critical value of 4.02, so H0 failed
to be rejected.

For the second stage, with n2 = 140, n21 and n22 were calculated by using the optimal
allocation. That resulted in n21 = 63 and n22 = 77. Moreover, the chi-square statistic
equals 5.42, which is larger than the critical value after multiplying it by two thirds. Thus,
H0 was rejected, and a significant difference was found.

In this case, the trial is terminated using only two stages out of three stages, with only
320 of the 400 subjects needed to get a significant difference.

The remainder of the results are shown in Table 9.
Table 10 was recapped in Figure 9 to summarize the results.

Table 10. The results of the OWMP for simulated example.

i Critical Values n1 n2 X1 X2 Total Sample Size Chi-Square i
K χ2

(i)

Result of Case 1 (K = 1)
(we1 = 100%)

1 3.84 200 200 46 79 400 12.7 12.7

Result of Case 2 (K = 2)
(we1 = 70%, we2 = 30%)

1 3.92 140 140 32 53 280 7.508 3.73

2 3.92 192 208 43 82 400 13.473 13.473

Result of Case 3 (K = 3)
(we1 = 45%, we2 = 35%, we3 = 20%)

1 4.02 90 90 22 32 180 2.646 0.88

2 4.02 153 167 36 64 320 8.134 5.42

Result of Case 4 (K = 4)
(we1 = 40%, we2 = 25%, we3 = 20%, we4 = 15%)

1 4.02 80 80 19 29 160 2.976 0.74

2 4.02 125 135 29 51 260 6.475 3.23

3 4.02 164 176 38 68 340 9.431 7.07

Result of Case 5 (K = 5)
(we1 = 30%, we2 = 25%, we3 = 20%, we4 = 15%, we5 = 10%)

1 4.16 60 60 16 21 120 0.977 0.19

2 4.16 107 113 25 41 220 4.368 1.74

3 4.16 143 157 32 59 300 8.184 4.91
X1 : success of probability of treatment A, X2 : success of probability of treatment B.
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5. Discussion

Group sequential procedures based on multiple primary critical points are used as
central cornerstones of strata tests to increase the efficiency of clinical trials. These multiple
critical endpoints provide a complete characterization of the effect of any intervention
in trials. Several of these procedures have been proposed. O’Brien and Fleming (1979)
first proposed a proper multiple testing procedure. Its original critical points were modi-
fied for more accuracy and to exhibit a monotonic behavior with 1,000,000 iterations, by
Hammouri [15].

As a generalization, in this work, the O’Brien and Fleming procedure was combined
with two different modifications for more fixable trials: the optimal allocation and unequal
weighted allocation for subsamples. These two allocations were chosen since the optimal
allocation implementation assigns more subjects to the more effective treatment. At the
same time, the unequal weighted allocation allows for different subsample weights for
different stages instead of equal allocation at each phase. Thus, it is possible to terminate
the trial early and orient the largest number of participants toward the most effective
treatment. The Type I error and power was calculated for several scenarios with several
sample sizes to check the validity of this work. It was noticed that the new combination
decreased the values of the Type I error and maintained the power in comparison with the
usual chi-square, which indicates that OWMP is effective.

In detail, the Type I error values were computed with various α values and sample
sizes. The first case was with α = 0.05, and the sample size equals 250. We noticed that the
initial values for the Type I error with K = 1 were between 0.0499 and 0.0503. The critical
values monotonically decreased, whereas the number of K increased, such that when the
K = 5, the Type I error values were between 0.0415 and 0.0438, which is less than 0.05,
which means it is an acceptable error, and better than the error in the original procedures.

Moreover, with α = 0.05, and the sample sizes equal to 80 and 580, the Type I error
values were between 0.0418 and 0.0506, 0.0438 and 0.0507, respectively, which is acceptable
since the values are not more than 0.0507.

Similarly, with α = 0.01 the values of the Type I error values, in general, took on an
analogous monotonic behavior, and the values were between 0.0084 and 0.0104. Again,
the values decreased while the K value increased, which is acceptable since the values
are still not more than 0.0104. It is worth mentioning that the higher values occurred for
K = 1, which represents the usual chi-square. Alternatively, all K = 2, . . . , 5 values were
less than 0.05.

To determine whether the proposed procedure maintains the acceptance rate of the
Ha hypothesis when it is true (power), several comparisons were made with different
values for success rates and sample sizes. The probability values were 0.1 with 0.15, 0.2,
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0.25, and 0.3 with sample sizes 1366, 750, 200, and 120, for α = 0.05, and 2032, 588, 292,
and 182, for α = 0.01. The power results indicated that OWMP preserved the acceptance
rate (power) despite the slightly decreasing values. The values decreased according to the
division of the chi-square values by the number of stages K in the interim analysis. This
decrease in the chi-square values makes the rejection of H0 harder. Nevertheless, values
are still acceptable since the power values were between 0.8020 and 0.8164 for K = 1, and
between 0.7726 and 0.7892 for K = 5. Thus, the difference between the values is not more
than 0.044 for α = 0.05. In addition, for α = 0.01, the power values are acceptable since
they remain between 0.8010 and 0.8113 for K = 1, and between 0.7840 and 0.7888 for K = 5.
Thus, the difference between the values is not more than 0.0273.

Furthermore, the rejected iteration numbers and percentages were calculated under
two scenarios of Ha being true or false. Under Ha being false, across the 500,000 samples,
there was no significant difference between the OWMP and the usual chi-square test, and in
the absence of early termination, the procedure’s decision rules are almost identical to those
of the chi-square test. In contrast, when Ha is true, the OWMP terminated the trial early
in most cases, indicating that a smaller sample size is required to reject the Ha hypothesis
compared to the usual chi-square test.

The usual chi-square procedure collects data in much the same way as the O’Brien
and Fleming multiple testing procedure and the proposed OWMP in this paper, but at once.
Because the chances of a Type I error and power are basically the same for all procedures,
the multiple testing procedures appear to gain nearly a considerable advantage over the
usual chi-square procedure. Furthermore, the new OWMP is more flexible than the original
multiple testing procedure. Researchers who would have otherwise adopted a single
sampling design can now review their data periodically and terminate the study early if
one treatment proves to be superior to the other, without sacrificing any of the advantages
of sequential methods.

As a result, the OWMP proposed in this work is believed to be more effective than
both the single sample approach and the O’Brien and Fleming multiple testing.

In our subsequent work, a plan was made to compare the OWMP performance to other
previous procedures developed for testing binary outcomes, and to explore the possibility
of generalizing other multiple testing procedures by combining different allocations to
prechosen approaches [27–34]. We also plan to modify the original O’Brien and Fleming
procedure by combining it with several new allocation methods. Furthermore, the proposed
approach will be further expanded, by using the modification used for the O’Brien and
Fleming original procedure, from two to ten treatments and the number of stages from five
to ten by using more iterations to broaden our scope [35].
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