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Abstract: In this paper, the finite-time guaranteed cost control (FTGCC) problem is addressed for
Itô Markovian jump systems with time-varying delays. The aim of this paper is to design a state
feedback guaranteed cost controller, such that not only the resulting closed-loop systems are finite-
time stable, but also cost performance has a minimum upper bound. First, new sufficient conditions
for the existence of guaranteed cost controllers are presented via the linear matrix inequality (LMI)
approach. Then, based on the established conditions, the desired controllers are designed and
the upper bound of cost performance is provided. In the end, an example is employed to show
the validity of the obtained results.
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1. Introduction

As a class of special hybrid systems, Markovian jump systems (MJSs) are widely used
to describe dynamic systems with sudden parameter changes, such as communication sys-
tems [1], power systems [2], and multi-agent network systems [3]. In recent years, studies
of MJSs have attracted extensive attention and achieved a range of results. For example,
the criteria for stability were given for nonhomogeneous MJSs with an uncertain transition
rate [4]. In [5], a fault observer was considered for Markov jump systems with actuator
and sensor faults. The asynchronous sliding mode control problem was investigated for
uncertain MJSs with time-varying delays and random disturbances [6]. The H−index
problems of continuous- and discrete-time Markov jump systems were discussed in [7,8].
It should be pointed out that the above literature focuses on the Lyapunov asymptotic
stability in infinite-time intervals.

In many industrial systems, such as chemical reaction systems and spacecraft tracking
systems, researchers pay more attention to the transient performance of system in a lim-
ited time, i.e., in a fixed time period, the states of the system do not exceed a certain
range [9]. References [10,11] put forward the concepts of finite-time stability (FTS) and
finite-time boundedness, and some important results were achieved, such as [12–14]. In
recent years, finite-time control problems for stochastic systems have become one of the im-
portant research directions in control theory fields—for example [15–18]. The FTS for
Itô-type MJSs has been studied in [19,20]. The FTS problems were discussed for MJSs
with time delay [21,22]. In [23], FTS analysis was developed for MJSs with incomplete
transition descriptions.

The guaranteed cost control problem has received considerable attention due to its
important applications [24,25]. The central idea of FTGCC is to design a controller, given
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a bound on the initial state of the system, such that the state trajectory lies in a defined
threshold during a fixed time interval, and an upper bound of the performance is mini-
mized [26]. The FTGCC problem for uncertain time-varying linear systems was investigated
in [26]. The guaranteed cost controller was designed for stochastic continuous-time linear
systems [27]. Then, the results of [27] were extended to MJSs [28]. The FTGCC was studied
for continuous-time uncertain mean-field systems in [29]. The authors of [30] developed
the FTGCC and H∞ control issue for linear Itô-type MJSs. However, the above references
did not consider time delays. In fact, a time delay exists in many practical systems, which
degrades system performance and cannot be ignored. The FTGCC problem has not been
dealt with for MJSs with time-varying delays and a Winner process.

Based on the aforementioned results, this paper is concerned with the FTGCC problem
for MJSs containing simultaneously time-varying delays and a Winner process. The aim of
this paper is to design a state feedback guaranteed cost controller, such that not only the re-
sulting closed-loop systems are finite-time stable, but also cost performance has a minimum
upper bound. The main innovations of this work are as follows:

(1) Due to the effects of time-varying delays and external disturbance, our model
is more complex than existing results, such as [26–28]. The Lyapunov functional used
in this paper should consider the influence of time delay, which leads to the system analysis
and synthesis becoming more complicated. (2) New sufficient conditions for the FTS of
closed-loop systems are given, via finite-time guaranteed cost controllers. Furthermore,
the minimum upper bound of cost performance is presented. (3) By the derived conditions,
the desired guaranteed cost controllers are obtained. Compared with the results of [27,28],
the presented approaches in this paper are more general.

The paper is organized as follows: Section 2 introduces some definitions and lemmas.
The objective of Section 3 is to design finite-time guaranteed cost controllers. In Section 4,
an example is illustrated to show the effectiveness of the proposed method. Section 5
concludes this paper.

Notations: M > 0(M ≥ 0) means matrix, M is positive definite (positive semi-definite).
The identity matrix with appropriate dimension is denoted by I. λmax(M)(λmin(M)) and
MT stand for the maximum (minimum) eigenvalue and transpose of a matrix M, respec-
tively. L̄ = {1, 2, · · · , N}. diag{· · · } is a block-diagonal matrix. E represents the mathemat-
ical expectation.

2. Problem Statement and Preliminaries

Consider the following MJSs with time-varying delays
dx(t) = [Aη(t)x(t) + Āη(t)x(t− τ(t)) + Bη(t)u(t)]dt

+ [Cη(t)x(t) + C̄η(t)x(t− τ(t))]dW(t),

x(l) = ψ(l), l ∈ [−T0, 0], t ∈ [0, T̃]

(1)

where x(t) ∈ Rn, u(t) ∈ Rm are the state and controlled input, respectively. Aη(t),
Āη(t), Bη(t), Cη(t), C̄η(t) are known matrices with appropriate dimensions. W(t) is a stan-
dard one-dimensional Winner process defined on the filtered space (Ω,F,Ft,P), where
Ft = σ{W(h), 0 ≤ h ≤ t}. Moreover, E [dW(t)] = 0, E [d2W(t)] = dt. x(l) is a continuous
function defined on [−T0, 0]. Time delay τ(t) satisfies 0 ≤ τ(t) ≤ d̃, τ̇(t) ≤ d̄ < 1, where
d̃ and d̄ are given constants. η(t) is a right continuous homogeneous Markovian process
taking values in L̄. Let η(t) be independent of W(t) and have the transition rate matrix
Q = (qij)N×N given by

P{η(t + ∆t) = j|η(t) = i}

=

{
qij∆t + o(∆t), i 6= j,
1 + qii∆t + o(∆t), i = j,

where i, j ∈ L̄, ∆t > 0, lim∆t→0
o(∆t)

∆t = 0, qij ≥ 0, for i 6= j, determine the switching rate
from mode i at time t to mode j at time t + ∆t, and qii = −∑i 6=j qij.
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The cost performance corresponding to system (1) is presented as

J (x(·), u(·)) = E
∫ T̃

0
[xT(t)Q1η(t)x(t) + uT(t)Q2η(t)u(t)]dt, (2)

where Q1η(t) and Q2η(t) are positive definite matrices.
The finite-time guaranteed cost controller is designed as follows

u(t) = Kη(t)x(t) (3)

where Kη(t) is the controller gain.
Substituting (3) in (1) and (2), the resulting closed-loop system is obtained

dx(t) = [Ãη(t)x(t) + Āη(t)x(t− τ(t))]dt

+ [Cη(t)x(t) + C̄η(t)x(t− τ(t))]dW(t),

x(l) = ψ(l), l ∈ [−T0, 0], t ∈ [0, T̃]

(4)

where Ãη(t) = Aη(t) + Bη(t)Kη(t). Moreover, (2) is rewritten as

J (x(·), Kη(·)) = E
∫ T̃

0
xT(t)[Q1η(t) + KT

η(t)Q2η(t)Kη(t)]x(t)dt. (5)

For simplicity, Ãη(t), Aη(t), Bη(t), Āη(t), Cη(t), C̄η(t), Kη(t), Q1η(t), Q2η(t) are denoted by
Ãi, Ai, Bi, Āi, Ci, C̄i, Ki, Q1i, Q2i for η(t) = i, i ∈ L̄.

The objective of this paper is to design controller (3) to guarantee that system (4) is
finite-time stable and the upper bound of cost function (5) is minimal. Next, the definition
of FTS is given for time-delay MJSs. This concept focuses on the boundedness of the state
response of system (4) in a finite-time interval for a given initial condition.

Definition 1. Given constant T̃ > 0 and positive definite matrix R, the following system (6)
dx(t) = [Aη(t)x(t) + Āη(t)x(t− τ(t))]dt

+ [Cη(t)x(t) + C̄η(t)x(t− τ(t))]dW(t),

x(l) = ψ(l), l ∈ [−T0, 0], t ∈ [0, T̃],

(6)

is said to be finite-time stable with respect to (c1, c2, T̃, R), if

E [xT(t1)Rx(t1)] ≤ c1 ⇒ E [xT(t2)Rx(t2)] ≤ c2,

∀t1 ∈ [−T0, 0], t2 ∈ [0, T̃]

where positive scalars c1, c2 satisfy c1 < c2.

Remark 1. Finite-time stability and Lyapunov asymptotically stability are independent concepts.
A system that is Lyapunov asymptotically stable may not be finite-time stable and vice versa.

In the following, the definition of FTGCC is given, which is different from guaranteed
cost control in an infinite-time horizon [25].

Definition 2. If there exist a positive scalar J ∗ and controller (3), such that the following condi-
tions hold

(I) closed-loop system (4) is finite-time stable;
(II) J (x(·), Kη(·)) ≤ J ∗,
then controller (3) is said to be a finite-time guaranteed cost controller (FTGCCer), and J ∗ is said
to be the guaranteed cost for system (4).
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Remark 2. From this definition, it is easy to see that the requirements of both the transient
performance of system (4) and the upper bound of function (5) are simultaneously satisfied.

Then, two lemmas are given, which will be applied in the next section.

Lemma 1 ((Gronwall Inequality) [31]). Given positive constants a, b, if g(t) satisfies

0 ≤ g(t) ≤ a + b
∫ t

0
g(s)ds, t ∈ [0, T̃],

then
g(t) ≤ aebt.

Lemma 2 ((Schur Complement) [32]). Given symmetric matrix

M =

[
M11 M12
MT

12 M22

]
,

the following conditions are equivalent

(I) M < 0;

(II) M22 < 0, M11 −M12M−1
22 MT

12 < 0;

(III) M11 < 0, M22 −MT
12M−1

11 M12 < 0.

3. Main Results

In this section, we design a state feedback FTGCCer to ensure system (4) FTS. First,
a sufficient condition of the FTS for closed-loop system (4) is presented. Then, new sufficient
conditions for the existence of the FTGCCer are given by LMIs.

Theorem 1. Given positive constants γ, ε1, ε2, ρ, if there exist positive definite matrices
Pi, Pj, Qi, Qj, i, j ∈ L̄, such that the following conditions hold ∏1i Pi Āi CT

i Pi
ĀiPi ∏2i C̄T

i Pi
PiCi PiC̄i −Pi

 < 0, (7)

N

∑
j=1

qijQj − γQi ≤ 0, (8)

ε1 I < P̃i < ε2 I, (9)

0 < Q̃i < ρI, (10)

(c1ε2 + c1ρd̃)eγT̃ ≤ ε1c2, (11)

where
∏1i = Pi Ãi + ÃT

i Pi + Qi + ∑N
j=1 qijPj − γPi,

∏2i = (d̄− 1)Qi, P̃i = R−
1
2 PiR−

1
2 , Q̃i = R−

1
2 QiR−

1
2 ,

then closed-loop system (4) is finite-time stable with respect to (c1, c2, T̃, R).

Proof. For η(t) = i, i ∈ L̄, construct a Lyapunov function

V(x(t), η(t) = i) = xT(t)Pix(t) +
∫ t

t−τ(t)
xT(s)Qix(s)ds.
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Let L be the infinitesimal generator, applying the generalized Itô formula [33] for
V(x(t), η(t) = i), which gives

LV(x(t), η(t) = i)

= xT(t)[Pi Ãi + ÃT
i Pi + Qi +

N

∑
j=1

qijPj]x(t)

+ 2xT(t)Pi Āix(t− τ(t))

− (1− τ̇)(t)xT(t− τ(t))Qix(t− τ(t))

+
N

∑
j=1

qij

∫ t

t−τ(t)
xT(s)Qjx(s)ds

+ [Cix(t) + C̄x(t− τ(t))]T Pi[Cix(t) + C̄x(t− τ(t))]

≤ xT(t)[Pi Ãi + ÃT
i Pi + Qi +

N

∑
j=1

qijPj]x(t)

+ 2xT(t)Pi Āix(t− τ(t))

− (1− d̄)xT(t− τ(t))Qix(t− τ(t))

+
N

∑
j=1

qij

∫ t

t−τ(t)
xT(s)Qjx(s)ds

+ [Cix(t) + C̄x(t− τ(t))]T Pi[Cix(t) + C̄x(t− τ(t))]

= ξTΞiξ +
N

∑
j=1

qij

∫ t

t−τ(t)
xT(s)Qjx(s)ds,

(12)

where

ξ =

[
x(t)

x(t− τ(t))

]
, Ξi =

[
Θ1i Pi Āi

ĀT
i Pi ∏2i

]
+ Πi,

Θ1i = Pi Ãi + ÃT
i Pi + Qi +

N
∑

j=1
qijPj,

Πi =

[
CT

i Pi
C̄T

i Pi

]
P−1

i

[
CT

i Pi
C̄T

i Pi

]T

.

By (8) and (12), it is concluded that

LV(x(t), η(t) = i) < ξTΞiξ + γ
∫ t

t−τ(t)
xT(s)Qix(s)ds. (13)

Together with (7), it is easy to see that

LV(x(t), η(t) = i) < γV(x(t), η(t) = i). (14)

Integrating both sides of (14) from 0 to t with t ∈ [0, T̃] and taking mathematical
expectation, one has

E [V(x(t), η(t) = i)] < V(x(0), η(0) = η0) + γE
∫ t

0
V(x(s), η(s) = ηs).

From Lemma 1, it is obtained that

E [V(x(t), η(t) = i)] < eγtV(x(0), η(0) = η0). (15)
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By conditions (9), (10) and (15), it follows that

E [V(x(t), η(t) = i)]

> E [xT(t)Pix(t)] = E [xT(t)R
1
2 P̃iR

1
2 x(t)]

≥ λmin(P̃i)E [xT(t)Rx(t)] > ε1E [xT(t)Rx(t)],

(16)

eγtV(x(0), η(0) = η0)

≤ eγT̃{λmax(P̃i)xT(0)Rx(0)

+ λmax(Q̃i)
∫ 0

−d̃
[xT(s)Rx(s)]ds}

≤ c1eγT̃(ε2 + ρd̃).

(17)

From (15)–(17),
E [xT(t)Rx(t)] < ε−1

1 c1eγT̃(ε2 + ρd̃). (18)

Combining (18) with (11), we obtain

E [xT(t)Rx(t)] < c2.

This means that closed-loop system (4) is finite-time stable with respect to (c1, c2, T̃, R).

Remark 3. When τ(t) = 0, Theorem 1 is reduced to the result in [19]. Moreover, if the condi-
tions (7)–(11) with γ = 1, then system (4) is asymptotically stable.

The following sufficient condition is presented for the existence of the FTGCCer. Then,
MJSs (4) can be finite-time stable via FTGCCer (3). Meanwhile, the upper bound of cost
function (5) is accurately expressed.

Theorem 2. Given positive constants γ, ε1, ε2, ρ, if there exist positive definite matrices
Pi, Pj, Qi, Qj, i, j ∈ L̄, such that (8)–(11) and the following inequality hold ∏1i +Q1i + KT

i Q2iKi Pi Āi CT
i Pi

ĀiPi ∏2i C̄T
i Pi

PiCi PiC̄i −Pi

 < 0, (19)

then closed-loop system (4) is finite-time stable with respect to (c1, c2, T̃, R) and

J (x(·), Kη(·)) < J ∗ = c1eγT̃(ε2 + ρd̃),

i.e., (3) is an FTGCCer.

Proof. From (12) and (19), we have

LV(x(t), η(t) = i) < γV(x(t), η(t) = i)− xT(t)[Q1i + KT
i Q2iKi]x(t). (20)

Integrating both sides of (20) from 0 to T̃ and taking mathematical expectation, one yields

E [V(x(t), η(T̃))]−V(x(0), η(0) = η0)

< γE
∫ T̃

0
V(x(s), η(s) = ηs)ds−

∫ T̃

0
xT(t)[Q1i + KT

i Q2iKi]x(t)dt.
(21)
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From (21) and (15),

J (x(·), Kη(·)) = E
∫ T̃

0
xT(t)[Q1i + KT

i Q2iKi]x(t)dt

< V(x(0), η(0) = η0) + γE
∫ T̃

0
V(x(s), η(s) = ηs)ds

< V(x(0), η(0) = η0) + γ
∫ T̃

0
eγsV(x(0), η(0) = η0)ds

< eγT̃V(x(0), η(0) = η0) < c1eγT̃(ε2 + ρd̃).

This implies that

J (x(·), Kη(·)) < J ∗ = c1eγT̃(ε2 + ρd̃).

The proof is ended.

Remark 4. If τ(t) = 0, Theorem 2 is reduced to Lemma 1 in [28]. When τ(t) = 0 and L̄ = {1},
Theorem 2 is Theorem 1 of [27].

It is challenging to solve (19) and (8)–(11) by the LMI method. The following theorem
provides an effective approach to overcome this difficulty and the desired controller (3) is
solved in the form of LMIs.

Theorem 3. Given positive constants γ, ε1, ε2, ρ, if there exist positive definite matrices
Xi, Xj, Qi, Qj, matrix Yi, i, j ∈ L̄, satisfying (11) and the following inequalities

Λi1 ĀiXi XiCT
i Λi3

Xi ĀT
I Λi2 XiC̄T

i 0
CiXi C̄iXi −Xi 0
ΛT

i3 0 0 −Λi4

 < 0, (22)

[
κiQ̂i Λi3
ΛT

i3 Q̄i

]
≤ 0, (23)

Xi + ε1 I − 2R−
1
2 < 0, (24)[

−ε2 I R−
1
2

R−
1
2 −Xi

]
< 0, (25)

[
−ρI R−

1
2

R−
1
2 Q̂i − 2Xi

]
< 0, (26)

where
Λi1 = AiXi + Xi AT

i + BiYi + YiBT
i + XiQ1iXi

+YT
i Q2iYi + qiiXi + Q̂i − γXi,

Λi2 = (d̄− 1)Q̂i, Q̂i = XiQiXi, κi = qii − γ,

Λi3 = [
√

qi1Xi · · ·
√qi(i−1)Xi

√qi(i+1)Xi . . .
√

qiN Xi],

Λi4 = −diag{X1, · · · , Xi−1, Xi+1, XN},

Q̄i = diag{−2X1 + Q̂1, · · · ,−2Xi−1 + Q̂i−1,

−2Xi+1 + Q̂i+1, · · · ,−2XN + Q̂N},
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then (3) is an FTGCCer, and the controller gain is given by

Ki = YiX−1
i .

Proof. Let Yi = KiXi, and from Lemma 2, (22) is equivalent to Λi5 ĀiXi XiCT
i

Xi ĀT
i Λi2 XiC̄T

i
CiXi C̄iXi −Xi

 < 0, (27)

where
Λi5 =AiXi + Xi AT

i + BiYi + YiBT
i + XiQ1iXi + Q̂i

+ YT
i Q2iYi + qiiXi ++∑

i 6=j
qijXiX−1

j Xi − γ Xi.

Pre- and post-multiplying (27) both sides with diag{X−1
i , X−1

i , X−1
i } and its transpose,

set Xi = P−1
i , and then (19) is obtained.

For Q−1
j (j 6= i), the following inequality holds

−Q−1
j = −Xj(XjQjXj)

−1Xj ≤ −2Xj + Q̂j. (28)

Then, (23) becomes [
κiQ̂i Λi3
ΛT

i3 Q̃i

]
(29)

where Q̃i = −diag{Q−1
1 , · · · , Q−1

i−1, Q−1
i+1, · · · , Q−1

N }.

From Lemma 2, (29) is equivalent to

κiQ̂i + Xi

N

∑
j 6=i

qijQjXi ≤ 0.

Pre- and post-multiplying the above inequality both sides with Xi, (8) is gotten.
According to (28), it is derived that (24) implies

ε1 I < R−
1
2 X−1

i R−
1
2 . (30)

From Lemma 2, (25) is equivalent to

ε2 I + R−
1
2 X−1

i R−
1
2 > 0. (31)

Let Xi = P−1
i , (30) and (31) mean (9). Combining (26) with (28), we have[

−ρI R−
1
2

R−
1
2 −X−1

i

]
. (32)

It is clear that (32) is equivalent to R−
1
2 QiR−

1
2 < ρI, which implies (10).

The proof is complete.

4. Numerical Example

In this section, an example is used to show the effectiveness of the controller presented.
Consider the following RLC electric circuit [33]

HQ̈(t)− Q̇(t) +
1
CQ(t) = G(t)Ẇ(t) (33)
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where H is the inductance, Q(t) is the charge, C is the capacitance, Ẇ(t) is one-dimensional
white noise and G(t) is the intensity of the noise. Suppose that system (33) experiences
abrupt changes and its parameters switch from one to another. Then, (33) is represented by

Hη(t)Q̈(t)− Q̇(t) +
1

Cη(t)
Q(t) = Gη(t)(t)Ẇ(t) (34)

where η(t) is a Markov process taking values in L̄ = {1, 2}.
Let x(t) =

[
x1(t) x2(t)

]′
=
[
Q(t) Q̇(t)

]′, and then (34) is rewritten as Itô MJSs
dx1(t) = x2(t)dt,

dx2(t) =
1

Hη(t)
[x2(t)−

1
Cη(t)

x1(t)]dt +
Gη(t)(t)

Hη(t)
dW(t).

(35)

We introduce a control device, and then (35) is expressed as
dx1(t) = [x2(t) + α1η(t)u(t)]dt,

dx2(t) =
1

Hη(t)
[x2(t)−

1
Cη(t)

x1(t) + α2η(t)u(t)]dt +
βη(t)x(t)

Hη(t)
dW(t).

That is,
dx(t) = [Aη(t)x(t) + Bη(t)u(t)]dt + Cη(t)x(t)dW(t)

where Aη(t) =

[
0 1

−Cη(t)
Hη(t)

1
Hη(t)

]
, Bη(t) =

[
α1η(t)
α2η(t)

]
and Cη(t) =

[
0 0

0
βη(t)
Hη(t)

]
.

Due to the unavoidable finite switching speed of amplifiers, a time delay inevitably
exists in an electric circuit. Moreover, the electric energy consumption is expected to be
minimal. Based on the above, we consider the time-delay Itô MJSs described by (1) and
cost performance (2), whose parameters are given below.

Mode 1:

A1 =

[
0 1
−2.2 1.5

]
, Ā1 =

[
−1 −0.21
0 −1

]
, B1 =

[
1.6
−0.5

]
, C1 =

[
0 0
0 −0.1

]
,

C̄1 =

[
−0.02 0.1

0.1 0.1

]
, Q11 =

[
0.5 0
0 0.5

]
, Q21 = 1.

Mode 2:

A2 =

[
0 1
−3 1.5

]
, Ā2 =

[
1 −0.5

0.3 −0.9

]
, B2 =

[
5

0.2

]
, C2 =

[
0 0
0 −0.2

]
,

C̄2 =

[
−0.2 0.12
0.2 −0.1

]
, Q12 =

[
0.7 0
0 0.7

]
, Q22 = 1.

Moreover, d̄ = 0.1, d̃ = 1, T̃ = 2, c1 = 0.3, ε1 = 0.6, ε2 = 1, ρ = 1, x(t) = [x1(t), x2(t)]T ,
x(0) = [0 0]T , R = I. The transition rate matrix

Q =

[
−0.85 0.85

1.6 −1.6

]
.

One possible Markovian mode evolution for η(t) = i is shown in Figure 1.
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Figure 1. One possible Markovian mode evolution.

From Theorem 3, the feasible solution can be found when γ ∈ (0, 10.3). The min-
imum of c2 is 13.02 when γ = 0. The corresponding controller gains K1 = [4.49 0.24],
K2 = [−0.48 0.05]. The minimum value of the guaranteed cost upper bound for (5) is
J ∗ = 0.67. This shows that controllers u(t) = K1x(t) and u(t) = K2x(t) are state feedback
finite-time guaranteed cost controllers for system (4).

The state responses of x1(t) and x2(t) are shown in Figure 2, which implies that the
state trajectories of system (4) are bounded. The evolution of E [xT(t)Rx(t)] for system (4)
is depicted in Figure 3, where it is obvious that E [xT(t)Rx(t)] < c2, which means that
the closed-loop system (4) is finite-time stable with respect to (0.3, 13.02, 2, I).

Figure 2. The state responses for system (4).
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Figure 3. The evolution of E [xT(t)Rx(t)] for system (4).

5. Conclusions

We have considered the FTGCC problem for MJSs with time-varying delays. Finite-
time guaranteed cost controllers are designed, which ensure the finite-time stability of
closed-loop systems and an upper bound of cost performance. The effectiveness of the main
results has been shown by an example. In this paper, transition rates are assumed to be
completely known for MJSs. However, they may be partially known or fully unknown.
The results obtained can be extended to FTGCC for MJSs with time-varying delays and
generally uncertain transition rates. In the future, the problem of finite-time H∞ control
will be developed for MJSs with time-varying delays.
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