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Abstract: Ramanujan-type harmonic number expansion was given by many authors. Some of the most
well-known are: Hn ∼ γ + log n−∑∞

k=1
Bk

k·nk , where Bk is the Bernoulli numbers. In this paper, we
rewrite Ramanujan’s harmonic number expansion into a similar form of Euler’s asymptotic expansion as
n approaches infinity: Hn ∼ γ + c0(h) log(q + h)−∑∞

k=1
ck(h)

k·(q+h)k , where q = n(n + 1) is the nth pronic

number, twice the nth triangular number, γ is the Euler–Mascheroni constant, and ck(x) = ∑k
j=0 (

k
j)cjxk−j,

with ck is the negative of the median Bernoulli numbers. Then, 2cn = ∑n
k=0 (

n
k)Bn+k, where Bn is the

Bernoulli number. By using the result obtained, we present two general Ramanujan’s asymptotic expan-

sions for the nth harmonic number. For example, Hn ∼ γ + 1
2 log(q + 1

3 )−
1

180(q+ 1
3 )

2

(
∑∞

j=0
bj(r)

(q+ 1
3 )

j

)1/r

as n approaches infinity, where bj(r) can be determined.

Keywords: harmonic numbers; asymptotic expansion; median Bernoulli numbers

MSC: 41A60; 11B83; 05A19

1. Introduction

Leonhard Euler in 1755 applied the Euler–Maclaurin sum formula to find the famous
standard Euler asymptotic expansion for Hn as n→ ∞:

Hn ∼ γ + log n−
∞

∑
k=1

Bk

k · nk , (1)

where Bk is the Bernoulli number defined by t
et−1 = ∑∞

k=0
Bk
k! tk, and γ = 0.57721 · · · is the

Euler–Mascheroni constant.
Ramanujan [1] proposed the following asymptotic expansion for Hn:

Hn ∼γ +
1
2

log(2m) +
1

12m
− 1

120m2 +
1

630m3 −
1

1680m4 +
1

2310m5

− 191
360360m6 +

29
30030m7 −

2833
1166880m8 +

140051
17459442m9−· · · , (2)

where m = n(n + 1)/2 is the n-th triangular number. However, Ramanujan did not give
any formulas for the general terms and also without any proof. Rewrite the above formula
as the following notation:

Hn ∼ γ +
1
2

log(2m) +
∞

∑
k=1

Rk

mk . (3)

In 2008, Villarino [2] established an explicit expression for the coefficient sequence (Rk):
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Rk =
(−1)k−1

2k · 8k

k

∑
j=0

(
k
j

)
(−4)jB2j(1/2), (4)

where Bk(x) are the Bernoulli polynomials defined by text

et−1 = ∑∞
n=0

Bn(x)tn

n! . In 2015, Chen
and Cheng [3] reconsidered Ramanujan’s formula and gave the following recurrence
relation for (Rk):

R1 =
1

12
, Rk =

1
2k

{
1
4k
− B2k

2k
−

k−1

∑
j=1

2jRj

(
2k− j− 1

j− 1

)}
, k ≥ 2. (5)

In 2019, Chen [4] improved the recurrence relation as

Rk =
1

2k+1k

{
1

2k + 1
−

k−1

∑
j=1

2j+1Rj

(
2k− j

2k− 2j + 1

)}
, for k ≥ 2. (6)

Another Ramanujan-type harmonic number expansion was given by Wang [5] in 2018,

Hn ∼ γ +
1
2

log(2m + h) +
∞

∑
k=1

αk(h)
(2m + h)k , (7)

where h is a parameter and (αk(h)) is a coefficient sequence

αk(h) = −
hk

2k
+

k

∑
j=1

(
k− 1
j− 1

)
Rj2jhk−j. (8)

In this paper, we rewrite Ramanujan’s harmonic number expansion into a similar form
of Euler’s asymptotic expansion:

Hn ∼ γ + c0 log q−
∞

∑
k=1

ck

k · qk , (9)

where q = n(n + 1) = 2m is the nth pronic number, twice the nth triangular number. In
fact, we prove that the number ck is the negative of the median Bernoulli number. The
median Bernoulli number is studied by the author [6] in 2005. Then, we have for n ≥ 0,

cn =
1
2

n

∑
k=0

(
n
k

)
Bn+k. (10)

Moreover, let

ck(x) =
k

∑
j=0

(
k
j

)
cjxk−j. (11)

Then, we could rewrite Wang’s expansion Equation (7) as follows:

Hn ∼ γ + c0(h) log(q + h)−
∞

∑
k=1

ck(h)
k · (q + h)k . (12)

We give simpler asymptotic expansion representations for Hn using Equations (10)
and (11), which effectively integrate the results of Villarino, Chen and Cheng, Chen, and
Wang (see Equations (4)–(7)) and make their representations more meaningful. We dis-
cuss some properties of the numbers cn and the polynomials cn(x) in Sections 3 and 4,
respectively. For example, the Hankel determinant of cn(x) for any x can be evaluated as

2n+1 det
0≤i,j≤n

(ci+j(x)) = det
0≤i,j≤n

(B2i+2j(1/2)). (13)
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Furthermore, Chen [7] gave a new asymptotic expansion. For any nonzero real number
r, the n-th harmonic number Hn may have an asymptotic expansion as n approaches infinity:

1
2

log(2m) + γ +
1

12m

(
∞

∑
j=0

aj(r)
mj

)1/r

, (14)

where the parameters aj(r) satisfy the following recurrence relation

a0(r) = 1, aj(r) =
1
j

j

∑
k=1

[k(1 + r)− j](12Rk+1)aj−k(r), j ∈ N.

Inspired by this, we give a more general asymptotic expansion in Section 5 using
Equation (12). Given r, h real numbers with r 6= 0, h 6= 1/3, we get

Hn ∼ γ + c0(h) log(q + h)− 3h− 1
6(q + h)

(
1 +

∞

∑
j=1

aj(r, h)
(q + h)j

)1/r

, n→ ∞, (15)

We know that the formula with h = 0 is Equation (14) (see ([7], Theorem 2.3)). Since
c1(h) = 3h−1

6 , h = 1/3 will remove the (q+ h)−1 term. This will improve the approximation.
Thus, it can be seen that there are a lot of investigations for the h = 1/3 case, see [4,8–10].

If h = 1/3, then the asymptotic expansion will become

Hn ∼ γ +
1
2

log
(

q +
1
3

)
− 1

180
(

q + 1
3

)2

1 +
∞

∑
j=1

bj(r)(
q + 1

3

)j


1/r

. (16)

The parameters aj(r, h) and bj(r) in Equations (15) and (16) are determined by some
recurrence relations, which will be illustrated in Theorems 2 and 3, respectively. At the end
of this paper, we will compare how close these asymptotic formulas are to Hn.

2. Median Bernoulli Numbers and Rk

Set a0,n = Bn, for n ≥ 0. And for n ≥ 1, k ≥ 0,

an,k = an−1,k + an−1,k+1,

or equivalently,

an,k =
n

∑
j=0

(
n
j

)
a0,k+j.

The corresponding matrix is represented as follows.

1 −1/2 1/6 0 −1/30 0 1/42 0
1/2 −1/3 1/6 −1/30 −1/30 1/42 1/42 · · ·
1/6 −1/6 2/15 −1/15 −1/105 1/21 · · ·

0 −1/30 1/15 −8/105 4/105 · · ·
−1/30 1/30 −1/105 −4/105 · · ·

0 1/42 −1/21 · · ·
1/42 −1/42 · · ·

0 · · ·
· · ·

This matrix is called the “BS-matrix” in [6], which is a special Euler–Seidel matrix. Let

cn = an+1,n
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be the lower diagonal sequence of the BS-matrix. The number cn is the negative of the
median Bernoulli number Kn, which is the upper diagonal sequence of the BS-matrix, i.e.,
Kn = an,n+1 = −cn (ref. [6]). Therefore, by [6], and Equations (8), (15) and (16), we have

cn =
1
2

n

∑
k=0

(
n
k

)
Bn+k =

n+1

∑
k=0

(
n + 1

k

)
Bn+k = −

n

∑
k=0

(
n
k

)
Bn+1+k. (17)

Let the ordinary generating function of cn as follows.

m(x) =
∞

∑
n=0

cnxn+1.

Let ψ(x) be the formal Laplace transform of t/ sinh t. Then, the following relation was
obtained ([6], Theorem 4.2, Equation (29))

2x · ψ(x) = m
(

4x2

1− x2

)
. (18)

Since t/ sinh t = ∑∞
n=0 4nB2n(1/2)t2n/(2n)!, we have that for n ≥ 0 ([6], Equation (32)),

22n+1(−1)ncn =
n

∑
j=0

(
n
j

)
(−1)j22jB2j(1/2). (19)

Using Villarino’s explicit formula for Rk, Equation (4), we have for k ≥ 1,

− 2k · k · Rk =
k

∑
j=0

(
k
j

)
(−1)k+j22j−2k−1B2j(1/2) = ck. (20)

This implies that

Hn ∼ γ + c0 log q−
∞

∑
k=1

ck

kqk , n→ ∞. (21)

On the other hand, we substitute Rk as Equation (20) in Wang’s formula for αk(h), (see
Equation (8)), we have for k ≥ 1,

−k · αk(h) =
hk

2
−

k

∑
j=1

(
k− 1
j− 1

)
Rj2khk−jk

=
hk

2
+

k

∑
j=1

(
k− 1
j− 1

)
hk−j cj

j
· k =

k

∑
j=0

(
k
j

)
hk−jcj = ck(h). (22)

Therefore, we conclude our result in the following.

Theorem 1. For n→ ∞, we have

Hn ∼ γ + c0(h) log(q + h)−
∞

∑
k=1

ck(h)
k · (q + h)k , (23)

where q = n(n + 1) is the nth pronic number,

ck(x) =
k

∑
j=0

(
k
j

)
cjxk−j, and cn =

1
2

n

∑
k=0

(
n
k

)
Bn+k. (24)
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3. Some Properties of cn

Let the ordinary generating function of Bn as follows.

b(x) =
∞

∑
n=0

Bnxn+1.

Using the relation between the ordinary generating functions of a0,n, an,n, and an,n+1
of the BS-matrix, we have the following relation ([6], Theorem 4.2, Equation (29))

b(x) =
(

1 +
2
x

)
m
(

x2

1 + x

)
. (25)

Then, the following identity is obtained ([6], Equation (27)).

bn/2c

∑
j=0

(
n− j

j

)
n

n− j
cj =

{
−B1, if n = 1,

Bn, if n ≥ 2.
(26)

In the above formula, the formula obtained by substituting n = 2k appears in the
recurrence relation of Rk given by Chen and Cheng [3] in 2015 (see Equation (5)). Further-
more, if we substitute n = 2k + 1 into the above identity, we obtain Equation (6) given by
Chen [4] in 2019.

There are a lot of properties of cn obtained from [6]. For example, let the denominators
and the numerators of the rational number cn be Dn, Nn, respectively. We have the following
properties ([6], Theorem 1.1):

• The denominator Dn is a square-free integer.
• The set of the all odd prime divisors of Dn is{

p : odd prime | n
m ≤ p− 1 ≤ 2n

2m−1 , m ∈ N
}

.
• The denominator Dn is an odd integer, for n ≥ 2.
• The largest power of 2 that divides the numerator Nn is 2b n−1

2 c.
The ordinary generating function m(x) has the following continued fraction represen-

tation ([6], Theorem 5.5)

m(x) =
c0x

1 + a0x −
b1x2

1 + a1x −
b2x2

1 + a2x − · · · , (27)

where for n ≥ 0,

an =
8n4 + 8n3 + 6n2 + 2n− 1

(4n + 3)(4n− 1)
,

bn+1 =
(2n + 1)4(n + 1)4

(4n + 1)(4n + 3)2(4n + 5)
.

Using this representation, we have the Hankel determinant of cn (ref. [6], Theorem 5.5)

det
0≤i,j≤n

(ci+j) =

(
1
2

)n+1 n

∏
j=1

(
(2j− 1)4 j4

(4j− 3)(4j− 1)2(4j + 1)

)n−j+1

. (28)

Since the finite product in Equation (28) is the Hankel determinant of B2n(1/2) (see [6],
Equation (41)), we have

det
0≤i,j≤n

(
B2i+2j(1/2)

)
= 2n+1 det

0≤i,j≤n
(ci+j). (29)

By Equation (19) and an integral representation of B2n(1/2) ([11], Equation (28))
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B2n(1/2) = (−1)nπ
∫ ∞

0
t2n sech2(πt) dt,

we have an integral representation of cn, for n ≥ 0,

cn =
(−1)nπ

22n+1

∫ ∞

0
(4t2 + 1)n sech2(πt) dt. (30)

4. Some Properties of cn(x)

We first list cn(x) for n = 0, 1, 2, . . . , 5.

c0(x) =
1
2

,

c1(x) = −1
6
+

x
2

,

c2(x) =
1

15
− x

3
+

x2

2
,

c3(x) = − 4
105

+
x
5
− x2

2
+

x3

2
,

c4(x) =
4

105
− 16x

105
+

2x2

5
− 2x3

3
+

x4

2
,

c5(x) = − 16
231

+
4x
21
− 8x2

21
+

2x3

3
− 5x4

6
+

x5

2
.

Differentiating Equation (11) with respect to x we obtain

d
dx

cn(x) =
n

∑
k=0

(
n
k

)
cn−kkxk−1

= n
n−1

∑
k=0

(
n− 1

k

)
cn−1−kxk = ncn−1(x). (31)

Therefore, ∫ y

x
cn(t) dt =

cn+1(y)− cn+1(x)
n + 1

. (32)

On the other hand, we use Equation (30) to get an integral representation of cn(x):

cn(x) =
(−1)nπ

22n+1

∫ ∞

0
(4t2 − 4x + 1)n sech2(πt) dt. (33)

Let us consider the function cn(x + y). We express (x + y)k as its binomial expansion.

cn(x + y) =
n

∑
k=0

(
n
k

)
cn−k(x + y)k =

n

∑
k=0

cn−k

k

∑
`=0

(
k
`

)
x`yk−`.

We interchange the order of summation and the inner sum becomes cn−`(y):

cn(x + y) =
n

∑
`=0

n

∑
k=`

(
n
k

)(
k
`

)
cn−kx`yk−` =

n

∑
`=0

(
n
`

)
x`cn−`(y).

Thus, we have

cn(x + y) =
n

∑
k=0

(
n
k

)
ck(x)yn−k. (34)

Using the inversion binomial theorem to Equation (19) we have
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4nB2n(1/2) =
n

∑
k=0

(
n
k

)
22k+1ck = 22n+1cn(1/4).

This implies that
2 cn(1/4) = B2n(1/2). (35)

Applying the above identity and Equation (29), we know that the Hankel determi-
nant of cn(1/4) is the same as the Hankel determinant of cn. However, we use ([12],
Proposition 1), indeed that for any value of x,

det
0≤i,j≤n

(ci+j) = det
0≤i,j≤n

(ci+j(x)). (36)

5. New Asymptotic Expansions

To derive our new asymptotic expansions are inspired by ([7], Theorem 2.3). We need
the following lemma.

Lemma 1 ([7], Lemma 1). If ∑∞
j=0 qjx−j is an asymptotic expansion for g(x) as x approaches

infinity. Given any real number r, the parameters Qj(r) are defined by Q0(r) = 1 and for j ∈ N,

Qj(r) =
1
j

j

∑
k=1

(k(1 + r)− j)qkQj−k(r).

Then ∑∞
j=0 Qj(r)x−j is an asymptotic expansion for g(x)r.

Our new asymptotic expansions are derived from Equation (23). It is note that
c1(h) = 3h−1

6 . Therefore, we divide into two cases depending on whether h is 1/3 or not.

Theorem 2. Let r and h be any given real numbers with r 6= 0 and h 6= 1/3. The n-th harmonic
number Hn has the following asymptotic expansion as n approaches infinity:

γ + c0(h) log(q + h)− 3h− 1
6(q + h)

(
1 +

∞

∑
j=1

aj(r, h)
(q + h)j

)1/r

(37)

where the parameters aj(r, h) given by the recurrence relation

a0(r, h) = 1,

aj(r, h) =
1
j

j

∑
k=1

(k(1 + r)− j)
6ck+1(h)

(3h− 1)(k + 1)
aj−k(r, h), j ≥ 1. (38)

Proof. Rewrite Equation (37) as the following representation:

6(q + h)
3h− 1

(Hn − γ− c0(h) log(q + h)) ∼
(

1 +
∞

∑
j=1

aj(r, h)
(q + h)j

)1/r

.

In view of Equation (23), we have

6(q + h)
3h− 1

(Hn − γ− c0(h) log(q + h)) ∼
(

1 +
6

3h− 1

∞

∑
k=1

ck+1(h)
(k + 1)(q + h)k

)
.

Comparing the above two expressions, we know that(
1 +

6
3h− 1

∞

∑
k=1

ck+1(h)
(k + 1)(q + h)k

)r

∼ 1 +
∞

∑
j=1

aj(r, h)
(q + h)j .
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We apply Lemma 1 and get the result we want.

Using a similar approach, we can easily derive the following theorem for the situation
h = 1/3.

Theorem 3. Given a real number r with r 6= 0. The n-th harmonic number Hn has the asymptotic
expansion as n approaches infinity:

γ +
1
2

log(q +
1
3
)− 1

180(q + 1
3 )

2

(
1 +

∞

∑
j=1

bj(r)

(q + 1
3 )

j

)1/r

(39)

where the parameters bj(r) are defined by the following relation

b0(r) = 1, bj(r) =
1
j

j

∑
k=1

(k(1 + r)− j)
180 ck+2(

1
3 )

k + 2
bj−k(r), j ≥ 1. (40)

Chen [7] discussed many properties of the h = 0 case. Therefore, we mainly deal with
the case of h = 1/3 here.

The first few parameters bj(r) are:

b0(r) = 1,

b1(r) = −
32
63

r,

b2(r) =
3701
7938

r +
512
3969

r2,

b3(r) = −
7264240
8251551

r− 59216
250047

r2 − 16384
750141

r3,

b4(r) =
47882328785
18021387384

r +
2311659673
4158781704

r2 +
947456

15752961
r3 +

131072
47258883

r4,

b5(r) = −
8014919889976
709592128245

r− 749340134980
425755276947

r2 − 789621116
4678629417

r3

− 30318592
2977309629

r4 − 4194304
14886548145

r5.

For r = 1 in Equation (39), the resulting asymptotic expansion is as follows ([10],
Equation (3.24)):

Hn ∼γ +
1
2

log(q +
1
3
)− 1

180(q + 1
3 )

2
+

8
2835(q + 1

3 )
3
− 5

1512(q + 1
3 )

4

+
592

93555(q + 1
3 )

5
− 796801

43783740(q + 1
3 )

6
+

268264
3648645(q + 1

3 )
7
− · · · (41)

as n→ ∞.
For r = −1 in Equation (39), we obtain a new asymptotic expansion:

Hn ∼γ +
1
2

log(q +
1
3
)−

[
180(q +

1
3
)2 +

640
7

(q +
1
3
)− 26770

441
+

36602240
305613(q + 1

3 )

− 97247611025
250297047(q + 1

3 )
2
+

27515011460000
15768713961(q + 1

3 )
3
− · · ·

]−1

(42)

as n→ ∞.
For r = −23/2 in Equation (39), we obtain a new asymptotic expansion:
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Hn ∼ γ +
1
2

log(q +
1
3
)− 1

180(q + 1
3 )

2

[
1 +

368
63(q + 1

3 )
+

185725
15876(q + 1

3 )
2

+
3674204

305613(q + 1
3 )

3
− 5793677

728136864(q + 1
3 )

4
+

1021070020123
31537427922(q + 1

3 )
5
+ · · ·

]−2/23

(43)

as n→ ∞.
From a computational point of view, the formulas Equations (42) and (43) are better

than Equation (41).
It follows from Equations (41)–(43) that for n→ ∞,

Hn ∼ γ +
1
2

log(q +
1
3
)

− 1
180(q + 1

3 )
2
+

8
2835(q + 1

3 )
3
− 5

1512(q + 1
3 )

4
+

592
93555(q + 1

3 )
5

:= un, (44)

Hn ∼ γ +
1
2

log(q +
1
3
)

− 1
180(q + 1

3 )
2 + 640

7 (q + 1
3 )−

26770
441 + 36602240

305613(q+ 1
3 )

:= vn, (45)

Hn ∼ γ +
1
2

log(q +
1
3
)

− 1

180(q + 1
3 )

2
[

1 + 368
63(q+ 1

3 )
+ 185725

15876(q+ 1
3 )

2 +
3674204

305613(q+ 1
3 )

3

]2/23 := wn. (46)

From Table 1, we observe that, among approximation formulas Equations (44)–(46),
for n ≥ 1, the formula Equation (46) would be the best one. There seems to be an optimal
real number r in Equation (39), and when we substitute it in this formula, the resulting
approximation should be optimal. We guess that this real number r should be close to
−11.502534 . . .

Table 1. Comparison of approximation Formulas (44)–(46).

n un − Hn vn − Hn wn − Hn

1 4.625× 10−5 1.997× 10−5 −1.405× 10−6

10 9.735× 10−15 6.332× 10−15 −6.750× 10−17

102 1.713× 10−26 1.129× 10−26 2.162× 10−30

103 1.809× 10−38 1.192× 10−38 3.805× 10−42

104 1.819× 10−50 1.198× 10−50 3.841× 10−54
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