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Abstract: The stochastic fractional (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation
(SFHFSCE), which is driven in the Stratonovich sense by a multiplicative Wiener process, is considered
here. The analytical solutions of the SFHFSCE are attained by utilizing the Jacobi elliptic function
method. Various kinds of analytical fractional stochastic solutions, for instance, the elliptic functions,
are obtained. Physicists can utilize these solutions to understand a variety of important physical
phenomena because magnetic solitons have been categorized as one of the interesting groups of
non-linear excitations representing spin dynamics in semi-classical continuum Heisenberg systems.
To study the impact of the Wiener process on these solutions, the 3D and 2D surfaces of some achieved
exact fractional stochastic solutions are plotted.

Keywords: fractional Heisenberg ferromagnetic equation; stochastic Heisenberg ferromagnetic
equation; Wiener process; Jacobi elliptic function method
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1. Introduction

Over the last few decades, stochastic partial differential equations (SPDEs) have been
intensively investigated as mathematical models for spatial-temporal chemical, biological,
and physical equations that are sensitive to random perturbations. In complex system mod-
eling, the necessity to include stochastic effects has been highlighted. For example, there is
growing interest in the mathematical modeling of complex processes in climate systems,
finance, biology, condensed matter physics, materials sciences, information systems, and
mechanical and electrical engineering utilizing SPDEs.

Researchers and scientists, on the other hand, have concentrated their efforts on frac-
tional differential equations (FDEs), which have been proved to be more accurate than
classical differential equations in describing complicated physical events in the actual world.
Various phenomena, such as nuclear physics, viscoelastic materials, signal processing, fluid
dynamics porous medium, plasma physics, photonics, chaotic systems, electromagnetism,
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propagation of waves, optical fiber communication, ocean wave and many others, have
been explained using the idea of fractional derivatives. Because FDEs are so important,
several efficient and powerful approaches for determining the precise solutions to these
equations have been developed. Some of these methods are the Riccati–Bernoulli sub-
ODE [1], the bifurcation [2,3], the tanh-sech [4,5], the Jacobi elliptic function [6], the Hi-
rota’s [7], the exp(−φ(ς))-expansion [8], perturbation [9–11], the (G′

G )-expansion [12–14],
and the sine-cosine [15,16].

Models of fractional differential equations with random forces appear to be more
important. As a result, one of the most significant equations in modern magnet theory is
considered here. This equation is defined as the (2 + 1)-dimensional stochastic fractional
Heisenberg ferromagnetic spin chain equation (SFHFSCE), and is written as follows:

idU + [k1T2α
x U + k2T2α

y U + k3T2α
xyU − k4|U|2U]dt + iρU ◦ dη = 0, (1)

where U is a complex stochastic function of the variable x, y and t,

k1 = σ4(J + J2), k2 = σ4(J1 + J2), k3 = 2σ4 J2, k3 = 2σ4 A,

J, J1, J2 are the constant coefficients of bilinear exchange interactions in two dimensions,
σ is a lattice parameter and A represents the crystal field anisotropic interaction, ρ is the
noise strength, η is the standard Wiener process (SWP) in one variable t and U ◦ dη is
multiplicative noise in the Stratonovich sense.

To understand magnetic ordering in ferromagnetic materials, the deterministic Heisen-
berg ferromagnet equation (DHFE) was created. It is employed in optical fibers and plays
a significant role in the modern theory of magnets, which models non-linear magnet
dynamics. Due to the significance of DHFE, numerous authors have used a variety of
approaches, such as generalized Riccati mapping and improved auxiliary equation [17],
Sine–Gordon and modified exp-function expansion [18], the F-expansion method combined
with Jacobi elliptic [19], the Darboux transformation [20–22], the Hirota bilinear [23,24],
the auxiliary ordinary differential equation [25], a new extended FAN sub-equation [26]
and Jacobi elliptic functions [27], to find the exact solution for this equation. Many au-
thors have investigated the analytical solutions of fractional DHFE using various meth-
ods, including generalized Riccati equation mapping [28], the complete discrimination
system [29], exponential methods and the new Kudryashov [30], the new extended general-
ized Kudryashov [31], the Jacobi elliptic function [32], the extended tanh-function and the
exp(−φ(ς))-expansion [33]. However, to the best of our knowledge, the space-fractional
stochastic solutions of Equation (1) have not been investigated until now.

Our objective for this paper was to obtain the exact stochastic fractional solutions of
Equation (1) using the Jacobi elliptic function method (for more details about this method
see, for instance, [6,27]). Because magnetic solitons are one of the interesting groups of non-
linear excitations reflecting spin dynamics in semi-classical continuum Heisenberg systems,
physicists might use the obtained solution to understand a range of fascinating physical
phenomena. Also, we demonstrate the impact of the Wiener process on the behavior of
these solutions by displaying different graphical representations using MATLAB tools.

The rest of this article is ordered as follows: We define and state some features of the
SWP and conformable derivative (CD), In Section 2. In Section 3, we apply suitable wave
transformation to derive the wave equation of the SFSHFSCE (1). In Section 4, we apply
the Jacobi elliptic function method to attain the analytical solutions of the SFSHFSCE (1).
In Section 5, we discuss how SWP influences the analytical solutions of the SFSHFSCE (1).
Lastly, we provide the article’s conclusions.

2. Preliminaries

We present here some definitions and properties of SWP and CD. First, let us define
SWP η(t) as follows:
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Definition 1. A stochastic process {η(t)}t≥0 is called SWP if

1. η(0) = 0,
2. η(t) is a continuous function for t ≥ 0,
3. For t1 < t2, η(t1)− η(t2) is independent,
4. η(t2)− η(t1) has a normal distribution with variance t2 − t1 and mean 0.

are satisfied

We note that the two most commonly utilized variants of the stochastic integral are
the Stratonovich and Itô variants [34]. The modeling problem mainly determines what
form is appropriate; even so, once it is chosen, an equivalent equation of the other kind can
be created using the same solutions. So, the next relation can be used to swap between Itô
(denoted by

∫ t
0 Φdη) and Stratonovich (denoted by

∫ t
0 Φ ◦ dη):

∫ t

0
Φ(τ, Zτ)dη(τ) =

∫ t

0
Φ(τ, Zτ) ◦ dη(τ)− 1

2

∫ t

0
Φ(τ, Zτ)

∂Φ(τ, Zτ)

∂z
dτ, (2)

where Φ is assumed to be sufficiently regular and {Zt, t ≥ 0} is a stochastic process.

Definition 2 ([35]). The CD of order α ∈ (0, 1] for φ : R+ → R is defined as

Tα
xφ(y) = lim

h→0

φ(y + hy1−α)− φ(y)
h

.

Let us exhibit some features of the CD:

1. Tα
y [aφ(y) + bΨ(y)] = aTα

yφ(y) + bTα
yΨ(y),

2. Tα
x(φ ◦Ψ)(y) = y1−αΨ′(y)φ(Ψ(y)),

3. Tα
y [b] = 0,

4. Tα
y [yb] = byb−α,

5. Tα
yΨ(y) = y1−α dΨ

dy ,

for any real constants a, b.

3. The Wave Equation of the SFSHFSCE

To achieve the wave equation for the SFSHFSCE, we use the following transformation

U(x, y, t) = ϕ(η)e(iθ−ρη(t)−ρ2t), η =
η1

α
xα +

η2

α
yα + η3t, θ =

θ1

α
xα +

θ2

α
yα + θ3t, (3)

where ϕ is a real deterministic function, and ηk and θk for all k = 1, 2, 3 are constants. We
see that

T2α
x U = [η2

1 ϕ′′ + 2iη1θ1 ϕ′ − θ2
1 ϕ]e(iθ−ρη(t)−ρ2t),

T2α
y U = [η2

2 ϕ′′ + 2iη2θ2 ϕ′ − θ2
2 ϕ]e(iθ−ρη(t)−ρ2t),

Tα
xyU = [η1η2 ϕ′′ + i(η1θ2 + η2θ1)ϕ′ − θ1θ2 ϕ]e(iθ−ρη(t)−ρ2t), (4)

and

dU = [(η3 ϕ′ + iθ3 ϕ +
1
2

ρ2 ϕ− ρ2 ϕ)dt− ρϕdη]e(iθ−ρη(t)−ρ2t)dt

= [(η3 ϕ′ + iθ3 ϕ)dt− (
1
2

ρ2 ϕdt + ρϕdη)]e(iθ−ρη(t)−ρ2t)dt, (5)

where the term + 1
2 ρ2 ϕ is the Itô correction. Using Equation (2) in differential form, we have

dU = [(η3 ϕ′ + iθ3 ϕ)dt− ρϕ ◦ dη]e(iθ−ρη(t)−ρ2t)dt. (6)
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Substituting Equation (3) into Equation (1) and utilizing (4) and (5), we have, for the
imaginary part:

(η3 + 2k1η1θ1 + 2k2η2θ2 + k3η1θ2 + k3η2θ1)ϕ′ = 0, (7)

we assume
η3 = −k1η1θ1 − 2k2η2θ2 − k3η1θ2 − k3η2θ1.

And we have, for the real part:

ϕ′′ − H1e(2ρη(t)−2ρ2t)ϕ3 − H2 ϕ = 0, (8)

where

H1 =
k4

k1η2
1 + k2η2

2 + k3η1η2
and H2 =

θ3 + k1θ2
1 + k2θ2

2 + k3θ1θ2

k1η2
1 + k2η2

2 + k3η1η2
.

Considering the expectation on both sides of (8), yields

ϕ′′ − H1 ϕ3e−2ρ2tE(e2ρη(t))− H2 ϕ = 0, (9)

where ϕ is a deterministic function. We note, for every Gaussian process Y and real number
$, that

E(e$Y) = e
$2
2 t. (10)

The identity (10) relates to the fact that ρη(t) is distributed as ρ
√

tY. Then,
Equation (9) takes the form

ϕ′′ − H1 ϕ3 − H2 ϕ = 0. (11)

4. Analytical Solutions of the SFSHFSCE

To acquire the wave solutions of (11), we utilize the Jacobi elliptic function method.
Then we obtain the SFSHFSCE (1) solutions. Considering the solutions to Equation (11),
they take the following form:

ϕ(ξ) = A + Bcn(λξ), (12)

where cn(λξ) = cn(λξ, m) is a Jacobi elliptic sine function for 0 < m < 1 and A, B, λ are
undefined constants. By differentiating Equation (12) twice, we obtain

ϕ′′(ξ) = −(2m2 − 1)Bλ2cn(λξ)− 2m2Bλ2cn3(λξ). (13)

Inserting Equations (12) and (13) into Equation (11), we have

(2m2Bλ2 + H1B3)cn3(λξ) + 3H1 AB2cn2(λξ)

+[(2m2 − 1)Bλ2 + 3H1 A2B + H2B]cn(λξ) + (H1 A3 + AH2) = 0.

Balancing the coefficient of [cn(λξ)]n to zero for n = 0, 1, 2, 3, we have

H1 A3 + AH2 = 0,

(2m2 − 1)Bλ2 + 3H1 A2B + H2B = 0,

3H1 AB2 = 0,

and
2m2Bλ2 + H1B3 = 0.
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When we solve the previously mentioned equations, we get

A = 0, B = ±

√
−2m2H2

(2m2 − 1)H1
, λ2 =

H2

(2m2 − 1)
.

Thus, Equation (11), using (12), has the solution

ϕ(ξ) = ±

√
−2m2H2

(2m2 − 1)H1
cn(

√
H2

(2m2 − 1)
ξ).

Therefore, the solution of SFSHFSCE (1) is

U(x, y, t) = ±

√
−2m2H2

(2m2 − 1)H1
cn
(√ H2

(2m2 − 1)
ξ
)

e(iθ−ρη(t)−ρ2t) , (14)

for H2
(2m2−1) > 0 and H1 < 0. If m→ 1, then Equation (14) takes the form

U(x, y, t) = ±

√
−2H2

H1
sech

(√
H2ξ)

)
e(iθ−ρη(t)−ρ2t) . (15)

Similarly, we can change cn in (12) by dn and sn to acquire the solutions of (11), as
follows:

ϕ(ξ) = ±

√
2m2H2

(2−m2)H1
dn(

−H2

(2−m2)
ξ),

and

ϕ(ξ) = ±

√
−2m2H2

(m2 + 1)H1
sn(

−H2

(m2 + 1)
ξ),

respectively. As a result, the solutions of SFSHFSCE (1) are as follows:

U(x, y, t) = ±

√
−2m2H2

(2m2 − 1)H1
dn
(√ −H2

(2m2 − 1)
ξ
)

e(iθ−ρη(t)−ρ2t) , (16)

for H2
(2m2−1) < 0, H1 > 0, and

U(x, y, t) = ±

√
−2m2H2

(m2 + 1)H1
sn
(√ −H2

(m2 + 1)
ξ
)

e(iθ−ρη(t)−ρ2t) , (17)

for H2 < 0, H1 > 0, respectively. If m→ 1, then the solutions (16) and (17) take the form

U(x, y, t) = ±

√
−2H2

H1
csch

(√
−H2ξ

)
e(iθ−ρη(t)−ρ2t) , (18)

and

U(x, y, t) = ±

√
−H2

H1
tanh

(√−H2

2
ξ
)

e(iθ−ρη(t)−ρ2t) , (19)

for H2 < 0, H1 > 0.

Remark 1. If we put α = 1 and ρ = 0 in Equations (14), (16) and (17), then the identical solutions
as in [27] are obtained.
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Remark 2. If we put ρ = 0 and α = 1 in Equations (14)–(19), then we have the same solutions
stated in [19] .

5. The Impact of Noise on the SFSHFSCE Solutions

We address the impact of the SWP on the solutions of the SFSHFSCE (1).
We provide numerous graphical-representations to check the impact of the SWP on the
behavior of these solutions. First, let us fix the parameters k1 = 2.5, k2 = k3 = 1.5, k4 = 0.5,
η1 = η2 = θ1 = θ2 = 1. In the following, we utilize the MATLAB tools [36] to simulate the
solutions (14) for t ∈ [0, 5], x ∈ [0, 6] and , y = 1 and for various ρ (noise intensity):

When we look at Figures 1–3 above, we can see that there is some variation and that
the surface is not flat when we examine at ρ = 0. When noise is included and its strength is
increased by ρ = 0.5, 1, 2, the surface becomes significantly more flat after minor transit
patterns. This displays that the SWP has an effect on the solutions of the SFSHFSCE and
stabilizes the solutions around zero.

ρ = 0 ρ = 0.5

ρ = 1 ρ = 2

Figure 1. Profile picture of |U| given in (14) in three dimension for α = 1 and θ3 = −5.
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ρ = 0 ρ = 0.5

ρ = 1 ρ = 2

Figure 2. Profile picture of |U| given in (14) in three dimensions for α = 0.5 and θ3 = −5.

Figure 3. Profile picture of |U| given in (14) in two dimensions for α = 1 and different ρ = 0, 0.5, 1, 2.

6. Conclusions

We successfully acquired the analytical space-fractional stochastic solutions of the
SFSHFSCE (1) forced by multiplicative SWP. This Equation (1) has never been studied
before with a stochastic term. We used the Jacobi elliptic function method to obtain elliptic
and hyperbolic stochastic solutions. These stochastic solutions are much more accurate and
effective in understanding some important complex physical phenomena. In addition, we
extended some previously obtained solutions, such as those reported in [19,27]. Finally, we
implemented Matlab tools to demonstrate how the multiplicative Wiener process affected
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the SFSHFSCE solutions. In future work, we will consider the SFSHFSCE (1) with additive
noise or with the infinite dimension Wiener process.
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