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Abstract: This paper studies noise-to-state stability in probability (NSSP) for random complex
dynamical systems on networks (RCDSN). On the basis of Kirchhoff’s matrix theorem in graph
theory, an appropriate Lyapunov function which combines with every subsystem for RCDSN is
established. Moreover, some sufficient criteria closely related to the topological structure of RCDSN
are given to guarantee RCDSN to meet NSSP by means of the Lyapunov method and stochastic
analysis techniques. Finally, to show the usefulness and feasibility of theoretical findings, we apply
them to random coupled oscillators on networks (RCON), and some numerical tests are given.
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1. Introduction

The past few decades have witnessed the evolution and development of research
about complex dynamical systems on networks (CDSN). In fact, CDSN is widely applied in
various fields such as social networks [1], neural networks [2–4], multiagent networks [5,6],
and communication networks [7,8]. Since CDSN is often located in a complex communi-
cation environment [9], it is inevitable to receive noise interference, which is expressed
by the white noise process in general when describing actual phenomena with CDSN.
However, due to the bandwidth of the white noise being unlimited and not differentiable
almost everywhere, many scholars turned to using a stationary random process to simulate
external noise disturbance [10,11]. Thus, complex dynamical systems under the general
noise disturbance (RCDSN) are usually employed to describe actual systems, and it is
shown as following

dxi(t)
dt

= fi(xi(t), t) +
h

∑
j=1

aijTij
(

xi(t), xj(t), t
)
+ gi(xi(t), t)ξi(t), i ∈ H, (1)

where xi ∈ Rni is the system state and ξi(t) ∈ Rmi is a second-order moment stochastic
process satisfying Ft-adapted. Functions fi : Rni ×R+ → Rni and gi : Rni ×R+ →
Rni×mi are manifested as the drift coefficient and diffusion coefficient of the i-th subsystem,
severally. Real numbers aij ≥ 0 are expressed as the coupling strength, and functions
Tij : Rni ×Rnj ×R+ → Rni represent the coupling form from the j-th subsystem to the
i-th one.

The stability of the system is the primary consideration in the analysis of system
performance. For systems under white noise disturbance, namely Ito stochastic systems,
global asymptotic stability in mean, input state stability, stochastic input state stability and
finite-time stability have been extensively studied by scholars, and the relevant results
have been published in [12–15]. Compared with the Ito stochastic system, there are few
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stability results about RCDSN (1). Inspired by the definition of input state stability, Wu
introduced noise-to-state stability in probability (NSSP) and gave some adequacy criterions
for the NSSP of random nonlinear systems [16]; following this study, some significant
conclusions were obtained (more details can be seen in [10,11]). However, in the existing
conclusions, only the stability of individual systems is studied, and few scholars consider
the coupling structure between them, which is one of the motivations for us to study NSSP
for RCDSN (1).

It is well known that the Lyapunov method is a powerful tool when we study the
stability of the system. Unfortunately, due to the high dimensionality, nonlinearity and
complexity of RCDSN (1), which are caused by the large number of subsystems, nonlinearity
of subsystems and complex forms of connections between subsystems, studying NSSP
for RCDSN (1) is a difficult problem, and one of the most challenging tasks is how to
construct a suitable Lyapnov function for RCDSN (1). Recently, by combining graph theory,
Li et al. provided a technique to study global stability for a coupling system [17], and
many important results were obtained after this study [6,9]. However, to the best of our
knowledge, there exist few results so far about the NSSP for RCDSN (1), which motivates
us to try to investigate NSSP of RCDSN (1) in this paper by using this skill.

Compared with the existing literature, especially in [12,13], our contributions in this
paper are as follows:

1. A suitable Lyapunov function for RCDSN (1) is established by using Kirchhoff’s
matrix tree theorem in graph theory. Combining with the Lyapunov method and
stochastic analysis techniques, NSSP for RCDSN (1) is studied.

2. The main result is applied to random coupled oscillators on networks (RCON), and
its usefulness and effectiveness can be fully demonstrated in some numerical tests.

The rest of this paper is organized as follows. Notations are given in Section 2. In
Section 3, some preliminaries and model descriptions are provided. The main results are
given in Section 4. An application to random coupled oscillators on networks is given in
Sections 5 and 6, the numerical simulations are presented to explain the validity of our
work. Finally, the conclusion is drawn in Section 7.

2. Notations

In this paper, Rni , Rmi×ni denote the ni-dimensional real vector space and the set
of mi × ni-dimensional real matrix, severally, and R+ = [0,+∞). The Euclidean norm
is defined as |x| = (∑m

i=1 x2
i )

1
2 for vector x = (x1, · · · , xm)T ∈ Rm. A complete probabil-

ity space is expressed as
(
Ω,F , {Ft}t≥0,P

)
, where {Ft}t≥0 is a filtration satisfying the

usual conditions, P is a probability measure, and E represents the expectation of P. Let
ξ(t) ∈ Rn be a stochastic process vector defined on the complete probability space. Define
N = ∑h

k=1 nk, M = ∑h
k=1 mk, where nk and mk are positive natural numbers,

H = {1, 2, · · · , h}, K∞ = {α(·) : α(·) : R+ → R+, α(·) is strictly increasing, un-
bounded and α(0) = 0} and KL = {β(·, ·) : β(·, ·) : R+ × R+ → R+, β(·, y) ∈
K∞ for each fixed y ≥ 0, β(x, ·) is strictly decreasing to 0 as y → +∞ for each fixed
x ≥ 0}. The family of all non-negative functions V(x, t) onRn ×R+ that are continuous
once differentiable in x and t is represented by C1,1(Rn ×R+;R+). Other symbols will be
introduced where they first appear.

3. Model Description and Preliminaries

As we all know, a weighted digraph is an effective tool to describe RCDSN (1). By
using a weighted directed graph (G, A) with h (h ≥ 2) vertices, where G is a digraph
containing a vertex set as well as a directed arc set and A = (aij)h×h denotes the coupling
configuration of RCDSN (1), we can describe RCDSN (1) clearly and naturally. In weighted
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digraph (G, A), each vertex represents a subsystem of RCDSN (1), and the i-th subsystem
is represented as follows

dxi(t)
dt

= fi(xi(t), t) + gi(xi(t), t)ξi(t).

Furthermore, the directed arc between two vertices represents the influence between
two subsystems, and the influence of the j-th subsystem on the i-th one is written by
aijTij(xi, xj, t). More specially, if aij = 0, there is no effect between the two subsystems. In
addition, for the convenience of the reader, we have abbreviated RCDSN (1) as follows

dx(t)
dt

= F(x(t), t) + G(x(t), t)ξ(t). (2)

where x = (x1, · · · , xh)
T ∈ RN , the stochastic process ξ = (ξ1, · · · , ξh)

T ∈ RM is Ft-
adapted, satisfying sup0≤s≤tE|ξ(s)|2 < K0 with K0 being a positive constant.

F(x, t) =

(
f1(x1, t) +

h

∑
j=1

a1jT1j
(

x1, xj, t
)
, · · · , fh(xh, t) +

h

∑
j=1

ahjThj
(
xh, xj, t

))T

∈ RN

G(x, t) =


g1(x1, t) 0 · · · 0

0 g2(x2, t) · · · 0
...

...
. . .

...
0 0 · · · gh(xh, t)

 ∈ RN×M

are piecewise continuous in t and locally Lipschitz in x; moreover, F(0, 0) = 0 and G(0, 0) = 0.
At the end of this section, we give a definition and two useful lemmas.

Definition 1 (See the work of Deng et al. [18]). If for any ε ∈ (0, 1) and the initial value
x0 ∈ RN , there exists β(·, ·) ∈ KL and Γ(·) ∈ K∞ such that

P
{
|x(t)| ≤ β(|x0|, t) + Γ

(
sup

0≤s≤t
E|ξ(s)|2

)}
≥ 1− ε,

then, RCDSN (1) is said to be noise-to-state stability in probablity (NSSP).

Lemma 1 (Kirchhoff’s matrix tree theorem [19]). Assume that h ≥ 2. Let li denote the cofactor
of the i-th diagonal element of the Laplacian matrix of the weighted digraph (G, A). Then

li = ∑
T ∈Ti

W(T ), i ∈ H,

where Ti is the set of all spanning trees T of the weighted digraph (G, A) that are rooted at vertex i,
and W(T ) is the weight of T . Particularly, if the weighted digraph (G, A) is strongly connected,
then li > 0.

Lemma 2 (See the work of Wu [16]). For RCDSN (2), if there exists positive numbers C0, D0
and function V(x, t) ∈ C1.1(RN ×R+;R+) such that

lim
k→∞

inf
|x|>k

V(x, t) = ∞,

E[V(x(t ∧ ηk), t ∧ ηk)] ≤ C0eD0t,

where ηk = in f {t ≥ 0 : |x(t)| ≥ k} (k = 1, 2, · · · ), then RCDSN (4) has a unique global solution.
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4. Main Results

In recent years, the study of NSSP for stochastic nonlinear systems has become a
hot topic, and many results have been published in [10,11]. In this section, we will give
sufficient criteria for RCDSN (1) to satisfy NSSP, as shown in the following theorem.

Theorem 1. Suppose every subsystem of RCDSN (1) has functions Vi(xi, t) ∈ C1,1(Rni ×
R+; R+) (i ∈ H) which meets the following conditions C1, C2 and C3.

C1. There exist functions Γ1
i (·), Γ2

i (·) ∈ K∞ which satify

Γ1
i (|xi|) ≤ Vi(xi, t) ≤ Γ2

i (|xi|),

where Γ1
i (·) is a convex function.

C2. There exist positive numbers q, λi and functions Qij(xi, xj, t) such that

∂Vi(xi, t)
∂t

+
∂Vi(xi, t)

∂xi

[
fi(xi, t) +

h

∑
j=1

aijTij(xi, xj, t)
]
+ q
∣∣∣∂Vi(xi, t)

∂xi
gi(xi, t)

∣∣∣2
≤ −λiVi(xi, t) +

h

∑
j=1

aijQij
(
xi, xj, t

)
,

where ∂Vi(xi ,t)
∂xi

=

(
∂Vi(xi ,t)

∂x(1)i

, · · · , ∂Vi(xi ,t)

∂x
(ni)
i

)
, and coupling configuration matrix A = (aij)h×h is

irreducible, which means the weighted digraph (G, A) is strongly connected.
C3. Along each directed cycle CQ of weighted digraph (G, A), for all xi ∈ Rni and xj ∈ Rnj ,

there is

∑
(j,i)∈E(CQ)

Qij
(
xi, xj, t

)
≤ 0.

Then, RCDSN (1) is NSSP.

Proof. We construct a Lyapunov function as follows

V(x, t) = eτt
h

∑
i=1

liVi(xi, t),

where positive number τ < min
1≤i≤h

{λi} and li represents the cofactor of the i-th diagonal

element of the Laplacian matrix

L =



∑
k 6=1

a1k −a12 · · · −a1h

−a21 ∑
k 6=2

a2k · · · −a2h

...
...

. . .
...

−ah1 −ah2 · · · ∑
k 6=h

ahh


of the weighted digraph (G, A). According to Lemma 1, we can conclude that li > 0.

Given condition C1, we can derive that

V(x, t) ≤ eτt
h

∑
i=1

liΓ
(2)
i (|xi|) ≤ eτt

h

∑
i=1

li max
1≤i≤h

{
Γ(2)

i }(|x|) , eτtΓ2(|x|), (3)
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where Γ2(·) =
h
∑

i=1
li max

1≤i≤h

{
Γ(2)

i }(·) ∈ K∞. Based on the condition C1, it is easy to obtain

V(x, t) ≥ eτt
h

∑
i=1

liΓ
(1)
i (|xi|) ≥ eτt min

1≤i≤h
{li}Γ̂

(
1
h

h

∑
i=1
|xi|
)

≥ eτt min
1≤i≤h

{li}Γ̂
(
|x|
h

)
, eτtΓ1(|x|), (4)

where Γ̂(·) = min
1≤i≤h

{
Γ(1)

i (·)
}

and Γ1(·) = min
1≤i≤h

{li}Γ̂
( ·

h
)
∈ K∞. Combining with inequali-

ties (3) and inequalities (4), we can obtain that

eτtΓ1(|x|) ≤ V(x, t) ≤ eτtΓ2(|x|). (5)

Then, in terms of condition C2, C3, the combination identical equation in graph
theory [17] and the fact that W(Q) ≥ 0, taking the derivative for V(x, t) along the trajectory
of RCDSN (1), we have

dV(x, t)
dt

≤ eτt
h

∑
i=1

li

(
τVi(xi, t) +

∂Vi(xi, t)
∂t

+
∂Vi(xi, t)

∂xi

[
fi(xi, t) +

h

∑
j=1

aijTij(xi, xj, t)
]

+q
∣∣∣∂Vi(xi, t)

∂xi
gi(xi, t)

∣∣∣2 + 1
4q
|ξ(t)|2

)

≤ eτt
h

∑
i=1

li

[
(τ − λ)Vi(xi, t) +

1
4q
|ξ(t)|2

]
+ eτt

h

∑
i,j=1

liaijQij
(
xi, xj, t

)
≤ eτt

h

∑
i=1

li
1
4q
|ξ(t)|2, (6)

where λ = min
1≤i≤h

{λi}.

Next, we construct a stopping time sequence {ηk}∞
k=1. Each item in this stopping

time sequence is regarded as ηk = inf{t ≥ 0 : |x(t)| ≥ k} (k = 1, 2, · · · ), and it meets that
ηk → ∞ whenever k → ∞. Taking the integrals in [0, t ∧ ηk) and expectation on both sides
of inequality (6), it yields that

EV(x(t ∧ ηk), t ∧ ηk) ≤ V(x0, 0) +
∫ t∧ηk

0
E

h

∑
i=1

li
1
4q
|ξ(s)|2eτsds (7)

≤
(

V(x0, 0) +
1

4τq

h

∑
i=1

li sup
0≤s≤t

E|ξ(s)|2
)

eτt (8)

In terms of inequality (8) and Lemma 2, it is easy to obtain that RCDSN (1) has a
unique global solution. Let k → ∞ in inequality (7); combining with inequality (5), we
can derive that

eτtEΓ1(|x(t)|) ≤ EV(x(t), t) ≤ V(x0, 0) +
1
4q

h

∑
i=1

li sup
0≤s≤t

E|ξ(s)|2
∫ t

0
eτsds. (9)

According to Jensen’s inequality and inequality (9), we can obtain

E|x(t)| ≤ Γ−1
1
(
e−τtΓ2(|x0|)

)
+ Γ−1

1

(
1

4τq

h
∑

i=1
li sup

0≤s≤t
E|ξ(s)|2

)

, β̃(|x0|, t) + Γ̃

(
sup

0≤s≤t
E|ξ(s)|2

)
.

(10)
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For any ε ∈ (0, 1), in accordance with Chebyshev’s inequality and inequality (10), it
yields that

P
{
|x(t)| > β(|x0|, t) + Γ

(
sup

0≤s≤t
E|ξ(s)|2

)}
≤ εE|x(t)|

β̃(|x0|, t) + Γ̃

(
sup

0≤s≤t
E|ξ(s)|2

) ≤ ε,

where β(|x0|, t) = 1
ε β̃(|x0|, t) ∈ KL and Γ(·) = 1

ε Γ̃(·) ∈ K∞. In summary, binding with
Definition 1, RCDSN (1) is NSSP, which means the proof completes.

Remark 1. Based on the condition that the Ft-adapted stochastic process ξ(t) in RCDSN (2)
satisfies sup0≤s≤tE|ξ(s)|2 < K0 with K0 being a positive constant, Theorem 1 is obtained. In
fact, if the stochastic process ξ(t) satisfies sup0≤s≤tE|ξ(s)|2 < c0ed0t where c0, d0 are positive
numbers, Theorem 1 still holds. In addition, from the proof of Theorem 1, it can be seen easily that
RCDSN (1) is asymptotically stability .

Remark 2. Since RCDSN (1) is very complex, some theorems in graph theory such as Kirch-
hoff’s matrix tree theorem are used to connect the dynamic behavior and topological structure of
RCDSN (1) in Theorem 1. Furthermore, condition C3 holds for every directed cycle CQ of the
weighted digraph (G, A), which is difficult to verify in many cases. Fortunately, the difficulties
mentioned above can be overcome if we find some suitable functions Qij (i, j ∈ H). In fact, if there
exist functions Ti and Tj for every Qij such that

Qij(xi, xj, t) ≤ Tj(xj, t)− Ti(xi, t).

Then, the following inequality can be naturally obtained.

∑
(j,i)∈E(CQ)

Qij
(
xi, xj, t

)
≤ ∑

(j,i)∈E(CQ)

[
Tj
(

xj, t
)
− Ti(xi, t)

]
= 0.

Clearly, condition P3 could be verified easily.

Remark 3. Recently, the use of mathematical models to solve real-world problems has attracted
the attention of many scholars, and the relevant results have been published in [20–26]. In [20],
Rahaman et al. studied a numerical solution method for initial value problems with initial sin-
gularities. In [21–25], scholars explored a semiconductor circuit breaker fluid dynamics model, a
Fractional Order SIR Model with 2019-nCoV, mathematical models on the digestive system and
COVID-19 pandemic, badminton players’ trajectory and Lane–Emden differential equation in
fair value analysis of financial accounting by using a numerical calculation method. A stochastic
numerical computing framework based on Gudermannian neural networks together with the global
and local search genetic algorithm and active-set approach has been presented by Sabir et al. in [26].
In this paper, we studied NSSP for RCDSN (1) by constructing a new Lyapunov function and
applying the Lyapunov method and stochastic analysis skills.

Remark 4. The past decades have witnessed the evolution and development of stochastic complex
dynamical systems stability research. For example, in [12], Gao et al. studied global asymptotic sta-
bility in mean for stochastic complex networked control systems. Asymptotic stability in probability
for discrete-time stochastic coupled systems on networks with multiple dispersal has been researched
by Wang et al. in [6]. What these studies have in common is to explore the dynamic behavior of
complex dynamical systems under white noise perturbation. Compared with them, the innovation
of this paper is that it gives the sufficiency criterion for NSSP of complex dynamical systems on
networks under the disturbance of the second-order moment process (RCDSN) in Theorem 1, which
broadens the scope of application of RCDSN.
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5. An Application to Random Coupled Oscillators on Networks

Coupling oscillators on networks (CON) are widely studied as important applications
in engineering systems and power systems, and many results have been published [27,28].
In [27], Yin et al. investigated the Van der Pol-Duffing oscillator. The synchronization of
coupled harmonic oscillators has been researched by Song et al. in [28]. However, some
tiny noises will affect the stability of CON. Thus, in this section, to verify the validity of our
theoretical results, NSSP for random coupled oscillators on networks (RCON) is studied.
First, we give CON as the following.

ẍi(t) + ψi(xi(t))ẋi(t) + xi(t) = 0,

where the Damping function ψi(·) is bounded, which satisfies mi ≤ ψi(xi) ≤ Mi, where
mi > 0. Based on a transform of yi(t) = ẋi(t) + ηxi(t) and considering the effects of the
coupling structure and general noise disturbance, RCON is given as follows

dxi(t)
dt

= yi(t)− ηxi(t) + µisinxi(t)ξ
(1)
i (t),

dyi(t)
dt

=
(
η − ψi(xi(t))

)
yi(t) +

(
ηψi(xi(t))− η2 − 1

)
xi(t)

+
h

∑
j=1

bij
(
yj(t)− yi(t)

)
+ γicosyi(t)ξ

(2)
i (t), i ∈ H,

(11)

where xi, yi ∈ R1 is the system state and η is a positive number. Positive numbers
µi, γi represent the intensity of noise perturbation, and ξ

(j)
i (t) ∈ R1 (j = 1, 2) are

second-order moment processes satisfying Ft-adapted. The coupling configuration ma-
trix B = (bij)h×h (bij ≥ 0) is irreducible, where bij is the coupling strength. Functions
yj(t)− yi(t) represent the linear coupling form.

For the convenience of proof, we simplify the RCON (11) as follows

dθi(t)
dt

= fi(θi(t), t) +
h

∑
j=1

bijPij
(
θi(t), θj(t), t

)
+ gi(θi(t), t)ξi(t), i ∈ H,

where θi = (xi, yi)
T, fi =

(
yi − ηxi, (η − ψi(xi))yi +

(
ηψi(xi)− η2 − 1

)
xi
)T, Pij = (0, yj −

yi)
T, gi = (µisinxi(t), γicosyi(t))

T and ξi(t) =
(

ξ
(1)
i (t), ξ

(2)
i (t)

)T

Furthermore, a number of adequacy criterions for NSSP of RCON (11) are given.

Theorem 2. RCON (11) is NSSP if the following condition holds.

P1. max
1≤i≤h

{[
|ηMi − η2 − 1| + 1− 2η + η2 + 8µ2

i

]
,
[
|ηMi − η2 − 1| + 2η − 2mi + 1 +

h
∑

j=1
bij + 8γ2

i

]}
< 0.

Proof. Let Lyapunov function Vi(θi, t) = |θi|2 for the i-th subsystem of RCON (11). There
exists convex functions Γ(1)

i (|θi|) = 1
i |θi|2 and Γ(2)

i (|θi|) = i|θi|2 ∈ K∞, which means
condition C1 in Theorem 1 is satisfied. In terms of condition P1 in Theorem 2, we can obtain

∂Vi(θi, t)
∂t

+
∂Vi(θi, t)

∂θi

[
fi(θi, t) +

h

∑
j=1

bijPij
(
θi, θj, t

)]
+
∣∣∣∂Vi(θi, t)

∂θi
gi(θi, t)

∣∣∣2

= (2xi, 2yi)

 yi − ηxi

(η − ψi(xi))yi +
(
ηψi(xi)− η2 − 1

)
xi +

h
∑

j=1
bij(yj − yi)


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+
[
(2xi, 2yi)(µisinxi, γicosyi)

T
]2

≤
(
|ηMi − η2 − 1|+ 1− 2η + η2 + 8µ2

i

)
x2

i +

(
1 + |ηMi − η2 − 1|

+2η − 2mi + 8γ2
i +

h

∑
j=1

bij

)
y2

i +
h

∑
j=1

bij(y2
j − y2

i )

≤ −λiVi(θi, t) +
h

∑
j=1

bijQij(θi, θj, t),

where positive number λi = min
{∣∣|ηMi − η2 − 1|+ 1− 2η + η2 + 8µ2

i

∣∣, ∣∣|ηMi − η2 − 1|+

2η − 2mi + 1 +
h
∑

j=1
bij + 8γ2

i

∣∣} and function Qij(θi, θj, t) = y2
j − y2

i , finally combining with

Remark 2, conditions C2 and C3 in Theorem 1 hold, which means RCON (11) is NSSP.

Remark 5. Recently, as important models in mechanical systems, RCON (11) has been widely
studied, and many results have been published in [29,30]. In [29], stochastic switching in delay-
coupled oscillators was studied. In [30], Wu et al. investigated the synchronization of discrete-
time state-coupled stochastic oscillators. What these results have in common is the study of the
dynamic behavior of coupled oscillators under white noise perturbation. Compared with them, the
adequacy criterion of NSSP for RCON (11) is given under general noise disturbance in Theorem 2,
which is related to the bounded damping functions ψi(xi) and the coupling configuration matrix
B = (bij)h×h of RCON (11).

6. Numerical Test

To verify the validity of our theoretical results, a numerical example is given as follows
(see Figures 1 and 2). First, we let the number of oscillators in RCON be four. Subsequently,
we choose the wide stationary process ξi(t) = (10icos(t + φ), 10isin(t + φ))T where the
random variable φ is uniformly distributed in (0, 2π). Let positive number η = 1.5 and
intensity of noise perturbation

µ1 = 0.05, µ2 = 0.04, µ3 = 0.03, µ4 = 0.02,

γ1 = 0.02, γ2 = 0.03, γ3 = 0.04, γ4 = 0.05.

Furthermore, the damping functions ψi(·) are chosen as

ψ1(x1) = 0.005cosx1 + 2.165, ψ2(x2) = 0.005sinx2 + 2.165,

ψ3(x3) = −0.005cosx3 + 2.165, ψ4(x4) = −0.005sinx4 + 2.165,

and the coupling configuration matrix is

B =


0.01 0 0 0.04

0 0.02 0.03 0
0 0.02 0.03 0

0.01 0 0 0.04

.

which is irreducible obviously. Through calculation, the condition P1 in Theorem 2 is met.
Thus, RCON (11) is NSSP with initial values as following

θ1 = (0.3,−0.1)T, θ2 = (−0.5, 0.5)T, θ3 = (0.7,−2)T, θ4 = (0.1, 6)T.
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From Figures 1 and 2, we can observe that all the subsystems of RCON (11) states θi(t)
(i ∈ H) are bounded when the random process ξ(t) meets sup0≤s≤tE|ξ(s)|2 < K0 with K0
being a positive constant, condition P1 in Theorem 2 is satisfied and coupling configuration
matrix B = (bij)h×h of RCON (11) is irreducible, which brings into correspondence with the
conclusion above and further shows the practicability of the results presented in the paper.
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Figure 1. The sample path for θ1(t) and θ2(t) of RCON (11) with chosen initial values.
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Figure 2. The sample path for θ3(t) and θ4(t) of RCON (11) with chosen initial values.

Remark 6. As we all know, the analytical solution of stochastic differential equations under white
noise perturbation is often difficult to find. Furthermore, solving random differential equations under
perturbations of second-order moment processes is a more difficult task. In order to verify the validity
of our theoretical results, constructing a suitable numerical method for numerical simulation is an
important tool. However, in order to ensure the calculation accuracy of the numerical simulation
of the system, it is often necessary to reduce the calculation step size, which greatly reduces the
calculation efficiency. Therefore, it is necessary to choose the appropriate numerical method to balance
the contradiction between calculation accuracy and efficiency. In Section 6, the numerical solutions
of RCON (11) are given by using the Euler method with the step size of 0.1 (see Figures 1 and 2),
which correctly reflects the dynamic behavior of RCON (11) and is highly operable in practice.
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7. Conclusions

In this paper, we have investigated NSSP for RCDSN (1), and an available Lyapunov
function has been constructed on the basis of Kirchhoff’s matrix theorem in graph theory.
Combining some stochastic analysis skills and the Lyapunov method, some sufficient
conditions guaranteeing RCDSN (1) to meet NSSP have been provided. In addition, the
usefulness and feasibility of the theoretical findings have been demonstrated by applying
them to RCON (11). Finally, by using the Euler method with a step size of 0.1, some sample
paths of RCON (11) are given (see Figures 1 and 2). It can be seen from the figures that
RCON (11) is NSSP when the random process ξ(t) meets sup0≤s≤tE|ξ(s)|2 < K0 with K0
with K0 being a positive constant and condition P1 in Theorem 2 is satisfied, which shows
the validity of our theoretical results. In Theorem 1, the NSSP of RCDSN (1) is studied
when weighted digraph (G, A) is strongly connected. However, in the real world, the
topological structure of RCDSN (1) may be arbitrary. Therefore, it is valuable to study
RCDSN (1) when the weighted digraph (G, A) is not strongly connected in the future.
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