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Abstract: This paper considers a modified Erlang loss system for cognitive wireless networks and
related applications. A primary user has pre-emptive priority over secondary users, and the primary
customer is lost if upon arrival all the channels are used by other primary users. Secondary users
cognitively use idle channels, and they can stay (either in an infinite buffer or in an orbit) in cases
where idle channels are not available upon arrival or they are interrupted by primary users. While the
infinite buffer model represents the case with zero sensing time, the infinite orbit model represents
the case with positive sensing time. We obtain an explicit stability condition for the cases where
arrival processes of primary users and secondary users follow Poisson processes, and their service
times follow two distinct arbitrary distributions. The stability condition is insensitive to the service
time distributions and implies the maximal throughout of secondary users. Moreover, we extend
the stability analysis to the system with outgoing calls. For a special case of exponential service
time distributions, we analyze the buffered system in depth to show the effect of parameters on the
delay performance and the mean number of interruptions of secondary users. Our simulations for
distributions rather than exponential reveal that the mean number of terminations for secondary
users is less sensitive to the service time distribution of primary users.

Keywords: cognitive wireless network; regenerative analysis; stability condition; priority queue;
Erlang loss system; classical retrials; outgoing calls

MSC: 90B22; 60K25; 68M20

1. Introduction

In recent years, Internet traffic has increased explosively due to the increased use
of smartphones, tablet computers, etc. This causes a shortage problem of the wireless
spectrum. Cognitive wireless is considered a promising solution to this problem [1–5].
For the recent development of cognitive radio networks, we refer to the survey paper by
Ostovar et al. [6]. In wireless networks, secondary users (unlicensed users) are allowed
to cognitively use the bandwidths that are originally allocated to primary users (licensed
users). Secondary users should use the bandwidths in such a way that does not interfere
with the primary users. In particular, secondary users can use the bandwidths only if
primary users are not present. To this end, secondary users must be aware of the presence
of primary users so as to evacuate upon the arrival of primary users. From this point
of view, primary users have absolute priority over secondary users, meaning that the
transmission of a secondary user might be interrupted by a primary user. In the first
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system, we assume that interrupted secondary users evacuate to the head of the buffer and
resume their transmission as soon as a channel is available. Then, we extend the stability
analysis to a partial retrial system when the secondary users are evacuated to a virtual orbit
and then attempt to occupy the channel again. Moreover, the analysis is then extended to
the system with outgoing calls, which is initiated during the period that a server is idle.

Motivated by the above situation, we propose analyzing a multiserver (multichannel)
queueing system with an infinite buffer for secondary users while primary users have
absolute priority over secondary users and are lost if all channels are already occupied
by other primary users. Under this assumption (and under Poisson inputs), from the
viewpoint of primary users, the system of servers behaves as an Erlang loss system, while
from that of secondary users, the system is either an infinite buffer model or a retrial model
where secondary users are served when some servers are not occupied by primary users.
In our model, the service times of primary and secondary customers follow two distinct
arbitrary distributions.

A closely related model is the paper by Mitrani and Avi-Itzhak [7]. In this paper, the
author considers an M/M/N system where each server is subject to random breakdowns
and repairs. The author analyzes the joint distribution of the queue length and the state
of the servers using a generating function approach. The model in [7] can be considered
as a model with N primary customers. In our model, primary customers arrive according
to a Poisson process, implying that there is an infinite number of primary customers.
Akutsu and Phung-Duc [8] examine a closely related Markovian model in which secondary
customers first sense the channels before occupying them. The stability condition is
conjectured and verified by simulation in [8] and further proved using a Lyapunov function
approach [9]. Salameh et al. [10,11] consider models with a limited number of sensing
secondary users. Other queueing models of cognitive radio networks could be found
in [10,12–17]. In [10,13,16,18], the service time distributions of primary and secondary
customers are either restricted to Markovian distributions (exponential or phase-type
distributions) and/or the assumption that the number of active secondary users are finite.
In [14,15,17,19–23], models with a single channel are investigated.

In this paper, we first relax these Markovian assumptions mentioned above by con-
sidering arbitrary distributions for the service time of primary users and secondary users.
Under these assumptions, we are able to obtain an explicit stability condition. To the best
of our knowledge, this is the first analytical result for cognitive radio network models with
multiple channels. Moreover, we extend the analysis to a model with the retrial secondary
customers and with outgoing calls. Next, assuming exponential service time distributions,
we study the model in depth using the matrix analytic method [24].

The priority queues are prevalent among models for service differentiation in commu-
nication networks and service systems, and by this reason, applications of our model are
not restricted to cognitive wireless networks [25].

The rest of this paper is organized as follows. In Section 2, we describe our model in
detail with a focus on the regenerative setting. In Section 3, we present the stability analysis
of the basic model and, as a by-product of our analysis, obtain the well-known stability
condition of a buffered multiserver multiclass system (see Theorem 2 and Remark 4). In
Section 4, we prove the stability condition for the system with retrial secondary customers,
while in Section 5, we study a generalization of the latter system to capture the outgoing
calls as well. Section 6 presents a detailed analysis for a special case with exponential
distributions for which we are able to obtain performance measures. We also present
numerical and simulation experiments to show insights into the performance of our system
and the sensitivity of service time distribution, while Section 7 concludes our paper.

2. Description of the System

In this section, we consider the following basic modification of the Erlang system
with two classes of customers with c identical servers, Poisson inputs with rates λi, and
general independent and identically distributed (iid) service times {S(i)

n , n ≥ 1} for class-i
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customers, i = 1, 2. Class-1 customers have pre-emptive priority and are lost if upon arrival
all servers are busy with class-1 customers, while class-2 (non-priority) customers stay in the
system regardless of the state of the system and wait in the queue, if necessary, according to
a non-idling FCFS (first-come-first-served) service discipline. Class-1 and class-2 customers
correspond to primary and secondary customers, respectively, while a server is a channel
in cognitive radio networks. Denote service rates µi = 1/ES(i), where S(i) is the (generic)
service time of class-i customers i = 1, 2. We also denote by {tn, n ≥ 1} the arrival instants
of the superposed (Poisson) input with rate λ = λ1 + λ2, and iid exponential interarrival
times {τn = tn+1 − tn} with generic interarrival time τ. By pre-emptive-resume priority, a
class-1 customer occupies a server busy by a class-2 customer, provided there are no idle
servers upon his arrival.

We deduce the stability conditions of this system based on the regenerative approach.
More precisely, we show that the basic processes describing the dynamics of the system
are regenerative and then find conditions under which these processes are positive recur-
rent [26,27]. This approach, being quite intuitive and transparent, is a powerful tool of
performance and stability analysis of a wide class of queueing processes including non-
Markov ones as well. The main idea of the regenerative stability analysis is based on a
characterization of the limiting remaining regeneration time. More precisely, if this time does
not go to infinity in probability, then the mean regeneration period length is finite, and
thus, the process is positive recurrent [27,28].

First, we describe the regenerative structure of the system. We denote by Qi(t) the
number of class-i customers at time instant t− and let Q(t) = Q1(t) + Q2(t). Obviously,
Q1(t) ≤ c. In addition, let Wi(t) be the workload (remaining work) at instant t− of class-i
customers, i = 1, 2, and let W(t) = W1(t) + W2(t). Denote by Si(t) the remaining service
time in server i (Si(t) = 0 if the server is idle), and let R(t) be the set of servers occupied by
class-1 customers at instant t (we put R(t) = ∅ if there are no such customers). Then

W1(t) = ∑
i∈R(t)

Si(t), t ≥ 0. (1)

Denote Wn = W(tn), Qn = Q(tn), so, at the arrival instant of customer n, the
remaining work in all servers equals Wn and the total number of customers equals Qn.
Note that {Wn = 0} = {Qn = 0}, n ≥ 1. Then, the regeneration instants of the processes
{Q(t)} and {W(t)} are defined as follows

Tn+1 = min{tk > Tn : Wk = Qk = 0 }, n ≥ 0, T0 := 0, (2)

with generic regeneration period length T, which is distributed as any distance between
two regeneration points, i.e., Tn+1 − Tn. In what follows, we assume zero initial state: that is,
the first primary customer arrives in the idle system at instant t1 = T0 = 0. In the latter case,
the first regeneration cycle length is distributed as T: that is, the stochastic equality T1 =st T
holds. We call this regenerative process (in a continuous-time case) positive recurrent if
ET < ∞. Define the remaining regeneration time in the system at instant t as

T(t) = min
k

(Tk − t : Tk − t > 0), t ≥ 0. (3)

In the regenerative stability analysis developed below, the following basic result from
the renewal theory is used [27,29]: if there is a non-random sequence of time instances
zi → ∞, i→ ∞ and constants δ > 0 and D < ∞ such that

inf
i

P(T(zi) ≤ D) ≥ δ, (4)

then ET < ∞.
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Remark 1. The processes {Q1(t)}, {W1(t)} describing class-1 customers are regenerative with
regeneration instants

T(1)
n+1 = {t(1)n > T(1)

n : Q1(t
(1)
n ) = 0}, n ≥ 0 (T(1)

0 = 0),

with generic regeneration period length T(1), where {t(1)n } are the arrival instants of class-1
customers. In other words, T(1)

n is the nth arrival instant of a class-1 customer which meets no other
class-1 customers in the system. Because Q1(t) ≤ c the process {Q1(t)} is tight, and it is known
that the processes {Si(t)} are tight as well; see [30]. In turn, it implies the tightness and hence the
positive recurrence of the processes describing class-1 customers solely [27]: that is, E T(1) < ∞.

3. Stability Analysis

Because the processes describing class-1 customers are positive recurrent and the in-
puts are Poisson, then there exists the stationary distribution {Pi}where Pi is the probability
that exactly i servers are busy by the class-1 customers: that is,

lim
t→∞

P(Q1(t) = i) = Pi, i = 0, . . . , c. (5)

In addition, denote ρ2 = λ2/µ2. In this section, we prove the following main result.

Theorem 1. The system is positive recurrent, that is ET < ∞, if and only if the following condition

ρ2 +
c

∑
i=1

iPi < c, (6)

holds.

Proof. In the interval of time [0, t], denote the following: V̂1(t) is the work of class-1
customers accepted by the system; V2(t) is the arrived work of class-2 customers; and B(t)
is the aggregated busy time of the servers, which equals the departed work in [0, t]. In
addition, denote the total idle time I(t) = ∑c

i=1 Ii(t), where

Ii(t) =
∫ t

0
1(Si(u) = 0)du, t ≥ 0,

is the idle time of server i in [0, t], so B(t) = ct− I(t). (1(·) denotes the indicator function.)
Then, the following balance equation holds true:

V̂1(t) + V2(t) = W1(t) + W2(t) + B(t) = W1(t) + W2(t) + ct− I(t). (7)

By the positive recurrenceof ‘class-1 processes’, as t→ ∞ (see [27]):

EQ1(t) = o(t), EW1(t) = o(t) and Q1(t) = o(t), W1(t) = o(t) w.p.1. (8)

Now, we apply a proof by contradiction and assume that, under condition (6),

Q2(t)⇒ ∞, t→ ∞, (9)

that is, the queue size of class-2 customers increases infinitely in probability, or, for each
fixed k,

lim
t→∞

P(Q2(t) > k) = 1. (10)
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It then follows that the average aggregated idle time of all servers in the interval of
time [0, t] is

EI(t) = E
[ c

∑
i=1

∫ t

0
1(Si(u) = 0)du

]
=

c

∑
i=1

∫ t

0
P(Si(u) = 0)du.

Because the system has an infinite capacity buffer (for the awaiting class-2 customers),
then the service discipline is non-idling: that is, servers cannot be idle while there are
waiting customers. Then, it is easy to see that

P(Q2(t) > c) ≤ P(Si(t) > 0), i = 1, . . . , c, (11)

and, by (10) and (11), we obtain as t→ ∞,

P(Si(t) = 0) = 1− P(Si(t) > 0) ≤ 1− P(Q2(t) > c)→ 0.

It now easily follows that

lim
t→∞

1
t

EI(t) = 0. (12)

Denote by A2(t) the number of class-2 customers that arrived in the interval [0, t].
Then,

V2(t) =
A2(t)

∑
k=1

S(2)
k , t ≥ 0,

is a positive recurrent process with regenerative increments [31] in which each arrival instant
of a class-2 customer is a regeneration instant. Denote by {τ(2)

n } the iid exponential
interarrival times between class-2 customers with the generic period τ(2) with parameter
λ2. Because the process {V2(t)} has the increment S(2) over each interval τ(2), then it
follows (see Theorem 55 in [31]) that

lim
t→∞

EV2(t)
t

=
ES(2)

Eτ(2)
= ρ2. (13)

Denote by B1(t) the total time when servers are occupied by class-1 customers in the
interval [0, t]. Then,

B1(t) =
c

∑
i=1

i
∫ t

0
1(Q1(u) = i)du.

By (5),

Pi = lim
t→∞

1
t

∫ t

0
P(Q1(u) = i)du, i = 1, . . . , c,

and it now follows from (8) that

lim
t→∞

1
t

EV̂1(t) =
c

∑
i=1

i lim
t→∞

1
t

∫ t

0
P(Q1(u) = i)du =

c

∑
i=1

iPi. (14)

Now, collecting together results (8) and (12)–(14), we obtain from the balance Equation (7)
that

ρ2 +
c

∑
i=1

iPi = lim
t→∞

1
t

EW2(t) + c,
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implying

lim
t→∞

1
t

EW2(t) =
c

∑
i=1

iPi + ρ2 − c ≥ 0,

or ρ2 + ∑c
i=1 iPi ≥ c. This contradicts (6) and shows that assumption (9) is false, and thus,

Q2(t) 6⇒ ∞. Hence, there exist constants N < ∞, δ0 > 0 and a (non-random) sequence
ui → ∞ such that (cf. (4))

inf
i

P(Q2(ui) ≤ N) ≥ δ0. (15)

Note that

W2(t) ≤
Q2(t)

∑
k=1

S(2)
k +

c

∑
k=1

Sk(t), t ≥ 0,

and recall that the remaining service times processes {Sk(t)} are tight, k = 1, . . . , c. A
routine but tedious calculation confirms an intuitive result: that the bound (15) implies a
corresponding lower bound for the workload process {W2(t)}, namely

inf
i

P(W2(ui) ≤ D2) ≥ δ2,

for some constants D2 < ∞, δ2 > 0. (In particular, see Section 2.4 in [27].) Moreover,
because the positive recurrent process {W1(t)} is also tight, then also

inf
i

P(W2(ui) ≤ D2, W1(ui) ≤ D1) ≥ δ1,

for some constants D1, δ1 > 0. Denote by τ(t) the remaining (exponential) interarrival
time at instant t (in the superposed Poisson input with rate λ), so P(τ(t) ≤ x) ≥ e−λx for
any x ≥ 0. Recall definition (3) and note that for arbitrary fixed ui (satisfying (15)) and
a constant L > D1 + D2, the following lower bound for the remaining regeneration time
holds:

P(T(ui) ≤ L) ≥ P
(

W2(ui) ≤ D2, W1(ui) ≤ D1, L ≥ τ(ui) > D1 + D2

)
≥ δ1(e−λ(D1+D2) − e−λL) > 0. (16)

To explain this inequality, we note that in the event{
W2(ui) ≤ D2, W1(ui) ≤ D1, L ≥ τ(ui) > D1 + D2

}
,

the first customer arriving after instant ui (at the instant ui + τ(ui) ≤ ui + L) meets a
completely idle system, and thus, a regeneration occurs. It explains why then T(ui) ≤ L.
Because the bound (16) is uniform in ui and i, we obtain ET < ∞ by (4). Thus, we conclude
that (6) is the sufficient stability condition.

Now, we show that (6) is the necessary stability condition as well. Namely, we assume
that the (initially empty) system is positive recurrent, ET < ∞. Note that

I(t) ≥
∫ t

0
1(Q(u) = 0)du =: I0(t),

where I0(t) is the aggregated time when all servers are simultaneously free in the interval
[0, t]. Then, it follows from the theory of regenerative processes that with probability 1,

lim
t→∞

I(t)
t
≥ lim

t→∞

I0(t)
t

=
EI0

ET
, (17)
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where I0 is the idle time, during a regeneration period, when all servers are simultaneously
free [26,27,31]. Because τ is exponential and ES(i) < ∞ then, for an arbitrary (fixed) δ > 0
and some ε1 > 0,

P(τ > δ + S(i)) = ε1, i = 1, 2,

implying
EI0 ≥ E(I0; τ − S(i) > δ) ≥ δε1 > 0,

and thus, the limit in (17) is strictly positive. It then immediately follows from (13), (14), (17)
and from the balance equation (7), by dividing both sides by t and letting t→ ∞, that the
inequality (6) holds. This implies that (6) is indeed the necessary stability condition as well.
Thus, the proof is completed.

Remark 2. Following [27], one can prove that under condition (6), the system is positive recurrent
under arbitrary fixed values W(0) and Q(0). Under such a non-zero initial condition, the 1st
regeneration period length T1 in general has another distribution than the length T (obtained under
zero initial state), and according to the definition of the positive recurrent system, the finiteness
of T1 with a probability of 1 (w.p.1) is additionally required. Such a generalization can be done as
in [27] (Chapter 2); however, it is rather complicated, and we omit this analysis in this paper.

Remark 3. It is worth mentioning that to analyze the class-1 customers solely, we can treat the
system as a loss M/G/c/0 system in which the stationary distribution {Pi} can be found from
the celebrated Erlang formula; see for instance [26]. Denote by ζ the stationary number of servers
available for class-2 customers, that is (stochastically),

ζ =st c−
c

∑
i=1

i1(Q1 = i).

Then, Eζ = c− ∑c
i=1 iPi, and condition (6) rewritten as ρ2 < Eζ has a clear probabilistic

interpretation: the traffic intensity of class-2 customers must be less than the mean number of the
available servers. This condition being intuitive, however, differs with the conventional stability
conditions because the number of available servers ζ is now random.

As a by-product of our analysis, we obtain the following well-known stability criterion
of a multiclass system with the infinite capacity buffer for all awaiting customers.

Theorem 2. The initially empty system without losses is positive recurrent if and only if the
condition ρ1 + ρ2 < c holds.

The proof of this statement is quite similar to that given in the previous section. The
only difference is that now, we replace V̂1(t) by the full work V1(t) generated by all class-1
customers which arrive in the interval of time [0, t] and satisfies limt→∞ EV1(t)/t = ρ1.

Remark 4. Using previous arguments and evident notation, it is straightforward to prove the
following well-known result: condition ∑N

i=1 ρi < c is the stability criterion of the N-class system
with no losses and with arbitrary work-conserving discipline including various priority policies,
where the number of classes N is arbitrary.

4. A System with Class-2 Retrial Customers

Now, we consider a more general cognitive radio system with primary and secondary
users, and c frequency channels. A new feature of this system is that the secondary users
now must sense the channels before they start using a channel. As a result, the system
turns out to be a combination of a priority system and a retrial system. Under exponential
assumptions, this system has been considered in the paper [9]. In this section, using
previous notation and results, we extend the stability analysis to general service times
distributions. We assume that the 2nd class customers join an orbit and then attempt to
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occupy the server after a random time. Thus, the model becomes a (partially) retrial system.
It is intuitive that under the classic retrial policy, the stability condition remains the same as
in the original system considered in Section 2. Recall that T is a regeneration cycle length
in continuous time, and a regeneration happens when a new customer meets the system
idle. However, unlike the approach developed in Section 3 for continuous-time processes,
now, we will use the processes embedded at the departure instances of the customers.

Theorem 3. If condition (6) holds, then the (initially idle) system under consideration is positive
recurrent, ET < ∞.

Proof. Let {dn, n ≥ 1} be the departure instances of the served customers leaving the sys-
tem. As in Section 3, denote, for the time interval [0, dn], the received work by V̂1(dn) = V̂1,n,
V2(dn) = V2,n, the aggregated busy time of all servers by B(dn) = Bn, the total idle time
of servers by I(dn) = In, and denote by Wi,n the remaining work of class-i customers at
instant dn, n ≥ 1; i = 1, 2. Then, the balance of Equation (7) transforms to

V̂1,n + V2,n = W1,n + W2,n + Bn = W1,n + W2,n + cdn − In, n ≥ 1. (18)

For the further analysis, we redefine regeneration instances of the system as follows

θn+1 = inf(k > θn : W1,k + W2,k = 0), n ≥ 0; θ0 := 0, (19)

which count the customers meeting system idle and starting new regeneration cycles, and
we denote by θ the generic regeneration cycle length. The quantity θ is connected with
the continuous-time length T by the stochastic equality T =st ∑θ

i=1 τi where τi is the ith
interarrival time within a cycle. Note that by the positive recurrence of ‘class-1 processes’,
W1,n = o(dn), W2,n = o(dn), dn → ∞, cf. (8). Denote also Q2(dn) = Q2,n and assume that
(cf. (9))

Q2,n ⇒ ∞, n→ ∞. (20)

Denote by ∆k = I(dk+1) − I(dk) the idle time of all servers between the kth and
(k + 1)th departures. An important observation is that provided Q2,k ≥ n, the mean idle
time of all servers after the kth departure is upper bounded by the constant

Cn :=
c

λ + nγ0
,

and Cn → 0 as n → ∞. (Recall that γ0 is the minimal retrial rate.) This shows that if
Q2,k ≥ n, then E∆k ≤ Cn can be done arbitrarily small for n large enough. It is evident that

In =
n−1

∑
k=1

∆k, n ≥ 1,

where by construction, I1 = 0, and the (uniform) upper bound supk E∆k ≤ c/λ holds
regardless of the states of the orbits. Now, we prove that, under assumption (20),

lim
n→∞

EIn

n
= 0. (21)

For an arbitrary ε > 0, take n1 such that for all n ≥ n1,

Cn ≤ ε, (22)

and, by (20), for an arbitrary D > 0, take n2 such that, for all n ≥ n2:

P(Q2(dn) ≤ D) ≤ ε. (23)
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Now, take n0 = max(n1, n2) and let n > n0. Then, it follows that

EIn = E
n0

∑
k=1

∆k + E
[ n

∑
k=n0+1

∆k
]
. (24)

Using (20), (22) and (23), we write the 2nd summand in (24) as

E
[ n

∑
k=n0+1

∆k
]

=
[ n

∑
k=n0+1

E(∆k|Q2,k > D)P(Q2,k > D)
]

+
[ n

∑
k=n0+1

E(∆k|Q2,k ≤ D)P(Q2,k ≤ D)
]

≤ ε(n− n0)(1 + c/λ). (25)

Because ε is arbitrary, then (21) follows.
We assume that if the nth customer entering server j belongs to class i, then we assign

the service time S(j)
i,n from the corresponding iid sequence {S(j)

i,n} initially intended for this
class of customers, i = 1, 2; j = 1, . . . , c. (In other words, we omit the ‘intermediate’, not
used, elements of this sequence.) Now, we consider the ‘minimal’ service times realized by
all servers,

S(0)
n = min{S(1)

1,n , S(1)
2,n , S(2)

1,n , S(2)
2,n , . . . , S(c)

1,n , S(c)
2,n}, n ≥ 1. (26)

These times constitute an iid sequence {S(0)
n } with the generic element S(0). Now, we

define the following instances

d̂0 = 0, d̂n =
n

∑
k=1

S(0)
k , n ≥ 1.

An important observation is that d̂bn/cc ≤ dn, n ≥ 1. (See also Figure 1; bxc denotes
the maximal integer ≤ x.) It is well-known that the convergence in mean (21) implies
convergence in probability In/n⇒ 0. In turn, then there exists a subsequence nk → ∞, k→
∞, such that w.p.1 [27]

lim
k→∞

Ink

nk
= 0. (27)

On the other hand, because d̂bnk/cc → ∞, k→ ∞, it follows from the renewal theory
that w.p.1

lim
k→∞

nk

d̂bnk/cc
=

c
ES(0)

. (28)

Now, we return to the balance Equation (18) written for the subsequence {nk}:

W1,nk + W2,nk = V̂1,nk + V2,nk − cdnk + Ink , n ≥ 1. (29)

Thus, by (27), (28), as k→ ∞,

Ink

dnk

=
Ink

nk

nk
dnk

≤
Ink

nk

nk

d̂bnk/cc
→ 0.
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Figure 1. Construction d̂n in the system with 3 servers showing that d̂bn/cc ≤ dn.

Now, we divide both sides of Equation (29) by dnk and let k→ ∞. Note that

lim
k→∞

W1,nk /dnk = 0, lim
k→∞

W2,nk /dnk ≥ 0.

(The latter limit exists because all other limits in (29) exist.) Recall (14), and then, it
follows from (29) that

ρ2 +
c

∑
i=1

iPi ≥ c, (30)

implying a contradiction with the assumption (20), that is Q2,n 6⇒ ∞. We note that a
‘regeneration’ condition

min
1≤i≤c

P(τ > S(i)) > 0

in this system holds automatically because the input process is Poisson. Define the remain-
ing regeneration time,

θ(n) = inf
i
(θi − n : θi − n > 0)

counting, at the departure instant dn, the number of the remaining departures until the
regeneration cycle ends; see (19). Then, using the regeneration condition and the arguments
following inequality (15), we find that θ(nk) 6⇒ ∞, k → ∞, which in turn implies the
mean number of arrivals/departures within a regeneration cycle Eθ < ∞ [27]. Finally, by
Wald’s identity, ET = Eθ Eτ < ∞ (τ is exponential with parameter λ) and the proof of the
Theorem 3 hereby is completed.

5. A System with the Outgoing Calls

Now, we consider a generalization of the partial retrial system considered in Section 4
in which the idle servers generate the so-called ‘outgoing calls’. More precisely, we assume
that server i generates class-i outgoing calls with rate νi when the server is idle. Denote the
total rate by ν = ∑c

i=1 νi. The service times {Z(i)
n , n ≥ 1} of class-i calls are assumed to be

iid with mean EZ(i) < ∞, i = 1, . . . , c. It is assumed that service of these customers can
not be interrupted however, as in the original system, class-1 customers can still interrupt
class-2 customers. It is easy to check that (19) are the regeneration instants of the new
system, and let θ be the corresponding regeneration cycle length. We now prove an intuitive
result that the stability condition of the system with outgoing calls remains the same as in
the original system. Namely, the following statement takes place.
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Theorem 4. If condition (6) holds in the system with outgoing calls, then Eθ < ∞.

Proof. Keeping the main notation used in Equation (18) and denoting by Zn the total work
generated by the outgoing calls in the interval [0, dn], we obtain the following equation:

V̂1,n + V2,n + Zn = W1,n + W2,n + cdn − In, n ≥ 1. (31)

The outgoing calls of type i (in server i) follow a Poisson input (with rate νi) when
the server is not occupied by the incoming customers. Let Nn = ∑c

i=1 N(i)
n where N(i)

n

is the number of the outgoing calls in server i during the idle time I(i)n of server i in the
interval [0, dn]. By construction of the total idle time process In = ∑i I(i)n , the process Nn
is dominated by a Poisson process N̂n with rate ν, which counts the number of renewals
in the time interval [0, In], that is Nn ≤st N̂n, n ≥ 1. It is because the original process Nn,
over the time period [0, In] (obtained by a ‘coupling together’ the sub-intervals in which
servers are idle) in general has a rate less than the ‘maximal’ possible rate ν. Now, we
introduce the iid sequence Ẑj = ∑c

i=1 Z(i)
j , j ≥ 1 (with the generic element Ẑ) and consider

the corresponding renewal process

Ẑn =
N̂n

∑
j=1

Ẑj, n ≥ 1.

The new process ‘dominates’ the workload process generated by the outgoing calls in
the original system, and the following (stochastic) inequality holds:

Ẑn ≥st Zn, n ≥ 1. (32)

To see this, we couple together all idle times of servers in [0, dn] and realize the
renewal process Ẑn in the new time scale counting only the idle periods. Moreover, unlike
the original process Zn, this new renewal process does not have ‘gaps’ and each renewal
interval is not less than the corresponding service time of an outgoing call in the original
system. Now, we consider the iid ‘shortest’ service times realized by all servers (including
the service times of the outgoing calls):

S(0)
n = min{S(1)

1,n , S(1)
2,n , Z(1)

n , S(2)
1,n , S(2)

2,n , Z(2)
n , . . . , S(c)

1,n, S(c)
2,n, Z(c)

n },

and define a renewal process generated by these times:

d̂n =
n

∑
k=1

S(0)
k , n ≥ 1.

Using the same procedure as in Section 4, we obtain that d̂bn/cc ≤ dn. (See a comment,
preceding formula (26), and Figure 1). Assume that relation (20) holds, which implies
relations (21) and (27). Now, we rewrite the balance Equation (31) for the corresponding
subsequence {nk}:

W1,nk + W2,nk = Znk + V̂1,nk + V2,nk − cdnk + Ink , k ≥ 1. (33)

First, assume that Ink → ∞ as k→ ∞. Then, because by the renewal theory, w.p.1,

lim
k→∞

Ẑnk

N̂nk

= EẐ ≤ c max
i

EZ(i) < ∞, lim
k→∞

N̂nk

Ink

= ν < ∞,

and from (27) and (32), we obtain
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Znk

dnk

≤
Ẑnk

d̂bnk/cc
=

Ẑnk

N̂nk

N̂nk

Ink

Ink

d̂bnk/cc
→ 0, k→ ∞.

Because there can be only a finite number of the outgoing calls in any finite interval
then, on the event {limk→∞ Ink < ∞}, we obtain Znk /dnk → 0 as well. Now, we divide
both sides of (33) by dnk and let k→ ∞. As above, because W1,nk + W2,nk ≥ 0, this leads to
the inequality (30) contradicting (20). The rest of the proof is now follows as in Section 3
(see the proof of Theorem 1 following relation (15)). The only new element in this proof is
that, realizing the unloading of the system, we must take into account the probability of the
absence of the outgoing calls; for details, see [32].

6. Performance Analysis of the System with Exponential Service Time Distributions
6.1. Quasi-Birth-and-Death (QBD) Process

In this section, we examine more closely a special case of the system described in
Section 2, in which service times of both customer classes follow exponential distributions,
with parameter µi for class-i customers.

In this pure Markovian case, for stability analysis, it is possible by applying the Matrix
analytic method [24], and this alternative proof of stability is instructive. Moreover, in
this setting, we can calculate the stationary distribution of the basic Markov process and
as a result obtain the corresponding stationary performance indexes. In this setting, the
process {(Q1(t), Q2(t)), t ≥ 0} is a continuous-time Markov Chain with the state space
S = {(i, j) ∈ {0, 1, ..., c} × N}. Grouping states into levels according to their values of
Q2(t), the system can be formulated as a Quasi-Birth-and-Death process (QBD) whose
infinitesimal generator Q is expressed as follows

Q =



B0 C O O O ... ... ... ...

A1 B1 C O O ...
...

...
...

O A2 B2 C O ...
...

...
...

...
...

. . . . . . . . .
...

...
...

...

O O ... Ac Bc C O ...
...

O O ... O Ac Bc C O ...
...

...
...

...
...

. . . . . . . . .
...


,

where O is a (c + 1)× (c + 1) zero matrix, and An, Bn, C are (c + 1)× (c + 1) block matrices
given by C = diag(λ2),

An = diag(an,0, an,1, . . . , an,c),

where an,i = min(c− i, n)µ2, for n ≤ c, and An = Ac, for n > c;

Bn =



bn,0 λ1 0 ... 0 0 ... 0 0
µ1 bn,1 λ1 ... 0 0 ... 0 0

0 2µ1 bn,2
. . . 0 0 ... 0 0

...
...

. . . . . . . . .
...

...
...

...
0 0 0 ... bn,c−n λ1 ... 0 0

0 0 0 ... (n− 1)µ1 bn,c−(n−1)
. . . 0 0

...
...

...
...

...
. . . . . . . . .

...
0 0 0 ... 0 0 ... bn,c−1 λ1
0 0 0 ... 0 0 ... cµ1 −(λ2+cµ1)



,
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for n ≤ c, and Bn = Bc for n > c. In case n ≤ c, the diagonal elements of Bn are given by

bn,i = −(λ1 + λ2 + iµ1 + an,i).

Denote by η = (η0, η1, ..., ηc) the row vector representing the stationary distribution of
the infinitesimal generator Q∗ = Ac + Bc + C. It is easy to see that

η =

(
η0, ρ1η0,

ρ2
1

2!
η0, ...,

ρi
1

i!
η0, ...,

ρc
1

c!
η0

)
,

where

η0 =
[ c

∑
i=0

ρi
1

i!
]−1 and ρ1 =

λ1

µ1
.

The QBD process is ergodic if and only if the following condition holds [24]

ηCe < ηAce,

where e denotes the (c + 1)-dimension column vector of ones. This stability condition can
be written as

λ2 <
∑c−1

i=0 (c− i) ρi
1

i!
η0

µ2, (34)

and is identical to the stability condition (6) in the general case.
In what follows, we consider the system under the stability condition. Now, let

π(i, j) = P(Q1(t) = i, Q2(t) = j) denote the stationary probability of the Markov chain,
and let

π j = (π(0, j), π(1, j), ..., π(c, j)) for j ∈ N.

According to matrix analytic method [24,33], we have

π j = πcRj−c, j ≥ c, π j = π j−1R(j), j = c, c− 1, . . . , 1,

where R is the minimal non-negative solution of C + RBc + R2 Ac = 0, and

R(j) = −C(Bj + R(j+1)Aj+1)
−1, j = c− 1, c− 2, . . . , 1,

given that R(c) = R, and R is numerically computed using algorithms in [24]. Finally, π0 is
the unique solution of the following equations

π0(B0 + R(1)A1) = 0,

π0

(
I +

c−1

∑
i=1

i

∏
j=1

R(j) +

(
c

∏
j=1

R(j)

)
(I − R)−1

)
e = 1,

where I denotes the (c + 1)× (c + 1) identity matrix.
Let EWq denote the average waiting time of class-2 customers; then, we have

EWq =
∑∞

j=0 ∑c
i=0 max{0, i + j− c}π(i, j)

λ2

=
∑c−1

j=1 ∑c
i=c−j+1(i + j− c)π(i, j) + πc(I − R)−2Re + πc(I − R)−1 f

λ2
,

where f = (0, 1, 2, ..., c− 1, c)T , due to Little’s law.
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Moreover, the average number of class-2 customers in the system is given by

EQ2 =
∞

∑
j=0

jπje

=
c−1

∑
j=1

πje + cπc(I − R)−1e + πc(I − R)−2e.

There are other performance measures which describe the QoS of such a system. For
instance, if a class-2 customer is interrupted by a class-1 customer, we call it a termination
event. Denote the set

S∗ = {(i, j) : i + j ≥ c, i ≤ c− 1},

which contains the states when all servers are occupied and there is at least one class-2
customer occupying a server. Then, the average number of termination events per class-2
customer ENT can be calculated by the regenerative method as follows. Denote by Ai(t)
the number of class-i customers arriving in the interval [0, t], i = 1, 2, and recall that, as
→ ∞, the weak convergence

Q(t) = Q1(t) + Q2(t)⇒ Q := Q1 + Q2,

holds. Then, using the basic asymptotic results for positive recurrent regenerative
processes [26,27], we obtain ENT as the following (w.p.1) limit of the fraction of class-1
arrivals interrupting class-2 customers:

ENT = lim
t→∞

1
A2(t)

A1(t)

∑
n=1

1(Q(t(1)n ) ≥ c, Q1(t
(1)
n ) ≤ c− 1)

= lim
t→∞

A1(t)
t

1
A1(t)

A1(t)

∑
n=1

1(Q(t(1)n ) ≥ c, Q1(t
(1)
n ) ≤ c− 1) · lim

t→∞

t
A2(t)

= λ1P(Q ≥ c, Q1 ≤ c− 1)
1

λ2
=

λ1

λ2
∑

(i,j)∈S∗
P(Q1 + Q2 = i + j, Q2 = j)

=
λ1

λ2
∑

(i,j)∈S∗
π(i, j), (35)

where we also use the property PASTA [26] to apply the equality

π(i, j) = lim
n→∞

1
n

n

∑
k=1

∑
(i,j)∈S∗

1(Q(t(1)k ) = i + j, Q2(t
(1)
k ) = j).

The equality (35) written as

λ2ENT = λ1 ∑
(i,j)∈S∗

π(i, j)

is intuitive and establishes a balance between the rate of the interrupted class-2 customers
and the rate of interrupting class-1 customers.

Remark 5. It is worth mentioning that relation (35) holds also for general service time distribution
of any class of customers; however, in this case, the stationary distribution {π(i, j)} of the (non-
Markovian) process {(Q1(t), Q2(t)), t ≥ 0} is not analytically available.

6.2. Simulations and Numerical Insights

In this section, we present some numerical examples of the results obtained by the
matrix analytic method presented in Section 6. In our experiment, for fixed µ1 = 4, µ2 = 20
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and values c = 2, 5, we show the changes in the values of some performance measures
against λ1 and λ2. Under the same settings, we also carry out simulations and obtain the
same results as those obtained by the matrix analytic method. Furthermore, to show the
sensitivity of the service time distribution of primary users, we also compare the results
by matrix analytic methods with those by simulations where the service time of class-1
customers follows Erlang distributions with the shape parameter r = 5, 10.

The scale parameter is chosen such that the mean value remains the same as in
the case of exponential distributions. The duration for all experimental simulations is
set at 106 time units, which is adequate for the simulation results to converge to their
corresponding numerical results. The simulation results in all the figures are represented
by the points marked with notation sim, without which the results are understood to
be obtained from numerical calculations. The simulation results with service time of
class-1 customers following Erlang distributions are marked with the abbreviation Erl. in
the legend.

Figures 2 and 3 compare the average waiting times of class-2 customers as λ1, λ2 and
c vary. It can be seen that the average amount of time that class-2 customers spend in
the system (EWq) is larger when customers of either class arrive more frequently or when
there are fewer servers. We observe that EWq with exponential service time distribution for
class-1 is largest while EWq with r = 5 is larger than that with r = 10. This indicates that
EWq increases with the increase in the variance of service time of class-1 customers.

Figure 2. Average waiting time of class-2 customers against arrival rate of class-1 customers (λ2 = 8).

Figure 3. Average waiting time of class-2 customers against arrival rate of class-2 customers (λ1 = 1).

Figures 4 and 5 compare the average number of class-2 customers in the system (EQ2)
as λ1, λ2 and c change. The observations for EQ2 in Figures 4 and 5 are the same as those
for EWq in Figures 2 and 3.
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Figure 4. Average number of waiting class-2 customers against arrival rate of class-1 customers
(λ2 = 8).

Figure 5. Average number of class-2 customers against arrival rate of class-2 customers (λ1 = 1).

Figure 6 illustrates how the average number of termination events per class-2 customer
(ENT) changes according to the arrival rates of class-1 customers and the number of servers.
Obviously, when class-1 customers arrive more frequently, more class-2 customers’ sessions
are terminated. In addition, as the number of servers is larger, there are more spaces for all
customers, and thus, class-2 customers are less likely to be kicked out of the servers. The
same patterns can be observed in Figure 7. Furthermore, simulations results for the Erlang
service time distributions of class-1 customers are almost the same as the corresponding
ones with exponential distributions. This shows that ENT is (almost) insensitive to the
service time distribution of class-1 customers.

Figure 8 shows the distributions of the number of times that each class-2 customer is
terminated. In this experiment, we set λ1 = 20, λ2 = 30, c = 10, and let the service time of
class-1 customers follow an exponential distribution (denoted by Exp. in the figure) and
Erlang (Erl) distributions. It can be seen that higher numbers of termination times occur
with smaller probabilities. In addition, there is no significant difference in the results when
we modify the distribution of service time for class-1 customers under the three settings.
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Figure 6. Average number of termination events per class-2 customers against arrival rate of class-1
customers (λ2 = 8).

Figure 7. Average number of termination events per class-2 customers against arrival rate of class-2
customers (λ1 = 1).

Figure 8. Distribution of number of termination events (λ1 = 20, λ2 = 30, c = 10).

Figure 9 reflects changes in the throughput of class-2 customers against λ1 when λ2 is
fixed. It can be seen that the throughput values remain unchanged at λ2 when λ1 goes up
to certain thresholds; then, they drop as λ1 continues to increase. Meanwhile, Figure 10
indicates that the throughput is equal to λ2 up to a certain threshold of λ2; then, it remains
unchanged at a value λmax when class-2 customers arrive at very high rates. At that, λmax
equals the right-hand side of the stability condition (34).
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Figure 9. Throughput against arrival rate of class-1 customers (λ2 = 8).

Figure 10. Throughput against arrival rate of class-2 customers (λ1 = 1).

Finally, it is noticeable that when we let the service times of class-1 customers follow
Erlang distribution, the results do not change much as compared to the exponential case.
This agrees with our stability condition, which depends on only the mean service time of
class-1 customers.

7. Conclusions

In this paper, we have considered a modified Erlang system for cognitive radio net-
works and related applications. Using the regenerative methodology, we have established
the stability condition, which is insensitive to the service time distributions of primary
and secondary users. This analysis is sequentially considered for: (i) the system where
there exists an infinite buffer for the awaiting secondary users, (ii) the system where the
secondary users meeting a busy server join a virtual orbit and then make retrials and
finally, (iii) the system where an idle server generates outgoing calls. The obtained results
have implied that the throughput of secondary users is insensitive to the service time
distributions of primary and secondary users, provided that the means are fixed. For the
case of exponential service time distributions of primary and secondary customers, we have
derived some stationary performance measures. Our extensive simulations have shown
that the mean waiting time of secondary users increases with the increase in the variance
of service time of primary users, while the mean number of terminations of secondary
users is almost insensitive to the service time distributions of primary users, provided that
the means are fixed. Our findings could be used in resource allocation in cognitive radio
networks and related applications.
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