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Abstract: We theoretically investigate a two-level atom driven by a time-dependent external field
with a generalized double exponential temporal shape, in the presence of dephasing. Therefore, we
provide exact analytical solutions for the population inversion, the real and the imaginary parts of
the coherence for a family of chirped and time-dependent laser waveforms. We demonstrate that the
remaining atomic population inversion can be controlled by the manipulation of the pulse’s shape
structure.
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1. Introduction

Bloch equations are commonly used as the foundation framework for modeling the
spatial temporal dynamics of diverse mechanisms [1–3]. For instance, they are extensively
used to study the dynamics of photo-excited systems [4], the quantum states of spin par-
ticles [5] and electron spin nuclear magnetization [6]. Furthermore, they are thoroughly
investigated in a range of theoretical and experimental physics [7], either by developing
analytical approaches to acquire accurate solutions or by numerical computations [8–10].
Among these approaches, it is worth noting the significance of the non-linear optics experi-
ments (such as NMR) [11,12], the optimal control [13], the magnetization transfer (MT) and
the chemical exchange saturation transfer (CEST) [14].

Besides the merits of the computational techniques providing precise numerical solu-
tions for the Bloch equations, the necessity of analytical approaches is crucial. For example,
in the field of nuclear magnetic resonance, it was demonstrated that the method of express
control [15] is one of the most efficient and preferable. In fact, Davydov et al. [15–18]
reported that in order to enhance the information received from the recorded NMR sig-
nal, a mathematical model based on accurate analytical solutions of the Bloch equations
is required.

As a result, different investigations have emerged to derive the analytical solutions
of these coupled equations since 1946 [19,20], immediately after Felix Bloch formulated
the Bloch equations to interpret the magnetic resonance phenomena [20]. One notewor-
thy method was the ab initio solutions provided for various scenarios such as the steady
state [21], the on-resonance [22], the zero relaxation [23] and the weak radio-frequency
field [24]. Additionally, among other relevant approaches [25–27], one fundamental method
was presented in [28], where the authors solved the generalized Bloch equations in the
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rotating wave frame by casting the solution into a compact matrix notation as a sum of two
terms: one describing the initial state, and the other describing the steady state.

Furthermore, the exact solutions of the Bloch equations for the non-resonant exponen-
tial model in the presence of dephasing were given in [29], as were the exact solutions of
the Bloch equations for the two-level atom for shaped and chirped pulses with dephasing
in [30]. In addition, exact solutions to the Bloch equations for a two-level atom excited
by a q-deformed laser pulse with dephasing and time-dependent detuning were recently
presented in [31]. In this situation, the atomic system can be completely controlled by
adjusting the asymmetry scaling parameter q of the q-deformed hyperbolic laser waveform.
Finally, it is worth noting that the time-dependent Bloch equations are solvable using
extensive numerical simulations through the application of Laplace transform, the multiple-
derivative and the numerical integration method [32–34].

In this work, we derive exact analytical solutions of the Bloch equations describing
a two-level atom excited by a laser pulse with the generalized quotient double expo-
nential waveform (Generalized QEXP) for chirped frequencies. Chirping pulses is often
utilized in the CPA laser technique [35] (chirped population amplification) to generate
ultra-short, high-energy lasers as well as to analyse the high-altitude electromagnetic power
(HEMP) [36] and gamma-ray source [37]. These waveforms are extremely efficient when it
comes to implementing atomic population transfers in atoms and molecules [38].

This paper is structured as follows: first, we conduct a theoretical analysis to solve the
Bloch equations in a two-level atom with dephasing. The considered scheme is driven by
the generalized double exponential quotient waveforms under chirped detuning. Next,
we report our results, followed by a discussion and concluding remarks. The details are
reported in the Appendix A.

2. Model

We consider a two-level system (see Figure 1) driven by an external field with internal
states |1〉 and |2〉 and a transition frequency ω, where ω = ω2 −ω1 and ω1 and ω2 are the
frequencies of the atom at states |1〉 and |2〉, respectively. In this case, the Hamiltonian is
written in terms of the Pauli matrices σx, and σz and the time-dependent driving field Ω(t)
as:

H =
h̄
2
(∆(t)σz + Ω(t)σx) (1)

where the Rabi frequency is proportional to the amplitude of the laser pulse as:

Ω(t) = −d
E(t)

h̄
(2)

here, d denotes the dipole moment; ∆ = ω2 −ω1 is the time-dependent detuning. The mas-
ter equation that governs the systems dynamics is given by the density matrix evolution as:

dρ(t)
dt

= −i[H, ρ] +
Γ
2
(σzρσz − ρ) (3)

where the dephasing rate is given by Γ and it is inversely proportional to the decoherence
time. It is worth noting that the total Hamiltonian is the sum of the field-free Hamiltonian
and the interaction of the atom with the electromagnetic fields. This is basically written in
terms of the annihilation and creation operators; full details can be found in [39]. In addition,
the first part of the density matrix evolution describes the free evolution of the system, and
the second part represents the system evolution as a result of decoherence connected to the
dephasing rate.



Mathematics 2022, 10, 2105 3 of 12

|2〉
∆c

Ω

|1〉

Figure 1. Two-level atom.

The goal of this research is to derive exact analytical solutions of the density matrix
elements in order to determine the atomic population inversion w = ρ22 − ρ11 at the steady
state (t = ∞). The two-level atom studied is excited by a shaped laser and it takes place
under a chirped detuning.

The time evolution of atomic populations and coherences are given in terms of the
Bloch equations by [40]:

du(t)
dt

dv(t)
dt

dw(t)
dt

 =


−Γ −∆(t) 0

∆(t) −Γ −Ω(t)

0 Ω(t) 0




u(t)

v(t)

w(t)

 (4)

Here, the atomic population inversion between the higher state |2〉 and the ground
state |1〉 is denoted by w = ρ22 − ρ11, whereas u(t) and v(t) represent the real and the
imaginary part of the atom-field coherence ρ12(t).

3. Exact Solutions: The Generalized QEXP Pulses

The aim of this section is to establish exact analytical solutions for the atomic popula-
tion and the coherence of the following optical pulse shape:

Ω =

√
α

1− α

A1Γe−3Γt(
Ke−2Γt + 1−α

α

) 3
2

(5)

under chirped detuning of the form:

∆ =
KΓe−2Γt(

Ke−2Γt + 1−α
α

) 3
2

(6)

where A1, K are positive constants and 0 < α < 1. A1 is related to the amplitude of the
pulse, whereas K is a parameter related to the pulse shape. In order to solve the Bloch
equations (Equation (4)), we introduce three new variables: v1, u1 and w1 related to the
previous variables u(t), v(t) and w(t) as:

v1(t) = ν(t)eΓt (7)

u1(t) = u(t)eΓt (8)

w1(t) = w(t)eΓt (9)

in addition, by using new change of variables x =
∫

∆(t)dt, and considering g(x) = Ω(x)
∆(x)

and h(x) = Γ
∆(x) , Equation (4) gives:

du1

dx
= −v1(x) (10)
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dv1

dx
= u1(x)− g(x)w1(x) (11)

dw1

dx
= h(x)w1(x) + g(x)v1(x) (12)

This system of differential equations will serve as a basis for our future analysis to
establish the exact solutions for the considered pulse. The variable x(t) is defined as:

x(t) = 1√
Ke−2 Γ t+ 1−α

α

We obtain linear second- and third-order ordinary differential equations through
repetitive differentiation and substitution of the Equations (10)–(12).

d3u1

dx3 +
α

(1− α)x2
du1

dx
= 0 (13)

d2v1

dx2 +
α

(1− α)x2
dv1

dx
= 0 (14)

d3w1

dx3 +
α

αx + (α− 1)x3
d2w1

dx2 −
(
(x4 + 5x2 + 1)α3 − (2x4 + 8x2)α2 + αx4 + 3αx2

x2(αx2 − x2 + α)2(α− 1)

)
dw1

dx
+ (15)

(
(−11x4 + 5x2 + 1)α4 + (34x4 − 8x2)α3 + (3x2 − 35x4)α2 + 12αx4

x3(αx2 − x2 + α)3(α− 1)

)
w1 = 0

Equation (13) is the Cauchy–Euler equation. Thus, y = xm is a solution of the differen-
tial equation whenever m is a solution of the auxiliary equation

m
(

m2 − 3m +
2− α

1− α

)
= 0

There are three different cases to be considered, depending on whether the roots of
this auxiliary equation are real and distinct (0 < α < 1

5 ), real and equal (α = 1
5 ), or complex

( 1
5 < α < 1).

Solving the last equation leads to three different solutions u1(t), v1(t) and w1 ac-
cording to the domain of α. As a result, the exact solutions of coherence and population
inversion can be derived. We consider u(0) = 0, v(0) = 0, w(0) = −1 as initial conditions
of the two-level system (which means that the initial population is in the ground state).
By following the above steps, our methods allow us to obtain two families of dynamical
solutions: the solutions in the case 0 < α < 1

5 and 1
5 < α < 1. All details are given in the

Appendix A. The case α = 1
5 is irrelevant for the study of Atomic Population Inversion,

since it is a constant.

4. Discussion

By analytically solving Equation (13), we get a spectrum of solutions that depends on
α. Therefore, in this part, we discuss the atomic population inversion at the steady state
(infinity) for the obtained solutions for two different cases: 0 < α < 1

5 and 1
5 < α < 1.

Hence, we first start examining the case 1
5 < α < 1. For α equals to 1

2 , we notice that
Equation (13) becomes:

d3u1

dx3 +
1
x2

du1

dx
= 0 (16)

This is generated by leads the Modified QEXP pulse analyzed in [41], where the pulse
form is given by:

Ω(t) =
Ωce−3Γt

(1 + e−2Γt)
3
2

(17)
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For this specific case, the form of the pulse is plotted in Figure 2a. Here, we plot the
normalized pulse. In fact, we can write Ω(t) = Γ

k f (t), where

f (t) = kΩ(t) (18)

and k is a factor of normalization to impose fmax = 1, as mentioned in [42]. Here, Γ is a
scaling variable inversely proportional to the atom life time; t is in the pulse rise time units
denoted by τ. Notably, for a Multi-Level atom, τ is related to the atom lifetime. The relation
between the pulse width, the rabi frequency scaling factor and the atomic system such as the
Rubidium atom is detailed in [43]. Ωc is the Rabi frequency utilized in the two-level atom
model, and the fall edge of f (t) is governed by the exponential powers. Different pulses
with the mathematical description of exponential and modified exponential waveforms are
discussed in [42], where all possible realistic parameters and their practical realization are
listed in Table II of [42].

(a) Modified QEXP. (b) General QEXP.
Figure 2. The QEXP waveforms: (a) The modified QEXP pulse dynamics for various pulse rise time
factors Γ. (b) The Generalized QEXP pulse dynamics in terms of the shape factor α and the pulse rise
time Γ.

For α different from 1
2 , Equation (13) leads to a Generalized QEXP pulse with a form

given by:
Ω(t) =

√
n−1 A1Γe−3Γt((n + Ke−2Γt))

−1
2 (19)

where n = α
1−α . The form of the pulse is plotted in Figure 2b.

Finally, we discuss the atomic population inversion at the steady state for the obtained
solutions at both cases. First, for the case 0 < α < 1

5 , the stationary solution reads:

w(∞) =
1

(2α− 4)
√

5α2 − 6α + 1

[
(1− α)(aα − 1)

(
1

1− α

)āα+1

− (20)

3α(α− 1)(α− 1
3

√
5α2 − 6α + 1− 1)

(
1

1− α

) 1
2 b̄α

+

3α(α− 1)(α +
1
3

√
5α2 − 6α + 1− 1)

(
1

1− α

) 1
2 bα

+

(α− 1)(āα − 1)
(

1
1− α

) 1
2 bα+1

− 2α(α− 1)
√

5α2 − 6α + 1
]

where

aα =
1

−2 + 2α

(
3α− 3 +

√
5α2 − 6α + 1

)
, (21)

bα =
1

−2 + 2α

(
− 3α + 3 +

√
5α2 − 6α + 1

)
, (22)
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āα =
1

−2 + 2α

(
3α− 3−

√
5α2 − 6α + 1

)
, (23)

and

b̄α =
1

−2 + 2α

(
− 3α + 3−

√
5α2 − 6α + 1

)
. (24)

For this family of pulses (see Figure 3a), the variation of the parameter α in the interval
(0, 0.2) has no effect on the population inversion at the steady state. We also notice that the
remaining population is proportional to the initial population at the ground state. If we
consider the following initial conditions u(0) = 2

√
A(1− A), v(0) = 0, w(0) = 1− 2A

where 0 ≤ A ≤ 1, then we can highlight three crucial points: (1) for A = 1, the considered
initial population is in the ground state and the population left at the steady state is also in
the ground state. (2) For A = 0.5, the population in the ground and the excited states are
the same whereas, the population inversion is almost vanishing. (3) For A = 0, the total
population is initially in the excited state and for this specific condition, we get a total
inversion of the remaining population. In addition, we note that the population inversion
is almost insensitive to the structure of the shape. For the case 1

5 < α < 1, the stationary
solution is:

w(∞) =
1− α

(α− 2)
√
−5α2 + 6α− 1

[
2(1 + α)(1− α)

1
4 sin rα + (25)

2(1− α)
1
4
√
−5α2 + 6α− 1 cos rα + α

√
−5α2 + 6α− 1

(a)

0.10 0.11 0.12 0.13 0.14 0.15
0

1

2

3

4

5

α

K

0.99875

0.99900

0.99925

0.99950

0.99975

1.00000

(b)
Figure 3. (a) Atomic population inversion left at the steady state in terms of the initial populations
for A1 = 1, K = 1 and 0 < α < 1

5 ; (b) atomic population inversion left at the steady state in terms of
the shape factor α and the deformation factor K, where A1 =

√
K3 for 0 < α < 1

5 .

In contrast with the previous case (very small α), we observe (in Figure 4) that the
population inversion is sensitive to the parameter α, which represents the shape of the
pulse. α is relatively large in (0.2, 1). With rising α, the population left in the excited state
is no longer linear as a function of the initial population of the ground state. Hence, we
highlight three significant cases: (1) For (A = 1), the initial population is in the ground state,
and the population left at the steady state is highly dependent on α. For a critical value of
αc = 0.79696565, we get zero inversion of population.

For ρ11 = ρ22 at steady state = 0.5, we obtain a population inversion above this critical
value of αc. (2) For the case of a coherent superposition (A = 0.5), raising the parameter α
enhances the population inversion over long time-scales. (3) For the case where the total
population is initially in the excited state (A = 0), an increase of α leads to a reduction
of the population left at the excited state. Hence, we can conclude that the shape of the
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pulse controls the distribution of the remaining population. This can be seen in both
Figures 3b and 4b, where we can vary both the shape factor α (that is, the amplitude
of the rabi frequency) and the deformation factor K. In both figures, we notice that the
atomic population inversion at the steady state is in general more sensitive to the shape
effect than the deformation. In order to clearly see the temporal dynamics of the input
pulse with both variable amplitude and variable deformation, we include Figure A1 in
the Appendix A. Finally, we believe that our analytical solution of the Bloch equations for
a wide spectrum of shaped waveforms (the Generalized QEXP pulse in terms of shape
factor α), is of great interest to the NMR field. In fact, and to the best of our knowledge,
few analytical solutions are currently available. For instance, the authors in [44] have
derived solutions of the Bloch equations for the hyperbolic secant function and they have
reported pertinent results, including the influence of the magnetization in the studied case
by changing the pulse parameters.

(a)

0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

α

K

0

0.2

0.4

0.6

0.8

1.0

(b)
Figure 4. (a) Atomic population inversion left at the steady state in terms of the initial populations
for A1 = 1, K = 1 and 1

5 < α < 1; (b) atomic population inversion left at the steady state in terms of
the shape factor α and the deformation factor K, where A =

√
K3 for 1

5 < α < 1.

5. Conclusions

In this study, we have explored the effect of the generalized double exponential wave-
form on a two-level atom with dephasing. By solving the Bloch equations for chirped
detuning and shaped pulses, we get the exact analytical solutions of both the atomic popu-
lation and the coherence. Hence, the stationary atomic population inversion is discussed
in terms of the shape structure of the pulse. We report that for typical values of the shape
structure, the atomic population inversion can be enhanced for different initial distribu-
tions of the atomic population between the ground and the excited states. Such analytical
solutions of the Bloch equations for specific pulse shaping might be useful in the NMR field.
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Appendix A

Appendix A.1. Case 1: 0 < α < 1
5

Let

aα =
1

−2 + 2α

(
3α− 3 +

√
5α2 − 6α + 1

)
, (A1)

bα =
1

−2 + 2α

(
− 3α + 3 +

√
5α2 − 6α + 1

)
, (A2)

āα =
1

−2 + 2α

(
3α− 3−

√
5α2 − 6α + 1

)
, (A3)

and
Kα,t = αe−2t − α + 1

Then, the solution of Equation (13) is

u1(x) = c1 + c2xaα + c3x−bα (A4)

and we deduct from the above system of differential equations

v1(x) =
−c2aα

(−2 + 2α)x
xaα +

c3bα

(−2 + 2α)x
x−bα (A5)

where

c1 =
−α(α− 1)

α− 2
,

c2 =
α

α−1−
√

5α2−6α+1
4α−4 bα(α− 1)2

(α− 2)
√

5α2 − 6α + 1
,

and

c3 =
α

α−1+
√

5α2−6α+1
4α−4 aα(α− 1)2

(α− 2)
√

5α2 − 6α + 1

Consequently, the expressions of the real and imaginary parts of the coherence are
given by:

u(t) =
[

c1 + c2

(
Ke−2Γt +

1− α

α

)− aα
2

+ c3

(
Ke−2Γt +

1− α

α

) bα
2
]

e−Γt (A6)

v(t) =
[
−c2aα

(−2 + 2α)

(
Ke−2Γt +

1− α

α

) 1−aα
2

+
c3bα

(−2 + 2α)

(
Ke−2Γt +

1− α

α

) 1+bα
2
]

e−Γt (A7)

For K = 1, we get the dynamics of the atomic population inversion:

w(t) =
1

(2α− 4)
√

5α2 − 6α + 1

[
(1− α)(aα − 1)Kāα+1

α,t − (A8)

3α(α− 1)(α− 1
3

√
5α2 − 6α + 1− 1)K

1
2 b̄α
α,t +

3α(α− 1)(α +
1
3

√
5α2 − 6α + 1− 1)K

1
2 bα
α,t +

(α− 1)(āα − 1)K
1
2 bα+1
α,t − 2α(α− 1)

√
5α2 − 6α + 1

]
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At the steady state, we get:

w(∞) =
1

(2α− 4)
√

5α2 − 6α + 1

[
(1− α)(aα − 1)

(
1

1− α

)āα+1

− (A9)

3α(α− 1)(α− 1
3

√
5α2 − 6α + 1− 1)

(
1

1− α

) 1
2 b̄α

+

3α(α− 1)(α +
1
3

√
5α2 − 6α + 1− 1)

(
1

1− α

) 1
2 bα

+

(α− 1)(āα − 1)
(

1
1− α

) 1
2 bα+1

− 2α(α− 1)
√

5α2 − 6α + 1
]

Appendix A.2. Case 2: 1
5 < α < 1

We note that in this case, the pulse shape is reported in (Figure A1), where the General
Qexp waveform depends on different α and 1

5 < α < 1.

Figure A1. The generalized QEXP pulse dynamics for various amplitudes A1 and different deforma-
tions K.

Let

eα =

√
−5α2 + 6α− 1
−2 + 2α

Then, the solution of Equation (13) is

u1(x) = c1 + c2x
3
2 sin(eα ln x) + c3x

3
2 cos(eα ln x) (A10)

and

v1(x) = −3
2

c2
√

x sin(eα ln x)− c2
√

x
√
−5α2 + 6α− 1 cos(eα ln x)

−2 + 2α
− (A11)

3
2

c3
√

x cos(eα ln x) +
c3
√

x
√
−5α2 + 6α− 1 sin(eα ln x)

−2 + 2α
(A12)

where

c1 = −α(α− 1)
α− 2

,

c2 = −
3α

1
4 (α− 1)

(
(α− 1) cos( eα ln α

2 )− 1
3

√
−5α2 + 6α− 1 sin( eα ln α

2 )

)
√
−5α2 + 6α− 1(α− 2)
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and

c3 =

α
1
4 (α− 1)

(√
−5α2 + 6α− 1 cos( eα

2 ln α) + 3(α− 1) sin( eα
2 ln α)

)
√
−5α2 + 6α− 1(α− 2)

Let

tα =

√
−5α2 + 6α− 1 ln(αe−2t − α + 1)

−4 + 4α

The real part of the coherence is:

u(t) =
1

√
−5α2 + 6α− 1(αe−2t − α + 1)

3
4 (α− 2)

[
(3α− 3) sin tα + (A13)

√
−5α2 + 6α− 1

(
cos tα − (αe−2t − α + 1)

3
4

)
α(α− 1)e−t

]
(A14)

In addition, the imaginary part of the coherence is:

v(t) = − 2e−tα
1
4 (α− 1)

√
−5α2 + 6α− 1

(
αe−2t−α+1

α

) 1
4

sin tα (A15)

Finally, the atomic population inversion is:

w(t) = − 1√
−5α2 + 6α− 1(αe−2t − α + 1)(α− 2)

[
(1− α)(αe−2t − α + 1)

1
4 ((α2 − 2α)e−2t + 2α2 − 2) sin tα +

√
−5α2 + 6α− 1

(
(αe−2t − α + 1)

1
4 ((α2 − 2α)e−2t − 2(α− 1)2) cos tα +

α(α− 1)(αe−2t − α + 1)
)]

w(∞) =
1− α

(α− 2)
√
−5α2 + 6α− 1

[
2(1 + α)(1− α)

1
4 sin rα + (A16)

2(1− α)
1
4
√
−5α2 + 6α− 1 cos rα + α

√
−5α2 + 6α− 1

where

rα =

√
−5α2 + 6α− 1 ln(1− α)

−4 + 4α

Appendix A.3. Case 3: α = 1
5

Let
c1 = − 4

45
,

c2 =

2
(

3 ln(
√

5
5 ) + 2

)
5

3
4

45

c3 = −25
3
4

15
Then, the solution of Equation (13) is

u1(x) = c1 + c2x
3
2 + c3x

3
2 ln(x) (A17)
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and we get

v1(x) = −3
2

c2
√

x− 3
2

c3
√

x ln(x)− c3
√

x (A18)

Consequently, the expressions of the real and imaginary parts of the coherence are
given by:

u(t) =
[

c1 + c2

(
Ke−2Γt + 4

)− 3
4

− 1
2

c3 ln(Ke−2Γt + 4)
(

Ke−2Γt + 4
)− 3

4
]

e−Γt (A19)

v(t) =
[
− 3

2
c2

(
Ke−2Γt + 4

)− 1
4

+
3
4

c3 ln(Ke−2Γt + 4)
(

Ke−2Γt + 4
)− 3

4

− c3

(
Ke−2Γt + 4

)− 1
4
]

e−Γt (A20)

w(t) = c1 + c2

(
Ke−2Γt + 4

)− 3
4

− 1
2

c3 ln(Ke−2Γt + 4)
(

Ke−2Γt + 4
)− 3

4

+ (A21)

3
4

c2

(
Ke−2Γt + 4

) 1
4

− 3
8

c3 ln(Ke−2Γt + 4)
(

Ke−2Γt + 4
) 1

4

+

2c3

(
Ke−2Γt + 4

) 1
4
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