Autocorrelation Ratio as a Measure of Inertia for the Classification of Extreme Events
Abstract
:1. Introduction
2. The Gamma Distribution from the Exponential Distribution
3. Autocorrelation Length
4. Autocorrelation Ratio as a Measure of Inertia
5. The Inertia Criterion for the Classification of Extremes
6. Methodological Application and Results
- This realization began with the sampling at the 93 of rain gauge stations, giving the measurements. The probabilistic Poisson-Exponential model is fitted to the daily rainfall data sample. Next the parameters of the model are calculated: as number of days with rain and mean rainfall per event as [1,17]. The proposal is that since these parameter values provide a physical meaning, they can then be used as weights for the aggregation algorithm, i.e., ;
- From the value of the autocorrelation length is obtained using Equations (4)–(6). With this length, it is now possible to affect the values of the Euclidean distance matrix . In this way we obtain the term .
- Finally, Equation (8) is applied iteratively, until the hydrological homogeneous regions are obtained.
7. Discussion
Author | Procedure | Final Regionalization |
---|---|---|
Campos-Aranda 1994 [4] | Langbein test [49,50] | The whole region is homogeneous. |
Arellano-Lara, and Escalante-Sandoval (2014) [39] | Principal component analysis [51] and hierarchical ascending clustering [52] | Three regions parallel to the coast and parallel to the Sierra Madre (Figure 3). |
Gutierrez et al. (2015) [1] | Cartography of [53] | Two regions: one on the Sierra Madre and the other on the coastal flat-plain (Figure 3). |
Current proposal (2022) | Equation (8) | Three regions: coastal flat-plain, mountainous region and a coastal desert (Figure 2). |
8. Validation
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
ID | Lat | Long | Alt | Rain J-S | Lambda | Beta | Ward-Ratio | A-Ratio |
---|---|---|---|---|---|---|---|---|
2 | 25.92 | −109.18 | 33 | 259.8 | 0.09 | 10.5 | 11.3 | 2.8 |
3 | 27.03 | −108.95 | 389 | 501.1 | 0.13 | 14.0 | 6.7 | 3.1 |
7 | 26.35 | −108.52 | 152 | 574.7 | 0.17 | 11.9 | 7.7 | 2.5 |
8 | 27.02 | −107.75 | 501 | 437.6 | 0.21 | 7.5 | 3.0 | 3.0 |
9 | 26.08 | −108.78 | 152 | 361.6 | 0.15 | 8.9 | 13.2 | 75.6 |
10 | 26.82 | −108.42 | 180 | 587.5 | 0.14 | 12.8 | 12.9 | 3.5 |
11 | 26.47 | −108.60 | 84 | 470.7 | 0.17 | 9.1 | 4.3 | 2.3 |
14 | 26.57 | −108.75 | 137 | 524.6 | 0.16 | 10.2 | 4.1 | 2.0 |
15 | 27.30 | −108.05 | 1500 | 866.2 | 0.29 | 10.7 | 2.3 | 7.1 |
16 | 27.40 | −108.53 | 480 | 731.5 | 0.18 | 15.3 | 6.4 | 1.6 |
17 | 26.70 | −108.33 | 270 | 598.9 | 0.18 | 12.4 | 3.6 | 2.0 |
19 | 27.75 | −107.63 | 2300 | 498.0 | 0.28 | 7.4 | 3.3 | 2.0 |
23 | 27.43 | −108.02 | 1890 | 793.3 | 0.30 | 8.9 | 3.1 | 2.0 |
27 | 26.43 | −108.62 | 84 | 495.0 | 0.16 | 9.8 | 9.3 | 1.6 |
35 | 25.98 | −109.33 | 19 | 237.3 | 0.08 | 10.5 | 5.2 | 2.3 |
39 | 26.90 | −108.37 | 268 | 620.0 | 0.17 | 12.2 | 3.6 | 3.1 |
44 | 26.52 | −108.60 | 120 | 480.7 | 0.16 | 10.8 | 8.9 | 126.9 |
45 | 27.05 | −109.02 | 520 | 555.4 | 0.14 | 14.6 | 6.4 | 1.9 |
46 | 25.97 | −108.93 | 22 | 194.9 | 0.07 | 10.0 | 6.7 | 2.2 |
49 | 26.87 | −107.88 | 355 | 473.1 | 0.18 | 9.6 | 8.4 | 6.1 |
58 | 27.02 | −108.42 | 237 | 612.6 | 0.20 | 13.0 | 2.3 | 2.7 |
66 | 26.48 | −108.73 | 123 | 426.2 | 0.13 | 11.9 | 4.5 | 2.4 |
73 | 26.10 | −108.77 | 71 | 392.2 | 0.18 | 7.4 | 15.4 | 11.9 |
75 | 26.90 | −108.23 | 300 | 486.6 | 0.20 | 8.8 | 2.4 | 3.0 |
77 | 25.95 | −109.03 | 38 | 245.0 | 0.10 | 12.6 | 30.9 | 1.6 |
79 | 25.92 | −108.90 | 28 | 297.6 | 0.09 | 10.6 | 6.5 | 2.7 |
84 | 26.22 | −108.60 | 180 | 496.7 | 0.12 | 14.2 | 3.1 | 2.3 |
89 | 27.30 | −107.87 | 1000 | 555.5 | 0.22 | 9.4 | 1.8 | 3.2 |
90 | 26.05 | −108.27 | 185 | 644.5 | 0.17 | 13.0 | 6.8 | 2.8 |
93 | 26.43 | −108.22 | 407 | 591.3 | 0.18 | 12.6 | 2.9 | 3.1 |
Mean | 401 | 500.3 | 0.17 | 11.0 | 6.9 | 9.6 | ||
Min | 19 | 194.9 | 0.07 | 7.4 | 1.8 | 1.6 | ||
Max | 2300 | 866.2 | 0.30 | 15.3 | 30.9 | 126.9 |
ID | Lat | Long | Alt | Rain J-S | Lambda | Beta | Ward-Ratio | A-Ratio |
---|---|---|---|---|---|---|---|---|
1 | 24.08 | −106.65 | 130 | 614.8 | 0.21 | 10.5 | 5.7 | 1.9 |
6 | 25.37 | −107.53 | 230 | 685.0 | 0.19 | 14.3 | 6.2 | 2.3 |
18 | 23.27 | −106.05 | 138 | 678.3 | 0.16 | 14.0 | 6.6 | 2.9 |
20 | 25.72 | −108.73 | 35 | 268.6 | 0.09 | 11.0 | 2.6 | 2.9 |
21 | 23.92 | −106.90 | 23 | 364.0 | 0.09 | 13.6 | 3.3 | 2.2 |
22 | 24.82 | −107.40 | 40 | 526.8 | 0.18 | 9.7 | 4.2 | 3.5 |
24 | 23.73 | −106.78 | 12 | 476.9 | 0.09 | 20.3 | 4.4 | 4.6 |
26 | 23.97 | −106.72 | 85 | 484.3 | 0.16 | 11.1 | 6.8 | 1.5 |
31 | 25.47 | −108.08 | 50 | 475.6 | 0.17 | 8.9 | 5.2 | 8.1 |
32 | 25.57 | −108.47 | 20 | 339.3 | 0.12 | 10.0 | 2.6 | 1.1 |
34 | 23.03 | −105.75 | 80 | 769.8 | 0.28 | 11.4 | 5.1 | 2.8 |
40 | 23.91 | −106.62 | 80 | 587.2 | 0.21 | 10.1 | 6.4 | 2.9 |
42 | 23.75 | −106.53 | 150 | 592.3 | 0.16 | 13.2 | 4.8 | 2.3 |
47 | 25.80 | −109.00 | 14 | 234.5 | 0.11 | 8.8 | 32.6 | 2.0 |
48 | 25.48 | −107.92 | 83 | 514.8 | 0.12 | 15.9 | 19.5 | 2.4 |
50 | 23.93 | −106.43 | 146 | 664.2 | 0.19 | 12.9 | 9.4 | 3.0 |
52 | 23.50 | −106.32 | 200 | 510.2 | 0.16 | 11.8 | 4.2 | 2.4 |
53 | 25.93 | −108.45 | 85 | 428.8 | 0.10 | 16.2 | 6.9 | 2.0 |
56 | 23.42 | −105.93 | 450 | 1006.8 | 0.27 | 13.2 | 2.9 | 3.0 |
57 | 24.93 | −107.38 | 58 | 480.3 | 0.18 | 10.1 | 7.4 | 2.7 |
59 | 25.08 | −107.78 | 35 | 443.5 | 0.14 | 12.4 | 9.4 | 2.0 |
60 | 23.93 | −106.42 | 160 | 737.7 | 0.23 | 12.6 | 8.3 | 2.4 |
62 | 23.07 | −105.47 | 800 | 1148.4 | 0.30 | 13.3 | 2.2 | 3.0 |
63 | 23.55 | −106.47 | 60 | 524.9 | 0.16 | 12.3 | 5.9 | 21.5 |
64 | 24.43 | −107.23 | 45 | 370.6 | 0.09 | 15.0 | 4.1 | 2.3 |
65 | 25.40 | −107.83 | 300 | 613.1 | 0.16 | 12.5 | 7.4 | 3.9 |
67 | 24.80 | −107.15 | 140 | 607.9 | 0.19 | 12.1 | 4.8 | 2.5 |
68 | 24.48 | −106.95 | 140 | 537.1 | 0.20 | 10.1 | 4.2 | 3.5 |
70 | 25.82 | −108.22 | 80 | 431.0 | 0.10 | 15.4 | 6.3 | 4.0 |
71 | 23.33 | −106.22 | 55 | 519.1 | 0.13 | 14.8 | 8.8 | 16.7 |
87 | 25.62 | −109.05 | 34 | 231.1 | 0.07 | 10.5 | 36.2 | 3.4 |
91 | 25.10 | −107.40 | 160 | 715.3 | 0.16 | 15.2 | 5.3 | 2.7 |
Mean | 129 | 549.4 | 0.16 | 12.6 | 7.8 | 3.9 | ||
Min | 12 | 231.1 | 0.07 | 8.8 | 2.2 | 1.1 | ||
Max | 800 | 1148.4 | 0.30 | 20.3 | 36.2 | 21.5 |
ID | Lat | Long | Alt | Rain J-S | Lambda | Beta | Ward | A-Ratio |
---|---|---|---|---|---|---|---|---|
4 | 26.43 | −107.27 | 1896 | 779.3 | 0.28 | 10.7 | 2.6 | 3.5 |
5 | 25.82 | −107.92 | 140 | 711.6 | 0.22 | 10.8 | 3.6 | 4.6 |
6 | 25.37 | −107.53 | 230 | 685.0 | 0.19 | 14.3 | 6.2 | 2.3 |
12 | 25.12 | −106.58 | 1760 | 978.3 | 0.35 | 9.5 | 2.7 | 2.6 |
13 | 24.93 | −106.25 | 2100 | 1044.2 | 0.32 | 12.6 | 1.7 | 2.9 |
25 | 26.00 | −107.18 | 885 | 589.1 | 0.18 | 11.5 | 2.9 | 2.1 |
28 | 26.10 | −106.97 | 2316 | 793.5 | 0.35 | 8.9 | 2.1 | 2.4 |
29 | 24.27 | −106.52 | 650 | 1340.4 | 0.28 | 14.5 | 2.6 | 2.2 |
30 | 26.82 | −107.10 | 2435 | 562.2 | 0.28 | 7.7 | 6.0 | 2.3 |
33 | 25.30 | −107.23 | 290 | 784.0 | 0.22 | 12.7 | 3.0 | 2.9 |
36 | 25.72 | −107.85 | 250 | 664.8 | 0.17 | 13.4 | 8.6 | 1.8 |
37 | 24.53 | −105.95 | 1150 | 580.2 | 0.24 | 8.8 | 2.1 | 2.4 |
38 | 25.37 | −106.70 | 600 | 438.4 | 0.22 | 10.1 | 3.1 | 2.2 |
41 | 25.90 | −108.02 | 200 | 710.7 | 0.21 | 11.6 | 4.3 | 2.2 |
43 | 25.17 | −105.98 | 2410 | 621.5 | 0.29 | 7.6 | 3.4 | 1.9 |
51 | 27.25 | −107.13 | 2200 | 494.1 | 0.24 | 7.4 | 2.0 | 7.2 |
54 | 25.07 | −106.23 | 2340 | 790.5 | 0.40 | 7.3 | 3.9 | 4.5 |
55 | 23.57 | −105.80 | 1475 | 843.2 | 0.28 | 11.3 | 2.4 | 2.7 |
69 | 25.27 | −106.77 | 850 | 792.0 | 0.23 | 13.2 | 2.3 | 2.9 |
72 | 27.27 | −107.22 | 2120 | 323.9 | 0.16 | 8.7 | 3.0 | 2.8 |
74 | 24.13 | −105.97 | 800 | 690.9 | 0.23 | 11.1 | 2.5 | 2.4 |
76 | 26.15 | −107.89 | 375 | 688.9 | 0.18 | 14.5 | 2.7 | 4.0 |
78 | 25.73 | −107.30 | 690 | 613.9 | 0.21 | 10.7 | 1.9 | 4.5 |
80 | 25.80 | −107.57 | 1400 | 769.3 | 0.30 | 11.4 | 3.3 | 4.4 |
81 | 24.97 | −106.98 | 250 | 781.5 | 0.22 | 12.3 | 2.7 | 4.0 |
82 | 25.63 | −106.35 | 2560 | 587.1 | 0.26 | 9.4 | 4.1 | 2.1 |
83 | 25.86 | −107.38 | 540 | 764.8 | 0.25 | 11.1 | 3.9 | 4.4 |
85 | 26.17 | −107.70 | 350 | 667.1 | 0.23 | 10.7 | 3.2 | 5.0 |
86 | 25.20 | −106.57 | 1600 | 732.4 | 0.28 | 11.3 | 2.2 | 2.2 |
88 | 24.47 | −106.00 | 2700 | 833.7 | 0.38 | 8.8 | 3.8 | 2.9 |
92 | 26.50 | −106.38 | 2720 | 597.4 | 0.26 | 7.7 | 5.9 | 2.6 |
Mean | 1299 | 717.9 | 0.25 | 10.7 | 3.4 | 3.1 | ||
Min | 140 | 323.9 | 0.16 | 7.3 | 1.7 | 1.8 | ||
Max | 2720 | 1340.4 | 0.40 | 14.5 | 8.6 | 7.2 |
References
- Gutiérrez-López, A.; Lebel, T.; Ruiz-González, I.; Descroix, L.; Duhne-Ramírez, M. Prediction of Hydrological Risk for Sustainable Use of Water in Northern Mexico. In Sustainability of Integrated Water Resources Management; Springer: Cham, Switzerland, 2015; pp. 245–271. [Google Scholar] [CrossRef]
- Chouaib, W.; Alila, Y.; Caldwell, P.V. Parameter transferability within homogeneous regions and comparisons with predictions from a priori parameters in the eastern United States. J. Hydrol. 2018, 560, 24–38. [Google Scholar] [CrossRef]
- Cunderlik, J.M.; Burn, D.H. Analysis of the linkage between rain and flood regime and its application to regional flood frequency estimation. J. Hydrol. 2002, 261, 115–131. [Google Scholar] [CrossRef]
- Campos, A. Aplicación del Metodo del Indice de Crecientes en la Región hidrológica Nuero 10, Sinaloa. Ing. Hidraul. Mex. 1994, 9, 41–55. [Google Scholar]
- Descroix, L.; Nouvelot, J.F.; Estrada, J.; Lebel, T. Complémentarités et convergences de méthodes de régionalisation des précipitations: Application à une région endoréique du Nord-Mexique. Rev. Sci. L’eau 2005, 14, 281–305. [Google Scholar] [CrossRef] [Green Version]
- Escalante-Sandoual, C. Multivariate Extreme Value Distribution with Mixed Gumbel Marginals. J. Am. Water Resour. Assoc. 1998, 34, 321–333. [Google Scholar] [CrossRef]
- Escalante-Sandoval, C. Application of bivariate extreme value distribution to flood frequency analysis: A case study of Northwestern Mexico. Nat. Hazards 2006, 42, 37–46. [Google Scholar] [CrossRef]
- Cabras, S.; Castellanos, M.E.; Gamerman, D. A default Bayesian approach for regression on extremes. Stat. Model. 2011, 11, 557–580. [Google Scholar] [CrossRef] [Green Version]
- Chua, S.-H.; Bras, R.L. Optimal estimators of mean areal precipitation in regions of orographic influence. J. Hydrol. 1982, 57, 23–48. [Google Scholar] [CrossRef]
- Nathan, R.; McMahon, T. Identification of homogeneous regions for the purposes of regionalisation. J. Hydrol. 1990, 121, 217–238. [Google Scholar] [CrossRef]
- Grehys, G. de recherche en hydrologie statistique. Inter-comparison of regional flood frequency procedures for Canadian rivers. J. Hydrol. 1996, 186, 85–103. [Google Scholar] [CrossRef]
- Nouvelot, J.F.; Descroix, L. Aridité et sécheresse du Nord-Mexique. Rev. Trace. Méx. 1996, 30, 9–25. [Google Scholar]
- Jafarzadegan, K.; Moradkhani, H. Regionalization of stage-discharge rating curves for hydrodynamic modeling in ungauged basins. J. Hydrol. 2020, 589, 125165. [Google Scholar] [CrossRef]
- Gower, J.C.; Legendre, P. Metric and Euclidean properties of dissimilarity coefficients. J. Classif. 1986, 3, 5–48. [Google Scholar] [CrossRef]
- Burn, D.H. Delineation of groups for regional flood frequency analysis. J. Hydrol. 1988, 104, 345–361. [Google Scholar] [CrossRef]
- Groupederechercheenhydrologie Presentation and review of some methods for regional flood frequency analysis. J. Hydrol. 1996, 186, 63–84. [CrossRef]
- Le Barbé, L.; Lebel, T. Rainfall climatology of the HAPEX-Sahel region during the years 1950–1990. J. Hydrol. 1997, 188–189, 43–73. [Google Scholar] [CrossRef]
- Rahman, H. Prediction of homogeneous region over Bangladesh based on temperature: A non-hierarchical clustering approach. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2022, 148, 1127–1149. [Google Scholar] [CrossRef]
- Gutiérrez-López, M.A.; Vargas-Baecheler, J.; Reséndiz-Torres, V.; Cruz-Paz, I. Formulación simplificada de un índice de sequía, empleando una distribución de probabilidad mezclada. Tecnol. Cienc. Agua 2016, 7, 135–149. [Google Scholar] [CrossRef]
- Salim, A.; Pawitan, Y. Extensions of the Bartlett-Lewis model for rainfall processes. Stat. Model. 2003, 3, 79–98. [Google Scholar] [CrossRef]
- Ribstein, P. Loi des fuites. CAHIERS, ORSTOM, série. Hydrologie 1983, XX, 117–141. [Google Scholar]
- Gutierrez-Lopez, A. A Robust Gaussian variogram estimator for cartography of hydrological extreme events. Nat. Hazards 2021, 107, 1469–1488. [Google Scholar] [CrossRef]
- Ward, J.H., Jr. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Lebel, T.; Taupin, J.; D’Amato, N. Rainfall monitoring during HAPEX-Sahel. 1. General rainfall conditions and climatology. J. Hydrol. 1997, 188–189, 74–96. [Google Scholar] [CrossRef]
- Kudryavtsev, A.; Shestakov, O. The Estimators of the Bent, Shape and Scale Parameters of the Gamma-Exponential Distribution and Their Asymptotic Normality. Mathematics 2022, 10, 619. [Google Scholar] [CrossRef]
- Lebel, T.; Le Barbé, L. Rainfall monitoring during HAPEX-Sahel. 2. Point and areal estimation at the event and seasonal scales. J. Hydrol. 1997, 188–189, 97–122. [Google Scholar] [CrossRef]
- Gutierrez-Lopez, A.; Ramirez, A.; Lebel, T.; Santillán, O.; Fuentes, C. El variograma y el correlograma, dos estimadores de la variabilidad de mediciones hidrológicas. Rev. Fac. Ing. Univ. Antioq. 2011, 59, 193–202. Available online: https://revistas.udea.edu.co/index.php/ingenieria/article/view/13824/12262 (accessed on 8 April 2022).
- Prudhomme, C. Mapping a statistic of extreme rainfall in a mountainous region. Phys. Chem. Earth Part B Hydrol. Oceans Atmos. 1999, 24, 79–84. [Google Scholar] [CrossRef]
- Ca⁁rsteanu, A.A.; Ba⁁, K.M.; Díaz-Delgado, C. Gamma-Laguerre Formalism: Rigorous Approach and Application to Hydrologic Time Series. J. Hydrol. Eng. 2004, 9, 275–279. [Google Scholar] [CrossRef]
- Diaz, D.C.; Ba, K.; Trujillo, F.E. Las funciones beta-Jacobi y gamma-Laguerre como métodos de analisis de valores hidrologicos extremos. Ing. Hidraul. Mex. 1999, 14, 39–48. [Google Scholar]
- Llamas, J. Hydrologie Générale: Principes Et Applications, 2nd ed.; Gaëtan Morin Éditeur C.P.180: Boucherville, QC Canada, 1993; 487p, ISBN 2-89105-485-7. [Google Scholar]
- Kachroo, R.K.; Mkhandi, S.H.; Parida, B.P. Flood frequency analysis of southern Africa: I. Delineation of homogeneous regions. Hydrol. Sci. J. 2000, 45, 437–447. [Google Scholar] [CrossRef]
- Gutiérrez-López, A.; Aparicio, J. Las seis reglas de la regionalización en hidrología. Aqua-LAC 2020, 12, 81–89. [Google Scholar] [CrossRef]
- Escalante-Sandoval, C.; Amores-Rovelo, L. Regional monthly runoff forecast in southern Canada using ANN, K-means, and L-moments techniques. Can. Water Resour. J./Rev. Can. Ressour. Hydr. 2017, 42, 205–222. [Google Scholar] [CrossRef]
- Agarwal, A.; Marwan, N.; Maheswaran, R.; Merz, B.; Kurths, J. Quantifying the roles of single stations within homogeneous regions using complex network analysis. J. Hydrol. 2018, 563, 802–810. [Google Scholar] [CrossRef] [Green Version]
- Castellarin, A.; Burn, D.; Brath, A. Assessing the effectiveness of hydrological similarity measures for flood frequency analysis. J. Hydrol. 2001, 241, 270–285. [Google Scholar] [CrossRef]
- Fernandes, M.V.; Schmidt, A.M.; Migon, H.S. Modelling zero-inflated spatio-temporal processes. Stat. Model. 2009, 9, 3–25. [Google Scholar] [CrossRef]
- Şen, Z.; Habib, Z.Z. Point cumulative semivariogram of areal precipitation in mountainous regions. J. Hydrol. 1998, 205, 81–91. [Google Scholar] [CrossRef]
- Arellano-Lara, F.; Escalante-Sandoval, C.A. Multivariate delineation of rainfall homogeneous regions for estimating quantiles of maximum daily rainfall: A case study of northwestern Mexico. Atmósfera 2014, 27, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Zrinji, Z.; Burn, D.H. Flood frequency analysis for ungauged sites using a region of influence approach. J. Hydrol. 1994, 153, 1–21. [Google Scholar] [CrossRef]
- Ilorme, F.; Griffis, V.W. A novel procedure for delineation of hydrologically homogeneous regions and the classification of ungauged sites for design flood estimation. J. Hydrol. 2013, 492, 151–162. [Google Scholar] [CrossRef]
- Hayward, D.; Clarke, R.T. Relationship between rainfall, altitude and distance from the sea in the Freetown Peninsula, Sierra Leone. Hydrol. Sci. J. 1996, 41, 377–384. [Google Scholar] [CrossRef]
- Faulkner, D.S.; Prudhomme, C. Mapping an index of extreme rainfall across the UK. Hydrol. Earth Syst. Sci. 1998, 2, 183–194. [Google Scholar] [CrossRef]
- Behrens, C.N.; Lopes, H.; Gamerman, D. Bayesian analysis of extreme events with threshold estimation. Stat. Model. 2004, 4, 227–244. [Google Scholar] [CrossRef] [Green Version]
- Gingras, D.; Adamowski, K. Homogeneous region delineation based on annual flood generation mechanisms. Hydrol. Sci. J. 1993, 38, 103–121. [Google Scholar] [CrossRef]
- Haiden, T.; Kerschbaum, M.; Kahlig, P.; Nobilis, F. A refined model of the influence of orography on the mesoscale distribution of extreme precipitation. Hydrol. Sci. J. 1992, 37, 417–427. [Google Scholar] [CrossRef]
- Gerstengarbe, F.-W.; Werner, P.C.; Fraedrich, K. Applying Non-Hierarchical Cluster Analysis Algorithms to Climate Classification: Some Problems and their Solution. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 1999, 64, 143–150. [Google Scholar] [CrossRef]
- Viramontes, D.; Descroix, L. Modifications physiques du milieu et conséquences sur le comportement hydrologique des cours d’eau de la Sierra Madre Occidentale (Mexique). Rev. Sci. L’eau 2005, 15, 493–513. [Google Scholar] [CrossRef] [Green Version]
- Kite, G.W. Frequency and Risk Analyses in Hydrology; Water Resources Publications: Littleton, CO, USA, 2004. [Google Scholar]
- Gutierrez-Lopez, A.; Ramirez, A.I. Prediccion hidrologica mediante el Metodo de la Avenida Indice para dos poblaciones. Ing. Hidraul. Mex. 2005, XX, 37–47. [Google Scholar]
- Wotling, G.; Bouvier, C.; Danloux, J.; Fritsch, J.-M. Regionalization of extreme precipitation distribution using the principal components of the topographical environment. J. Hydrol. 2000, 233, 86–101. [Google Scholar] [CrossRef]
- Leenen, I.; Van Mechelen, I. An Evaluation of Two Algorithms for Hierarchical Classes Analysis. J. Classif. 2001, 18, 57–80. [Google Scholar] [CrossRef]
- Lebel, T.; Laborde, J.P. A geostatistical approach for areal rainfall statistics assessment. Stoch. Hydrol. Hydraul. 1988, 2, 245–261. [Google Scholar] [CrossRef]
- Descroix, L.; Viramontes, D.; Estrada, J.; Barrios, J.-L.G.; Asseline, J. Investigating the spatial and temporal boundaries of Hortonian and Hewlettian runoff in Northern Mexico. J. Hydrol. 2007, 346, 144–158. [Google Scholar] [CrossRef] [Green Version]
- Dunn, S.; Lilly, A. Investigating the relationship between a soils classification and the spatial parameters of a conceptual catchment-scale hydrological model. J. Hydrol. 2001, 252, 157–173. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutierrez-Lopez, A.; Chávez, C.; Díaz-Delgado, C. Autocorrelation Ratio as a Measure of Inertia for the Classification of Extreme Events. Mathematics 2022, 10, 2112. https://doi.org/10.3390/math10122112
Gutierrez-Lopez A, Chávez C, Díaz-Delgado C. Autocorrelation Ratio as a Measure of Inertia for the Classification of Extreme Events. Mathematics. 2022; 10(12):2112. https://doi.org/10.3390/math10122112
Chicago/Turabian StyleGutierrez-Lopez, Alfonso, Carlos Chávez, and Carlos Díaz-Delgado. 2022. "Autocorrelation Ratio as a Measure of Inertia for the Classification of Extreme Events" Mathematics 10, no. 12: 2112. https://doi.org/10.3390/math10122112
APA StyleGutierrez-Lopez, A., Chávez, C., & Díaz-Delgado, C. (2022). Autocorrelation Ratio as a Measure of Inertia for the Classification of Extreme Events. Mathematics, 10(12), 2112. https://doi.org/10.3390/math10122112