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Abstract: Convolutional networks are commonly used in various machine learning tasks, and they
are more and more popularly used in the embedded domain with devices such as smart cameras
and mobile phones. The operation of convolution can be substituted by point-wise multiplication
in the Fourier domain, which can save operation, but usually, it is applied with a Fourier transform
before and an inverse Fourier transform after the multiplication, since other operations in neural
networks cannot be implemented efficiently in the Fourier domain. In this paper, we will present
a method for implementing neural network completely in the Fourier domain, and by this, saving
multiplications and the operations of inverse Fourier transformations. Our method can decrease the
number of operations by four times the number of pixels in the convolutional kernel with only a
minor decrease in accuracy, for example, 4% on the MNIST and 2% on the HADB datasets.

Keywords: neural network; Fourier domain; machine learning

MSC: 68T07

1. Introduction

Neuroscience has inspired artificial intelligence techniques such as Convolutional
Neural Networks (CNNs), which were motivated by the visual cortex in the brain. CNNs
consist of two main alternating parts: the convolutional and pooling layers, such as sim-
ple and complex cells in the visual cortex [1]. Nowadays, CNNs can reach exceptional
performance in a wide range of machine learning tasks such as image classification and
natural language processing. Convolutional layers are still used in most state-of-the-art
architectures [2,3], such as vision transformers [4]. It was also demonstrated in [5] that
similar state-of-the-art performance can be reached with highly optimized, purely convolu-
tional architectures. Unfortunately, there are limiting aspects of these architectures as well:
updating a large number of parameters and executing myriads of multiplications requires
significant computational resources.

There are various approaches aiming to decrease the number of operations and by
this the inference time of the networks or to reduce their computational need employing
architectural changes. For instance, in the case of SqueezeNet [6], Iandola et al. were
able to make a small network architecture with AlexNet-level accuracy on ImageNet by
downscaling the number of channels in each layer using 1x1 filters and by this decreasing
both the number of operations and trainable parameters simultaneously. Another solu-
tion, presented first in MobileNets [7], was described by Howard et al.; their architecture
contained two hyperparameters to build small and low-latency models for mobile and
embedded vision applications.

The goal of Knowledge Distillation [8] was similar: to make a fast and minimized
network. Yim et al. introduced a novel knowledge transfer technique, where the transferred
distilled knowledge from a pretrained neural network is determined by computing the
inner product of features from two layers and by this decreasing neuron or layer numbers.
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The invention of Farhadi et al. [9] is based on weight quantization and in a corner
case the binarization of the weights and of the intermediate representations of data in a
Convolutional Neural Network. This method includes optimization processes to determine
the best approximations of the convolution operations in CNN using binary operations.

A novel approach for compressing deep neural networks was introduced in [10],
which took into account the nonlinear responses and the multi-linear low-rank constraint
in the kernel tensors. They suggest a convex relaxation strategy that can be solved directly
using the alternating direction method of multipliers (ADMM) to address the difficulty of
nonconvex optimization. As a result, they can determine the feature matrix of the Tucker
decomposition [11] and Tucker-2 rank at the same time. The suggested method is tested on
an ImageNet dataset for CNNs such as AlexNet, ResNet-18 and GoogleNet. This method
can achieve a significant decrease in model size while sacrificing just a minor amount
of accuracy.

In [12], the authors minimized the parameters and saved operations by modifying
the DenseNet deep layer block. This technique can reduce the multiple growths of param-
eter amount for deeper layers by using channel merging procedures while the accuracy
remains relatively unchanged. In the case of DenseNet and RetNet-110, the parameters
may be lowered by 30–70%. This lightweight network can be used in real time on an
embedded device.

In [13], the authors presented a novel minimalist hardware architecture called adder
convolutional neural network (AdderNet) to reduce the computational complexity and
energy burden. In this architecture, they use adder kernel with hardware accelerators
instead of original convolution. They can achieve a 47.85–77.9% reduction in power
consumption and a 16% increase in speed.

These previous methods are independent from each other, and they can be combined
with each other, but usually, in this case, accuracy drops significantly. They all aim at the
simplification of the network structure, merging or completely removing neurons, channels
or layers, resulting in different architectures with lower computational need, but since they
simplify the network architecture, they are not mathematically equivalent with the original
network but approximate it fairly well. Because of this, in most cases, they also decrease the
accuracy of the networks. In this paper, we will demonstrate another method which exploits
the fact that convolutions can be implemented as point-wise multiplications (Hadamard
products) in the Fourier domain, and by this, it can also be combined with all previously
mentioned approaches and can be generally used to decrease the computational need of a
neural network. Unfortunately, meanwhile, convolutions can be more efficiently executed
in the Fourier domain; other elements of a typical neural network such as nonlinearities
and pooling operations can only be executed using significantly more operations in this
domain and can be more efficiently applied in the time domain. Most approaches of
network optimization, also all methods listed earlier, try to substitute and approximate
convolution in the time domain. Our approach follows a different path, where we execute
all operations in the Fourier domain where convolution can be efficiently applied, and we
try to approximate the other operations in the Fourier domain.

There are existing methodologies in the literature which exploit the advantageous
property of the Fourier transform or other spectral methods, but all of these substitute only
specific computational building blocks in the Fourier domain and return from it with an
inverse transformation, which adds extra computation to the system. Some of these go back
to the time domain directly after the convolution part to apply the nonlinear activation and
the downsampling step (e.g., [14,15], but there exist solutions, which provide an approxi-
mation to implement pooling and nonlinear activation functions in the frequency domain
as well (e.g., [16–18]; thus, even in these architectures, one inverse Fourier transformation
is applied at the last layer of the network.
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The authors of [19] investigate the implementation of convolution in the Fourier
domain using the FFT transform, but for this, the transformation has to be applied at
every kernel.

Similarly, discrete cosine transform (DCT) is used in [20], where the authors suggest a
faster convolution method for neural networks. They transform the convolutional kernel
and the input into the spectral domain with discrete cosine transform and then perform
pointwise multiplication between the feature map and kernel. The complexity of DCT
is significantly smaller than the FFT method because discrete cosine transform involves
only real arithmetic. They use intrinsically extended kernels to suppress repeated domain
transformations, and they decrease the kernel symmetry with spectral dropout. This model
can accelerate the FFT-based methods without a significant decrease in accuracy.

In [21], the authors proposed a method combining FFT, CNN, and LSTM (long and
short-term memory). At first, they convert data to the Fourier domain; then, features are
obtained by CNN, and after that, they complete the fault diagnosis of the circuit with the
LSTM network. They improved the quality of CSTV analog circuit fault diagnosis with this
FFT-CNN-LSTM method.

All these previously introduced spectral approaches use a spectral transformation
and an inverse transformation to return to the time domain after convolution, after a layer,
or at the end of the network. We will demonstrate in this work that these returns are
not necessary and a neural network can be fully trained in the Fourier domain, and their
weights, which in our case represent the weights of certain Fourier components, can be
directly used in the following layer even in the logit layer for classification. This approach
can further decrease the number of required operations, and as we will demonstrate, it also
does not decrease the accuracy of the network significantly.

Our paper is structured as follows: In Section 2, we will introduce existing approaches
to decrease the number of operations in a network, in Section 3 and we will also explain
our approach, which employs all steps in the Fourier domain. In Section 4, we will describe
our simulations and results and interpret them in Section 5. Finally, in Section 5, we draw
conclusions based on our findings.

2. Acceleration of Networks in the Fourier Domain

The idea that convolutions can be performed as point-wise multiplications in the Fourier
domain in case of a convolutional neural network appeared before the appearance of large-
scale benchmark datasets emphasized the important need of training acceleration; however,
the number of feature maps was too small to apply this method effectively. Nowadays, the
speed up caused by Fourier transformations became significant; Mathieu et al. [14] imple-
mented a Fourier based algorithm which requires 6Cn2log(n) + 4n2 operations instead of the
direct method with (n− k + 1)2k2 operations, where our input image has dimensions of
nxn, kxk is the size of the convolution kernel and C is the hidden constant in theO notation.

The main additional cost of the frequency-based method is the Fourier transformation
especially in [14], because this solution needs inverse transformation before every nonlinear
activation part and after that a Fourier transformation again. In [15], two new convolution
implementations used together with Fast Fourier transform were introduced and com-
pared. The fbfft outperforms the cuFFT convolution implementation in most deep learning
problems (introduced in [14,15]), but both of these outperform the original cuDNN variant.

Nevertheless, these transform methods have limitations as well, such as the problem
of the number of instructions issued, for example, the throughput for 32-bit floating-point
multiply–add operations is greater than the throughput for shuffles [15]. In [22], a technique
was presented to mitigate the bottleneck of transformation cost, and it was shown that
the “overlap-and-add” technique can reduce the computational time by a factor of up to
16.3 times compared to the traditional convolution implementation in a special case.
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However, not only the operation of convolution can be simplified in the frequency
domain, but the subsampling process may also change. In [23], the authors used the spectral
pooling method instead of the conventional max-pooling as dimensionality reduction. This
method is truncating the representation of the data in the frequency domain; thereby, it
preserves more information per parameter and enables flexibility in output dimensionality.
This spectral representation-based pooling method was applied in [24], where the training
of FCNN architecture was conducted within the frequency domain without the addition of
extra nonlinearity.

In [16], the authors introduced a nonlinearity in the frequency domain, which was
called Fourier domain exponential linear unit, and they used pyramid pooling layers for
downsampling in the frequency domain. Ayat et al. (in [17]) introduced the frequency
domain equivalent of the conventional batch normalization, which increases the accuracy
of the network. They used a novel nonlinear activation function, the Spectral Rectified
Linear Unit (SReLU), after the Spectral pooling. Following the last convolutional layer but
before the fully connected layer and softmax layer, they executed an inverse Fast Fourier
Transform to obtain real numbers instead of the complex valued representation. Because of
this step, this approach used unnecessary computation and cannot be considered a fully,
end-to-end spectral training.

In [18], another kind of spectral ReLU operation was proposed (called 2SReLU) that
adds low-frequency components with their second harmonics, and this method has two
hyperparameters to adjust each frequency contribution to the final result. The equation of
2SReLU is as follows: F(µ1)← αF(µ1) + βF(µ2).

All of these approaches presented implementations of convolution, pooling algorithms
or nonlinear activation functions, but all of them applied an inverse transformation after
the steps were executed. In the next section, we propose a convolutional neural network
architecture, which is entirely in the Fourier domain, and it contains pooling, nonlinear
activation function, and batch normalization in the spectral domain, and it calculates
the fully connected layer and softmax layer without spectral–spatial domain switching
as well. For the sake of reproducibility, the source code of our neural network, which
contains the exact network architectures used in training and a detailed list of training
parameters for our experiments, can be found in the following GitHub repository: https:
//github.com/andfulop/TrainingInFourierDomain (accessed on th 13 June 2022), as the
Supplementary Materials.

3. Methods
3.1. Convolution Theorem

Our method is based on the convolution theorem, which states the following:

F{ f ? g} = F{ f } · F{g}, (1)

where F denotes the Fourier transforms of the f and g functions, ? is the convolution, and
·means the point-wise multiplication operators. (The theorem is also true backward: in the
time domain, the pointwise multiplication is convolution in the frequency domain.)

3.2. Methods in the Frequency Domain

During the simulations, our datasets were traditional two-dimensional grayscale
images (matrices) and one-dimensional time series (vectors). Therefore, at first, a discrete
one- or two-dimensional Fourier transform was applied to these datasets accordingly. After
the transformation, each one of the values was represented by a complex number, and all
operations of the convolutional neural network were executed in the frequency domain.

3.2.1. Convolution Operation

The first and main part of a convolutional neural network is the convolution itself, in
which we multiply element-wise the images (or time series) by the appropriate values of
the convolutional kernels, which were transformed into the frequency domain before the

https://github.com/andfulop/TrainingInFourierDomain
https://github.com/andfulop/TrainingInFourierDomain
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multiplication as well. If we use smaller kernels than the size of the images or the length
of the time series, before the transformation, the kernels had to be padded with zeros for
the point-wise multiplication. Due to this padding, after the transformation, we always
perform the multiplication operations with matrices of the same size; thus, we can save
even more operations if the kernel size is larger. However, since all our network works in
the Fourier domain, we applied another technique and generated the kernels directly in
the frequency domain instead of transforming them from the time domain using Fourier
transform; thus, we can save the cost of kernels’ transformation during training. In this
case, the kernel size is the same as the size of the input. We used this approach in our
experiments, as we present in the results section. This step has no effect on inference time,
which is one of the most important factors in neural network training, but it can reduce
training time.

3.2.2. Nonlinear Activation Function

A sufficiently large neural network using nonlinearity can approximate arbitrarily
complex functions [17,25]; furthermore, the learning dynamics and the expressive power of
the network depend heavily on the applied nonlinearity. The activation function Φ : R→ R
maps the input of a neuron into a specific range, and this value is the output of the cell.

In spectral representation, we can encounter various activation function implementa-
tions with the aim of operating similarly to nonlinearities of the time domain and achieving
a similar result in terms of accuracy. One of these solutions is the Fourier domain exponen-
tial linear unit (FELU, [16]), which is the spectral equivalent of the exponential linear unit
(ELU) of the spatial domain. The ELU can be defined as the following:

f (x) =

{
x i f x > 0
a(ex − 1) otherwise

(2)

Another spectral activation function is the Spectral ReLU (SReLU, [17]). This method uses
the following polynomial to approximate the traditional ReLU function: c0 + c1X + c2X2. Of
course, considering that the multiplication of two signals in the spatial domain is equivalent
to the convolution of two signals in the Fourier domain, thus, the previous equation can be
modified as follows: c0 + c1X + c2(X ? X), where the ? denotes the convolution operator.

3.3. Our Implementation

We took the simplicity of the ReLUs (such as max(0, x), or max(x, ax), where a < 1)
methods as a basis, more precisely, the simple and efficient computation (multiplication,
addition, and comparison) of it.

During the Fourier transform, we transfer the original input signal from the set of real
numbers to the complex plane; thus, the domain of our activation function will also be the
set of complex numbers.

Our nonlinear function called FReLU f : C→ C is a nonlinear function, which can be
written as follows:

f (z) =

{
z i f |z| > α

0 otherwise
(3)

where z ∈ C is equal to a + ib complex number, the |z| =
√

a2 + b2, 0 is the (0, 0) point
in the complex plane and α is a tuneable parameter of this method. This solution can be
considered as a high-pass filter with the α cut-off point or as an equivalent of the traditional
ReLU funciton for complex numbers. Figure 1 illustrates how this function maps the
complex plane in case of α = 0.1. During our training on the different datasets, the α
parameter was 0.1.
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Figure 1. The nonlinear activation function f (with α = 0.1) maps z1 to z1 and z2, z3 to zero, where
|z1| > 0.1, |z2| < 0.1 and |z3| = 0.1. The position of points outside the blue circle does not change,
but all points in the circle will be zero.

3.3.1. Subsampling Operation

We used the spectral pooling method introduced in [23] as a subsampling procedure.
In this case, the dimensionality reduction is in the Fourier domain, where the N×M matrix
input is truncated and only the central H ×W submatrix of frequencies remains. This
approach is different from other pooling strategies in the time domain, such as max pooling,
which reduces dimensionality by at least a factor of 4 in a two-dimensional cases, and the
maximum value in each window sometimes does not represent well enough the contents of
the window. In contrast, spectral pooling can tune the output dimensionality, and besides,
it can be considered as a filter as well, because the removed higher frequencies encode
noise in the two-dimensional case [23].

3.3.2. Classifier

Before we flatten the feature map of the last convolution layer, we calculate the
magnitude of the complex values applying a fabs2 : C→ R function, which can be written
as follows:

fabs2(a + ib) = a2 + b2 (4)

This formula is similar to the previously introduced activation function, but the output
is the square of the absolute value, which is a real number. The computational complexity of
this calculation isO(n) instead of inverse FFT’sO(nlog(n)). (Previous solutions introduced
by others used an inverse Fast Fourier Transform.) After the flattening step, we used a
traditional fully connected neural network with only one layer to predict the classes.

4. Results and Discussions

We started from a simple convolutional neural network, and our goal was to im-
plement all operations in the frequency domain after the initial Fourier transform and
replace each element of the network with a suitable spectral solution, then examine how
our architecture works on one- and two-dimensional datasets. For demonstration, in the
time domain, we also implemented a CNN, which has the same computational complexity
as our neural network in the frequency domain (Figure 2) (we used max pooling and ReLU
in the time domain); the accuracy results obtained by these CNNs on various datasets can
be found in the Table 1.
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Figure 2. The schema of the proposed CNN architecture. The input is in the frequency domain, the
spectral pooling can be done before the element-wise multiplication, and the nonlinear activation
function can be applied after each multiplication.

Table 1. The table contains the average and maximum of the accuracy achieved on the independent
test sets of the examined datasets in case of three different network architectures. One is the reference
network in time domain, the other contains the inverse FFT, which was also used in previous articles,
and the neural network implemented with the sum of squares solution proposed by us.

Inverse FFT Sum of Squares Time Domain

Dataset Mean Max Mean Max Mean Max

MNIST 90.20% 92.39% 91.93% 94.99% 97.17% 98.75%

Fashion-MNIST 80.31% 81.95% 75.34% 82.83% 94.55% 95.54%

HADB 92.33% 94.08% 90.54% 93.95% 94.6% 95.95%

OZONE 90.26% 96.4% 96.07% 96.4% 94.31% 97%

4.1. One-Dimensional Datasets

In this case, in the frequency domain and in the time domain, our network con-
tained three convolutional layers and one FC (fully connected) layer. We performed
one-dimensional convolution in the time domain with 8× 1 kernels.

A one-dimensional dataset selected for detailed investigation was the Smartphone-
Based Recognition of Human Activities and Postural Transitions Data Set Version 2.1
(HADB, [26]). This consists of a smartphone’s accelerometer and gyroscope signals during
twelve different activities (such as standing, walking, walking downstairs and upstairs,
laying, etc.) of 30 subjects. The training set contains more than 7700 samples, while the
test set contains 3100 samples. The accuracy results for the spatial and spectral domain
trainings are shown in Figure 3.

Another one-dimensional dataset was the Ozone Level Detection Data Set [27]; we
used the one hour peak set from that. The samples contain wind speed values at various
time and temperature values measured at different times as well. These samples can be
categorized into two classes: the first one is the normal day and the second one is the ozone
day. The dataset has 2536 instances, and we selected the last 500 as an independent test set.
The results of this dataset are presented in Table 1.



Mathematics 2022, 10, 2132 8 of 12

Figure 3. Five training results of HADB classification in frequency domain with the proposed
nonlinear activation function, with square sum. The red color means the maximum accuracy, the
yellow color is the minimum accuracy and the blue line shows the mean accuracy.

4.2. Two-Dimensional Datasets

For two-dimensional datasets, in the frequency domain and in the time domain as
well, we used a network with three convolutional layers and one FC (fully connected) layer.
We performed two-dimensional convolution in the time domain with 3× 3 kernels.

We used the well-known MNIST dataset, which is a database of handwritten digits,
and it has a training set of 60,000 examples and a test set of 10,000 examples. The size of
the images is 28 × 28 [28].

Another two-dimensional dataset was the Fashion-MNIST, which is an MNIST-like
fashion product database with 10 classes, and it consists of 28 × 28 sized grayscale im-
ages, where the number of elements of the training set is 60,000 and the test set has
10,000 examples [29].

Figures 4 and 5 show the accuracy results of the independent test sets in the case of
these datasets.

In every case, we made five different trainings and we determined the maxima, the
minima, and the average values of these. After that, we compared the results of inverse
FFT version with the method we proposed and in the MNIST, Fashion-MNIST and OZONE
cases, we found (see Table 1) that the maximum value was higher (or the same in case
of the maximum of OZONE) in the case we proposed than the inverse FFT method, and
only the accuracy of HADB was worse. However, the number of calculations decreased
in each case, as instead of O(nlog(n)), only O(n) operation had to be performed after the
convolutional layers (where n is the size of a sample).

Although the neural network in the time domain outperformed the accuracies of the
two frequency-based implementations, in this case, much more multiplication is required
(Table 2), as in the time domain, the computational complexity of convolution is O(nm),
where m(= H ×W) is the size of the kernel, but in the frequency domain, we have only
O( n

4 ) complexity, since, in the frequency domain, the spectral pooling can be executed
before the element-wise multiplication. In the frequency domain, the FFT also requires
computation (O(nlog(n))), but this can be done (and stored) before the training.
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Figure 4. Five training results of MNIST classification in frequency domain with the proposed
nonlinear activation function, with square sum instead of inverse FFT. The red color means the
maximum accuracy, the blue line shows the mean accuracy and the yellow color is the minimum
accuracy.

Figure 5. Five training results of Fashion-MNIST classification in frequency domain with the proposed
nonlinear activation function, with square sum. The red color means the maximum accuracy, the
yellow color is the minimum accuracy and the blue line shows the mean accuracy.

Table 2. The table contains the number of multiplication in case of frequency-based implementation
and in case of the time-domain implementation. For example, a typical input 224 × 224 × 3 × 3
number of multiplications is 12,544 in Fourier domain and 451,584 in the time domain.

Sum of Squares Time Domain

size of input (N/2)× (M/2) N ×M

size of kernel (N/2)× (M/2) H ×W

number of multiplications (N/2)× (M/2) N ×M× H ×W
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4.3. Dependence on Hyperparameters

On one hand, our method is theoretical, and it is easy to see that an end-to-end training
in the Fourier can decrease the number of operations applied. These decrease is general and
are constantly present, since it comes from the reformulation of the convolutions operation
and the substitution of the inverse Fourier transform. Because of this, it can be applied
and is advantageous for arbitrary network architectures and training processes. On the
other hand, the other important property, the accuracy of the investigated neural networks
can not be determined theoretically and is typically measured empirically on commonly
investigated datasets.

We have measured the performance of six different neural networks variants trained
both in the time and Fourier domains and compared their performances. The results can
be seen in Table 3. As it can be seen in the results, the overall performance of a network
depends on the selected hyperparameters, but the networks trained in the Fourier domain
have always performed similarly to the time domain counterparts. The drop of the mean
accuracy was 2% on average over the six investigated hyperparameter sets.

Table 3. The table contains the results of different hyperparameters both in the time and Fourier
domains (without inverse FFT) on the HADB dataset. L denotes the number of channels in the
consecutive layers from the first to last layer; opt denotes the optimizer, which could be either Adam
or Stochastic Gradient Descent (SGD).

Fourier Domain (Sum of Squares) Time Domain

Hyperparameters Mean Max Mean Max

L: 16, 32; opt: Adam 92.06% 95.02% 93.56% 96.63%

L: 16 and 32; opt: SGD 90.28% 93.12% 91.42% 94.5%

L: 16, 32 and 64; opt: Adam 91.93% 94.99% 97.17% 98.75%

L: 16, 32 and 64; opt: SGD 91.4% 94.26% 89.3% 93.21%

L: 32, 32 and 64; opt: Adam 91.77% 94.9% 97.12% 98.85%

L: 32, 32 and 64; opt: SGD 89.61% 93.06% 89.3% 93.57%

5. Discussion

As it can be seen from the results presented in the previous section, our approach can
provide an efficient implementation for convolutional neural networks with a minor drop
in accuracy.

According to our knowledge, this is the first approach where the whole training
process is implemented in the Fourier domain. Other methods used certain operations or
selected layers which were implemented in the Fourier domain, but they all contained an
inverse Fourier transform, which requires a fairly high number of operations, which are
typically comparable with the number of operations in a layer. Our results also demonstrate
that convolutions can be more efficiently used in the Fourier domain, which is a well-known
fact in the community. We substitute the traditional maximum pooling with spectral
pooling, which utilizes a different tpye of dimension reduction which suits ideally for the
Fourier domain. The novelty of our method is threefold: (1) We have demonstrated that
instead of complicated polynomial approximation of the standard time domain ReLU, one
can use a similar approach in the frequency domain and just cut off certain frequencies
in the network. (2) We applied the training of the convolutional kernels directly in the
frequency domain, which means that the kernels are not initialized and later transformed
to the Fourier domain for computation, but in our approach, the Fourier version of the
kernels are initialized directly. (3) We substitute the final inverse Fourier transformation of
all previously published methods in the literature with a simple magnitude calculation,
which can reduce the number of operations from nlog(n) to n, where n is the number of
neurons in the logit layer.
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We have demonstrated that our method is general. We have demonstrated its validity
on four different datasets, and we have investigated six different network architectures. The
results were consistent in all cases. The accuracy of the end-to-end Fourier domain networks
dropped slightly, typically with 4%, but one can save three-quarters of the multiplications
compared to the traditional time-series implementations of the networks.

This mean that this approach might not be a viable optimization strategy in appli-
cations where accuracy is utmost important, for example in medical image processing
or navigation with self-driving cars, but in case of various other methods where power
consumption is more critical such as recommendation systems or photo enhancement or
classification in personal photo libraries, our method could provide a viable and significant
decrease in computation for possible applications of edge computing.

6. Conclusions

In this paper, a convolutional neural network in the frequency domain was presented
without using any inverse Fourier transformation (including the classification part as
well). We have introduced an alternative realization of the spatial activation functions
in the frequency domain, and we have presented a possible solution to eliminate the
inverse Fourier transformation before the fully connected classification layer. Our neural
network architecture was tested on one- and two-dimensional datasets and was compared
with similar network implementation containing inverse Fourier transformation. The
proposed framework could achieve similar or better accuracy without the computational
cost of inverse Fourier transformation. For instance, in the case of MNIST, which is
a commonly used and often cited dataset, the maximum accuracy of architecture with
inverse FFT decreased by about 6% from the time-domain reference (where the maximum
was 98.75%), while the maximum accuracy of our solution (sum of squares) dropped just
approximately 4%.

Supplementary Materials: Our implementation and experiments can be downloaded from the
Github repository at https://github.com/andfulop/TrainingInFourierDomain (accessed on 13 June
2022).
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