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Abstract: In the current article, the nonlocal thermoelastic theory is used to discuss the wave prop-
agation in unbounded thermoelastic materials. Due to the inclusion of relaxation time in thermal
conduction formulation and the equations of motion, this model was developed using Lord and
Shulman’s generalized thermoelastic model. The theory of the nonlocal continuum proposed by
Eringen is used to obtain this model. The integral transforms of the Laplace transform methods
used to generate an analytical solution for physical variables are utilized to produce the analytical
solutions for the thermal stress, displacement, and temperature distribution. The effects of nonlocal
parameters and relaxation time on the wave propagation distributions of physical fields for material
are visually shown and explored.
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1. Introduction

Due to their nanoscale size implications, matching nonlocal beam theories have re-
ceived much attention from the authors. Traditionally, the strain state and stress conditions
are defined simultaneously. Nonlocal continuums models, on the other hand, regard the
stress state at a given site as a function of the strain states at all points of the body. Local
(classical) elasticity researchers contend that material particles continuously circulate and
interact with short-range forces. Using the algebraic linkages of the Hookes model, the
strain tensor at a point of reference is utilized to define the stress tensor. Eringen [1] was
the first to promote the nonlocal elastic hypothesis. Eringen [2] investigated the notion of
nonlocal thermoelasticity for two years. He addressed, by using constitutive formulations,
governing relations, rules of equilibriums, and displacement equations/temperatures in
nonlocal elastic theory. Eringen [3] investigated nonlocal electro-magnetic solids and super-
conductivity under the elastic theory. Nonlocal theory of elastic field has been presented in
detail by Eringen [4] concerning continuum mechanics. Povstenko [5] recommended the
nonlocal elastic theory to take into account the force of action between atom. Zenkour and
Abouelregal [6] investigated the vibration of thermal conductive caused by harmonically
changing heat sources using nonlocal thermoelastic theory. Yu and Liu [7] used a size-
dependent model to investigate Eringen’s nonlocal theory of thermoelasticity. Narendra
and Gopalakrishnan [8] studied the effects of the characteristics of ultrasonic waves in
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the context of the nonlocal theory of elasticity with nanorods. When prompted by the
Fourier law of heat conductivity, Biot [9] produced the coupled thermo-elasticity theory
(CD theory), which became applicable for modern technical applications, notably in high-
temperatures applications. However, thermoelastic theories are physically unsuitable at low
temperatures and cannot achieve an equilibrium condition. To address this paradox, Lord
and Shulman [10] (LS) introduced one relaxation period into the heat equation (Fourier’s
law of heat conduction). Sarkar et al. [11] investigated the Lord–Shulman model for the
propagations of the photothermal waves in semiconductors in nonlocal elastic mediums.
Sarkar [12] investigated the thermo-elastic response of a nonlocal elastic rod due to nonlocal
heat conduction. Bachher and Sarkar [13] studied the nonlocal model of thermoelasticity
medium with voids and fractional derivative heat transfer. Bayones et al. [14] studied the
effects of mobile heat sources on a magneto-thermo-elastic rod using Eringen’s nonlocal
model with a memory-dependent derivative and three-phase lag model. Gupta et al. [15]
examined the memory response in a nonlocal micropolar double porous thermo-elastic
material with variable thermal conductivity using the Moore–Gibson–Thompson thermoe-
lasticity theory. Yang et al. [16] exhibited nonlocal rectangular nanoplates with dual-phase-
lag thermoelastic damping. Nonlocal impacts on wave propagations in a generalized
thermos-elastic half-space were examined by Singh and Rupender [17]. Nonlocal rotat-
ing elastic materials with temperature-dependent properties were the subject of research
by Sheoran et al. [18]. For thermoelastic problems with temperature-dependent thermal
conductivity, Luo et al. [19] investigated nonlocal thermoelasticity and its application.
Li et al. [20] addressed an extended thermo-diffusion problem with respect to a thin plate
under ultrashort laser pulses with a memory-dependent effect and spatially nonlocal
effect. Lata and Singh [21] explored Stoneley wave propagations in a nonlocal magneto–
thermo–elastic medium with multi-dual-phase lag heat transfers. Based on nonlocal heat
conduction and nonlocal elasticity, Yu et al. [22] investigated nonlocal thermoelasticity. For
nano-machined beam resonators exposed to diverse boundary conditions, Zenkour [23]
explored the nonlocal thermoelasticity theory without energy dissipations. Lei et al. [24]
studied the effects of nonlocal thermoelastic on buckling of axially and functionally graded
nanobeam. Yu and Deng [25] reported new findings on microscale transient thermoelastic
reactions in metals with electron–lattice couplings. Barretta et al. [26] investigated nonlocal
integral thermoelasticity as a thermodynamic framework for functionally graded beams.
Hosseini [27] studied the analytical solutions for nonlocal coupled thermoelastic analysis
in a heat-affected MEMS/NEMS beam resonator based on the Green–Naghdi model. Lata
and Himanshi [28] used the GN-II model to investigate the fractional influences of normal
forces in an orthotropic magneto–thermo–elastic spinning solid. The eigenvalue approach
provides the exact solution in the Laplace domain without any assumed restrictions on
the actual physical variables. Several studies, including [29–40], were conducted using
different genialized thermoelastic theories.

The present paper attempts to obtain analytical solutions for the nonlocal thermo-
elastic problem using Laplace transforms and the eigenvalue method. The numerical
estimates for the temperature, displacement, and stress distributions are graphed. The
impact of nonlocal factors and relaxation time on the wave propagation distributions of
physical fields for the medium is visually shown and explored.

2. The Nonlocal Thermoelasticity Model

In the absence of a body force and a heat source, the basic equations for a nonlocal
thermoelastic material, according to Eringen [41] and Lord–Shulman [10], are as follows.

ρ
(

1− seβ2∇2
)∂2ui

∂t2 = µui,jj + (λ + µ)uj,ij − γtT,i (1)

ρce

(
1− stβ

2∇2
)(∂T

∂t
+ τo

∂2T
∂t2

)
= K∇2T − γtTo

(
1− stβ

2∇2
)(

1 + τo
∂

∂t

)
∂ui,i

∂t
(2)
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(
1− seβ2∇2

)
σij = (λuk,k − γtT)δij + µ

(
ui,j + uj,i

)
(3)

This model may be summarized as follows:

(i) (LTEM) is the local thermo-elastic model.
st = se = 1 , β = 0

(ii) (NLEM) is the nonlocal elastic model.
se = 1, st = 0 , β 6= 0

(iii) (NLTM) is the nonlocal thermal model.
st = 1, se = 0 , β 6= 0

(iv) (NLTEM) is the nonlocal thermoelastic model.
st = se = 1 , β 6= 0

Here, λ and µ are Lame’s constants, ui involves displacements, T = T∗ − To, T∗ is
the temperature variations, To is the reference temperature, t is the time, τo is the thermal
relaxation time, ce is the specific heat at constant strain, ρ is the density of the material,
γt = (3λ + 2µ)αt, αt is the coefficient of linear thermal expansion, σij are the stresses
components, K is the heat conductivity, and β is the nonlocal parameter. Now, we consider
a half-space (x ≥ 0) with the x-axis pointing into the medium. To simplify the analysis,
a one-dimensional problem is considered. The components of displacement for a one-
dimension medium are defined by the following.

ux = u(x, t), uy = 0, uz = 0 (4)

The relations between the strain and displacement components may be represented
as follows.

exx =
∂u
∂x

(5)

From Equations (4) and (5) in Equation (1), the equation of motion can be provided by
the following.

ρ

(
1− seβ2 ∂2

∂x2

)
∂2u
∂t2 = (λ + 2µ)

∂2u
∂x2 − γt

∂T
∂x

(6)

From Equations (4) and (5) in Equation (2), the heat equation can be expressed by
the following.

ρce

(
1− seβ2 ∂2

∂x2

)(
1 + τo

∂

∂t

)
∂T
∂t

= K
∂2T
∂x2 − γtTo

(
1− seβ2 ∂2

∂x2

)(
1 + τo

∂

∂t

)
∂2u
∂t∂x

(7)

While the stress–strain relation can the following form.(
1− seβ2 ∂2

∂x2

)
σxx = σ = (λ + 2µ)

∂u
∂x
− γtT (8)

3. Application

The problem can be solved with appropriate starting and ending points. The initial
conditions are supposed by the following.

T(x, 0) = 0, u(x, 0) = 0,
∂T(x, 0)

∂t
= 0,

∂u(x, 0)
∂t

= 0 (9)

The mechanical and thermal boundary conditions, on the other hand, can be written
as follows.

σxx(0, t) = 0 (10)
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On the other hand, the thermal boundary condition on the surface is x = 0 [42]:

− K
∂T(x, t)

∂x

∣∣∣∣
x=0

= qo
t2e
− t

tp

16t2
p

(11)

in which tp represents the characteristic time of pulse heat flux, and qo is a constant.
The non-dimension variables listed below may be utilized to obtain the main fields in a
dimensionless format:(

x′, u′, β′
)
= ηc(x, u, β), T′ =

γtT
ρc2 ,

(
t′, t′p, τ′o

)
= ηc2(t, tp, τo

)
, σ′ =

σ

ρc2 (12)

where c2 = λ+2µ
ρ and η = ρce

K . The governing equations may be represented as follows by
ignoring the dashes and using variables of nondimensional types (12):(

1− seβ2 ∂2

∂x2

)
∂2u
∂t2 =

∂2u
∂x2 −

∂T
∂x

(13)

(
1− stβ

2 ∂2

∂x2

)(
1 + τo

∂

∂t

)
∂T
∂t

=
∂2T
∂x2 − ε

(
1− stβ

2 ∂2

∂x2

)(
1 + τo

∂

∂t

)
∂2u
∂t∂x

(14)(
1− seβ2 ∂2

∂x2

)
σxx =

∂u
∂x
− T (15)

∂T(x, 0)
∂t

= 0, u(x, 0) = 0,
∂u(x, 0)

∂t
= 0 (16)

σ = 0,
∂T
∂x

= −qo
t2e
− t

tp

16t2
p

(17)

on x = 0, (17), where ε =
γ2

t To
(λ+2µ)ρce

.

Analytical Method

The use of Laplace transforms for relations (13) to (17) is defined by the following.

f (x, p) = L[ f (x, t)] =
∞∫

0

f (x, t)e−ptdt. (18)

Hence, the following system is obtained.(
1− seβ2 d2

dx2

)
p2u =

d2u
dx2 −

dT
dx

(19)

(
1− stβ

2 d2

dx2

)
(p + p2τo)T =

d2T
dx2 −

(
1− stβ

2 d2

dx2

)
(p + p2τo)ε

du
dx

(20)

σ =
du
dx
− T (21)

σ = 0,
dT
dx

=
−qotp

8
(

ptp + 1
)3 on x = 0. (22)

The following forms can rewrite Equations (19) and (20):

d2u
dx2 = a31u + a34

dT
dx

(23)
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d2T
dx2 = a41u + a42T + a43

du
dx

(24)

where a31 = p2

F , a34 = 1
F , a41 =

−st β2(p+p2τo)a31
D , a42 =

(p+p2τo)
D , a43 =

(p+p2τo)β

D ,
F = 1 + seβ2 p2, D = 1 + stβ

2(p + p2τo
)
+ stβ

2(p + p2τo
)
εa34.

The eigenvalues procedures given may now be used to solve the coupled differential
in Equations (23) and (24) [43–45]:

dV
dx

= AV (25)

where V =
[
u T du

dx
dT
dx

]T
and A =


0 0 1 0
0 0 0 1

a31 0 0 a34
a41 a42 a43 0

.

Consequently, the characteristic equation of the matrix A is considered to be as follows.

ζ4 − ζ2(a34a43 + a31 + a42) + ζa34a41 + a42a31 = 0 (26)

The eigenvalue of matrix A is the equation’s roots (26), which are named here as
ζ1, ζ2, ζ3 and ζ4. Thus, the corresponding eigenvector X = [X1, X2, X3, X4] can be
calculated as follows.

X1 = ζa34, X2 = ζ2 − a31, X3 = ζ2a34, X4 = ζ(ζ2 − a31) (27)

Thus, the analytical solutions of Equation (22) can be expressed as follows:

V(x, p) =
4

∑
i=1

BiXieζix (28)

where B1, B2, B3, and B4 are constants that are determined using the boundary conditions of
the problem. The numerical inversion approach adopts the final displacement, temperature,
and stress distributions solutions. The Stehfest method [46] is described by the following:

f (x, t) =
ln(2)

t

G

∑
n=1

Vn f
(

x, n
ln(2)

t

)
(29)

with

Vn = (−1)(
G
2 +1)

min(n, G
2 )

∑
p= n+1

2

(2p)!p(
G
2 +1)

p!(n− p)!
(

G
2 − p

)
!(2n− 1)!

where G is the term’s numbers.

4. Results and Discussion

For the purpose of illustrating the problem and contrasting the theoretical findings
within the framework of the nonlocal thermoelastic theory, we will offer a number of
numerical results and graphics. The authors consider the medium properties of the copper
substance, for which its physical properties are shown below. [14].

λ = 7.76× 1010(N)(m−2), αt = 1.78× 10−5(K−1), ce = 383.1 (m2)(K−1)

µ = 3.86× 1010(N)(m), ρ = 8954(Kg)(m−3), To = 293(K)

τo = 0.1, K = 386(N)(K−1)(s), tp = 0.3, t = 0.5, β = 0.3

Numerical calculations are carried out for two cases: the effects of nonlocal parame-
ters and the thermal relaxation time. In the first case, we consider four different models:
(st = se = 1 , β = 0) refers to the local thermoelastic model (LTEM), (st = 0, se = 1 , β = 0.3)
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refers to the nonlocal elastic model (NLEM), and (st = 1, se = 0 , β = 0.3) refers to the non-
local thermal model (NLTM), while (st = 1, se = 1 , β = 0.3) refers to the nonlocal thermoe-
lastic model (NLTEM). In the second case, we explore four different thermal relaxation time
values (τo = 0.0, τo = 0.1, τo = 0.2, and τo = 0.3) under the nonlocal thermoelastic model.
Figures 1–3 depict temperature variations, displacement, and stress distributions for the first
case. From these figures, we can observe that temperature decreases with an increase in distance
x, as in Figure 1. Figure 2 show the displacement variations with respect to distance. It is
observed that as distance increases, the magnitude of displacement reduces until it approaches
zero. Figure 3 shows the variations of stress versus the distance. It is clear that the magni-
tude of stress starts from zeros values that satisfy the boundary conditions of the problem;
after that, the magnitudes of stress decrease with an increase in x to attain maximum values
and then they increase again to reach zeros values. The local generalized thermoelasticity
model (LTEM), the generalized thermoelastic model with nonlocal elasticity only (NLEM),
the generalized thermoelastic model with nonlocal thermal conductive only (NLTM), and the
generalized thermoelasticity model with nonlocal thermal conductive and elasticity (NLTEM)
are compared in Figures 1–3. Figures 4–6 show the thermal relaxation time effects under the
generalized thermos-elastic model with nonlocal thermal conductivity and elastic (NLTEM).
Finally, based on the results, it can be concluded that nonlocal thermo-elasticity theory (nonlocal
thermal conductive and elasticity) is a significant phenomenon that significantly impacts the
distributions of physical variables.
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