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1. Introduction

In this paper, we study the following n-dimensional system of undamped abstract
evolution equations with memory:


ε(t)utt + k(0)Aθu +

∫ ∞

0
k′(s)Aθu(t− s)ds + f (u) = g(x), (x, t) ∈ Ω× [τ,+∞),

u(x, t) = 0, x ∈ ∂Ω, t ∈ [τ,+∞),

u(x, t) = u0(x, t), ut(x, t) = u1(x, t), x ∈ Ω, t ∈ (−∞, τ],

(1)

where Ω is a bounded domain of Rn (n > 3) with a smooth boundary ∂Ω, A is a Laplacian
operator with the Dirichlet boundary condition, with domain D(A) = H2(Ω)∩ H1

0(Ω), and

θ ∈ (
2n

n + 2
,

n
2
), n > 3, (2)

Through the linear time convolution of function Aθu(·) and memory kernel k(·), the
fading memory term replaces the damping term and plays the role of energy dissipation in
system (1). It follows that the solution semigroup (or the solution process) of undamped
evolution equations with fading memory can generate a dissipative dynamical system.

Especially in recent years, one of the key problems in the study of abstract evolution
equations with fading memory has been the asymptotic behavior of the solutions when
time tends to infinity. Therefore, it has attracted the attention and research interest of
many scholars (see, e.g., [1–4] and the references therein). Influenced by this, we also
carried out a study of this issue. The problem in (1) we studied arises from isothermal
viscoelasticity theory and describes the energy dissipation of an isotropic viscoelastic
material (see, e.g., [5–10]). Therefore, it has a strong background in mathematical physics,
and it can be naturally transformed into many concrete mathematical models such as the
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semilinear wave equation, Sine–Gordon equation, relative quantum mechanical equation,
semilinear hyperbolic equation and the floating beam equation (see, e.g., [11–15]).

However, as far as we know, the undamped abstract evolution equations with fading
memory is less considered. This is mainly because it is more difficult to verify the compact-
ness of the solution semigroup (or solution process) and estimate the asymptotic regularity
of solutions than in the damping case. Moreover, it is worth emphasizing that the energy
dissipation of the system is only dependent on the fading memory term.

Regarding the abstract evolution equations with fading memory, known results are
all in the case of ε(t) ≡ 1 and the asymptotic behavior of the solution can be studied
by applying the usual dynamical system theory. Nevertheless, when ε(·) is a positive
decreasing function, the standard theory fails to discuss the dissipative property involved
in evolution equations. Therefore, the time-dependent terms are at a functional level; this
can be found in (4).

To this end, let ε(t) be a positive decreasing function which vanishes at infinity
and satisfies:

sup
t∈R

[|ε(t)|+ |ε′(t)|] 6 L, (3)

where L > 0. In this case, the natural energy functional associated with the system is
defined in the standard way:

E(t) =
∫

Ω
|A

θ
2 u|2dx + ε(t)

∫
Ω
|ut|2dx +

∫ ∞

0
µ(s)

∫
Ω
|A

θ
2 ηt|2dxds, (4)

which shows a structural dependence on time. Moreover, it is not hard to see that the
vanishing property of ε(·) transforms the dissipative property and holds back the existence
of absorbing sets in the usual sense, that is, the bounded sets of the phase space absorb
all the trajectories after a certain period of time. In such a case, Conti et al. [16,17] put
forward the notions and established theories of time-dependent attractors (the modified
pullback attractors theory). The main idea is to obtain the existence of absorbing set and
attractors by restricting the attraction domain of the compact pullback attracting family in
the phase space.

By using the ideas in [16,17], some breakthrough progress was made in the research of
the existence of time-dependent attractors and the regularity of solutions for the evolution
equation problems. The semilinear wave equations have been treated in many papers, see,
for example, [16,18–21]. Conti et al. [16] proved the existence and regularity of a time-
dependent attractor, and they [18] obtained the asymptotic structure of a time-dependent
attractor. Meng et al. [21,22] discussed and investigated the longtime dynamical behav-
ior for the semilinear wave equation with nonlinear damping and the extensible Berger
equation via a contractive function method, respectively. In addition, Meng et al. [20] gave
some necessary and sufficient conditions to guarantee the existence of a time-dependent
attractor. Liu et al. [23,24] considered the longtime dynamical behavior and achieved
the existence of time-dependent attractor for the plate equation on a bounded domain
or unbounded domain via an operator decomposition or a contractive function method,
respectively. Furthermore, the time-dependent asymptotic behavior of the nonclassical
reaction–diffusion equation was studied in [25,26].

Motivated by the ideas in [9,16,17], we were interested in analyzing the dynamical
behavior of the undamped abstract evolution equations with fading memory, under the
assumption that the nonlinear term satisfies critical growth. It is worth mentioning that the
asymptotic regularity of the solutions and time-dependent attractors for the problem in (1)
are discussed and investigated firstly in our paper.

The main goal of the present paper was to study the asymptotic behavior of the
solutions of system (1). For the existence of time-dependent attractors, the compactness
verification of the family of processes is a key ingredient. However, the critical nonlinearity,
the memory space that lacks compactness and Aθ that is a fractional operator all contribute
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to the essential difficulties of the compactness verification. Furthermore, it seems hard
to directly apply the methods of [9,16,17] to verify the asymptotic compactness in the
time-dependent function space. Therefore, it is very important to study how to handle
these natural difficulties brought by the critical nonlinearity, noncompact memory term and
fractional operator in the undamped model when verifying the asymptotic compactness.
At the same time, this is also a main problem in the research of the asymptotic behavior of
nonlinear dynamical systems. By applying the process theory of time-dependent space,
asymptotic a priori estimate and the technique of operator decomposition, we conquer the
above difficulties, verify the compactness of the process and obtain our main results (see
Theorem 5, Lemma 9 and Theorem 6).

The structure of the paper is as follows: in preliminary Section 2, we give a definition
of some function sets, present the assumptions and recall some known abstract results;
in Section 3, we state and prove our main results on the existence and regularity of a
time-dependent attractor and the asymptotic regularity of solutions for system (1).

2. Preliminaries

In this section, we introduce some notations and abstract results about a time-dependent
dynamical system.

Let H = L2(Ω) and let A = −∆. A can be viewed as a self-adjoint and unbounded
operator in H with domain D(A).

We presume that {λj}j∈N and {ωj}j∈N are eigenvalues and eigenvectors of A, then
{ωj}j∈N can form a group of orthogonal basis of H, and{

Aωj = λjωj,

0 < λ1 < λ2 6 ... 6 λj, λj → ∞, as j→ ∞.

Define the powers Aθ of A with domain D(Aθ) ⊂ H as follows:

D(Aθ) = {u ∈ H,
∞

∑
j=1

λ2θ
j (u, ωj)

2 < ∞}, (5)

and

〈u, v〉2θ = 〈Aθ ·, Aθ ·〉, ‖u‖2
2θ = ‖Aθ · ‖2, (6)

here, 〈·, ·〉2θ and ‖ · ‖2θ are the inner product and norm in D(Aθ). Obviously, Aθ is also
unbounded and self-adjoint.

Set Vθ = D(A
θ
2 ), for θ ∈ ( 2n

n+2 , n
2 ). Then, V0 = H = L2(Ω), D(A

θ
2 ) = Vθ , D(A−

θ
2 ) =

V−θ . In the paper, we assume that the forcing term g(x) only belongs to V−θ . The spaces H
and Vθ are endowed with the following inner products and norms, respectively:

〈u, v〉 =
∫

Ω
u(x)v(x)dx, ‖u‖2 =

∫
Ω
|u(x)|2dx, ∀ u, v ∈ H; (7)

〈u, v〉θ =
∫

Ω
A

θ
2 u(x)A

θ
2 v(x)dx, ‖u‖2

θ =
∫

Ω
|A

θ
2 u(x)|2dx, ∀ u, v ∈ Vθ . (8)

Therefore, we know that the compact embedding is

Vθ1 ↪→ Vθ2 , as θ1 > θ2, (9)

the continuous embedding is

Vθ ↪→L
2n

n−2θ , (10)
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and the following Poincaré inequality holds:

λθ
1

∫
Ω
|v|2dx 6

∫
Ω
|A

θ
2 v|2dx, ∀ v ∈ Vθ . (11)

In addition, concerning the memory kernel function in system (1), we presume that
k(∞) = 1, k′(s) < 0, ∀ s ∈ R+.

Suppose also that µ(s) = −k′(s) and that it satisfies:

µ(s) ∈ C1(R+)∩L1(R+), µ(s) > 0, µ′(s) 6 0, ∀ s ∈ R+; (12)∫ ∞

0
µ(s)ds = k0; (13)

µ′(s) + δµ(s) 6 0, ∀ s ∈ R+, (14)

where k0, δ are two positive constants. Furthermore, consequently, the kernels k(s) and
µ(s) decay to zero with an exponential rate.

Hereafter, we introduce a new unknown function ηt(x, s) and let it be equal to u(x, t)−
u(x, t− s), (x, s) ∈ Ω×R, t ∈ [τ,+∞). In virtue of the presumption k(∞) = 1, then the
problem in (1) can be written in the form: ε(t)utt + Aθu +

∫ ∞

0
µ(s)Aθηt(s)ds + f (u) = g(x), t ∈ [τ,+∞),

ηt
t = −ηt

s + ut, t ∈ [τ,+∞),
(15)

with the initial-boundary conditions are:
u(x, t) = 0, ηt(x, s) = 0, x ∈ ∂Ω, t ∈ [τ,+∞),

u(x, t) = u0(x, t), ut(x, t) = u1(x, t), x ∈ Ω, t ∈ (−∞, τ],

ητ(x, s) = u0(x, τ)− u0(x, τ − s), (x, s) ∈ Ω×R+,

(16)

where the unknown function u(·) satisfies the condition as follows: there exist two positive
constantsR and $ = min{ δ

2 , λ1
2 }, such that∫ ∞

0
e−$s‖∇u(−s)‖2ds 6 R, (17)

were ‖ · ‖ denotes L2-norm, and λ1 is the first eigenvalue of the operator−∆ with a Dirichlet
boundary condition.

We assume that g ∈ V−θ and the nonlinear function f (v) ∈ C1(R) with f (0) = 0
satisfies the following conditions.

Growth condition:

| f ′(s)| 6 C(1 + |s|p), ∀s ∈ R,

 0 6 p 6 4
n−2 , n > 3,

p > 0 and is arbitrary , n = 1, 2.
(18)

The assumption in (18) will be used to verify the compactness about the solution process.
Dissipation condition:

lim inf
|s|→∞

f (s)
s

> −λθ
1, (19)

and in view of (19), we obtain

2〈F(s), 1〉 > −(1− ν)‖s‖2
θ − C∗,
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and we also presume that

2〈 f (s), s〉 > 2〈F(s), 1〉 − (1− ν)‖s‖2
θ − C∗, (20)

where 0 < ν < 1, C∗ > 0, F(u) =
∫ u

0 f (r)dr and ‖ · ‖θ is the norm of Vθ .
Considering the assumption about memory kernel µ(·), let L2

µ(R+; Vθ) be the family of
Hilbert spaces of the Vθ-valued functions on R+. The scalar product and norm are defined
by the formula:

〈ϕ, ψ〉µ,θ =
∫ ∞

0
µ(s)

∫
Ω

A
θ
2 ϕA

θ
2 ψdxds, ‖ϕ‖2

µ,θ =
∫ ∞

0
µ(s)

∫
Ω
|A

θ
2 ϕ|2dxds. (21)

Then, we introduce the family of Hilbert spacesHθ+σ
t

Hθ+σ
t = Vθ+σ ×Vσ × L2

µ(R+; Vθ+σ),

and endowed norm

‖z‖2
Hθ+σ

t
= ‖(u, ut, ηt)‖2

Hθ+σ
t

= ‖u‖2
θ+σ + ε(t)‖ut‖2

σ + ‖ηt‖2
µ,θ+σ. (22)

Clearly, when σ ≡ 0, the family of Hilbert spacesHθ
t is defined by:

Hθ
t = Vθ × H × L2

µ(R+; Vθ), (23)

endowed with the norm:

‖z‖2
Hθ

t
= ‖(u, ut, ηt)‖2

Hθ
t
= ‖u‖2

θ + ε(t)‖ut‖2 + ‖ηt‖2
µ,θ . (24)

By use of assumptions (12)–(14), we can gain the preliminary result as follows ([27]).

Lemma 1. If assumptions (12)–(14) about the memory kernel function µ(s) hold, then for any
ηt ∈ C1([ τ, t ] ; L2

µ(R+; Vr)), 0 < r 6 2θ, ∀t > τ, θ ∈ ( 2n
n+2 , n

2 ), there exists a positive constant

δ, such that 〈ηt, ηt
s〉µ,r >

δ

2
‖ηt‖2

µ,r.

We also need the following abstract results to prove the existence of time-dependent
attractors.

Lemma 2 ([28]). Let (M, d) be a metric space and also let U(t, τ) be a Lipschitz continuous
dynamical process inM, i.e.,

d(U(t, τ)m1, U(t, τ)m2) 6 CeK(t−τ)d(m1, m2),

for appropriate constants C and K which are independent of mi, t and τ. Assume further that there
exist three subsets M1, M2, M3 ⊂M such that

d(U(t, τ)M1, U(t, τ)M2) 6 L1e−ν1(t−τ),

d(U(t, τ)M2, U(t, τ)M3) 6 L2e−ν2(t−τ),

for some ν1, ν2 > 0 and L1, L2 > 0. Then, it follows that

d(U(t, τ)M1, U(t, τ)M3) 6 Le−ν(t−τ),

where ν = ν1ν2
K+ν1+ν2

and L = CL1 + L2.
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Lemma 3 ([13,29,30]). Let µ(s) ∈ C1(R+) ∩ L1(R+) be a nonnegative function that satisfies
the following: if there exists s0 ∈ R+ such that µ(s0) = 0, then µ(s) ≡ 0, for all s > s0. Moreover,
let B0, B1 and B2 be Banach spaces satisfying

B0 ↪→ B1 ↪→ B2,

where B0 and B1 are reflexive, and the embedding B0 ↪→ B1 is compact. Assume that C ⊂
L2

µ(R+; B1) and it satisfies

(i) C ⊂ L2
µ(R+; B0) ∩ H1

µ(R+; B2);
(ii) supη∈C ‖η(s)‖2

B1
6 h(s), ∀ s ∈ R+, h(s) ∈ L1

µ(R+).

Then, C is relatively compact in L2
µ(R+; B1).

Subsequently, we review some basic concepts and abstract results about a process on
a time-dependent system ([16,18,25]), which are used to study the long-time behavior of
solutions.

Definition 1. Let Xt be a family of normed spaces. A two-parameter family of operators {U(t, τ) :
Xτ → Xt, τ 6 t, τ ∈ R} is said to be a process, if for any τ ∈ R,

(i) U(τ, τ) = Id is the identity operator on Xτ ;
(ii) U(t, s)U(s, τ) = U(t, τ), ∀ τ 6 s 6 t.

Assume that Xt is a family of normed spaces. For every t ∈ R, we introduce the R-ball
of Xt:

Bt(R) = {z ∈ Xt|‖z‖Xt 6 R}.

The Hausdorff semidistance of sets A, B of Xt is denoted by:

δt(A, B) = sup
x∈A

distXt(x, B) = sup
x∈A

inf
y∈B
‖x− y‖Xt .

Definition 2. A family C = {Ct}t∈R of bounded sets Ct ⊂ Xt is called uniformly bounded, if
there exists a constant R > 0 such that Ct ⊂ Bt(R), ∀ t ∈ R.

Definition 3. A uniformly bounded family Bt = {Bt(R0)}t∈R is called a time-dependent
absorbing set for the process U(t, τ), if for every R > 0, there exist a t0 = t0(R) 6 t and R0 > 0
such that

τ 6 t− t0 ⇒ U(t, τ)Bτ(R) ⊂ Bt(R0).

The process U(t, τ) is said to be dissipative as it possesses a time-dependent absorbing
set.

Definition 4. The smallest family A = {At}t∈R is called a time-dependent attractor for the
process U(t, τ), if A satisfies the following properties:

(i) Each At is compact in Xt ;
(ii) A is pullback attracting, that is, it is uniformly bounded, and the limit

lim
τ→−∞

δt(U(t, τ)Cτ , At) = 0

holds for every uniformly bounded family C = {Ct}t∈R and every t ∈ R.

Theorem 1 ([16]). If U(t, τ) is asymptotically compact, that is, the set

K = {K = {Kt}t∈R| Each Kt is compact in Xt, K is pullback attracting}
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is not empty, then the time-dependent attractor A exists and coincides with A = {At}t∈R. In
particular, it is unique.

Definition 5. A function t→ Z(t) and Z(t) ∈ Xt is a complete bounded trajectory (CBT) of the
process U(t, τ), if and only if

(i) supt∈R ‖Z(t)‖Xt < ∞;
(ii) Z(t) = U(t, τ)Z(τ), ∀ τ 6 t, τ ∈ R.

Definition 6. A time-dependent attractor A = {At}t∈R is invariant, if for all τ 6 t,

U(t, τ)Aτ = At.

Theorem 2. If the time-dependent attractor A = {At}t∈R of the process U(t, τ) is invariant,
then it coincides with the set of all CBTs of the process U(t, τ), that is,

A = {Z|t→ Z(t) ∈ Xt and Z(t) is a CBT of the process U(t, τ)}.

3. Time-Dependent Global Attractor inHθ
t

3.1. Well-Posedness

We start with the general existence and uniqueness of the solutions of the prob-
lem in (15) and (16). Based on the standard Faedo–Galerkin approximation method, see,
e.g., [14], the following results can be easily obtained and the time-dependent function ε(t)
does not bring about any essential difficulties.

Theorem 3. Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. If (12)–(14) and (3)
hold, g ∈ V−θ and f satisfies (18)–(20), then for any initial data z(τ) = (u(τ), ut(τ), ητ(s)) ∈
Hθ

τ , there exists a unique solution z(t) = (u(t), ut(t), ηt(s)) ∈ L∞([τ, t];Hθ
t ) ∩ C([τ, t];Hθ

t ) of
the problem in (15) and (16), in the sense that

u ∈ C([τ, t]; Vθ), ut ∈ L2([τ, t]; Vθ), ηt ∈ C([τ, t]; L2
µ(R+; Vθ)),

ηt
t + ηt

s ∈ L∞([τ, t]; L2
µ(R+; H)) ∩ L2([τ, t]; L2

µ(R+; Vθ))

and  〈ε(t)utt, v〉+ 〈u, v〉θ + 〈ηt(s), v〉µ,θ + 〈 f (u), v〉 = 〈g, v〉,

〈ηt
t(s) + ηt

s(s), ϕ(s)〉µ,θ = 〈ut, ϕ(s)〉µ,θ ,

for all t > τ and any v ∈ Vθ , ϕ ∈ L2
µ(R+; Vθ).

Moreover, for any t > τ, the mapping z(τ) 7→ z(t) is continuous fromHθ
τ toHθ

t .
By Theorem 3, we can define a process U(t, τ) as follows:

z(t) = U(t, τ)z(τ) : Hθ
τ → Hθ

t ,

which is continuous fromHθ
τ toHθ

t .
In the next subsection, we prove that U(t, τ) satisfies the continuous dependence

property on the initial data.

Lemma 4. Let zi(t), i = 1, 2, be the corresponding solutions of the problem in (15) and (16) with
zi(τ) ∈ Hθ

τ satisfying ‖zi(τ)‖Hθ
τ
6 R, i = 1, 2. Suppose that (12)–(14) and (3) hold. If g ∈ V−θ and

f satisfies (18)–(20), then there exists a positive constant K, such that the following estimate holds:
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‖z1(t)− z2(t)‖2
Hθ

t
= ‖U(t, τ)z1(τ)−U(t, τ)z2(τ)‖2

Hθ
t

6 CeK(t−τ)‖z1(τ)− z2(τ)‖2
Hθ

τ
, ∀ τ 6 t.

3.2. Time-Dependent Absorbing Set inHθ
t

In the subsequent estimates, we presume that 0 < ρ < 1. Furthermore, we prove the
following dissipative estimate.

Theorem 4. Under the assumption of Lemma 4, for any initial data z(τ) ∈ Bτ(R) ⊂ Hθ
τ , then

there exists R0 > 0, such that the process U(t, τ) corresponding to the problem in (15) and (16)
possesses a time-dependent absorbing set, namely, the family Bt = {Bt(R0)}t∈R.

Proof. Multiplying (15) by 2(ut + ρu) and integrating over Ω, we obtain

〈ε(t)utt, 2(ut + ρu)〉+ 〈Aθu, 2(ut + ρu)〉+ 〈
∫ ∞

0
µ(s)Aθηt(s)ds, 2(ut + ρu)〉

+ 〈 f (u), 2(ut + ρu)〉 = 〈g, 2(ut + ρu)〉. (25)

Thanks to Lemma 1, we have

〈
∫ ∞

0
µ(s)Aθηt(s)ds, 2ut〉 =

∫
Ω

∫ ∞

0
2(ηt

t + ηt
s)µ(s)Aθηt(s)dsdx

>
d
dt
‖ηt‖2

µ,θ + δ‖ηt‖2
µ,θ , (26)

combining with the Hölder inequality, Cauchy inequality and (13), we obtain that

〈
∫ ∞

0
µ(s)Aθηt(s)ds, 2ρu〉 =2ρ

∫
Ω

u
∫ ∞

0
µ(s)Aθηt(s)dsdx

>− ρν

2

∫
Ω
|A

θ
2 u|2dx− 2ρ

ν

∫
Ω
(
∫ ∞

0
µ(s)|A

θ
2 ηt(s)|ds)2dx

>− ρν

2
‖u‖2

θ −
2ρk0

ν
‖ηt‖2

µ,θ . (27)

Therefore, we obtain from (20) that

d
dt

(‖u‖2
θ + ε(t)‖ut‖2 + ‖ηt‖2

µ,θ + 2ρε(t)〈ut, u〉+ 2〈F(u), 1〉 − 2〈g, u〉+ C)

+ ρ(‖u‖2
θ + ε(t)‖ut‖2 + ‖ηt‖2

µ,θ + 2ρε(t)〈ut, u〉+ 2〈F(u), 1〉 − 2〈g, u〉+ C) (28)

+
ρν

2
‖u‖2

θ − (ε′(t) + 3ρε(t))‖ut‖2 + (δ− 2k0ρ

ν
− ρ)‖ηt‖2

µ,θ

− 2ρ(ε′(t) + ρε(t))〈ut, u〉 6 ρ(C + C∗).

The functional is defined by the formula:

M(t) = ‖u‖2
θ + ε(t)‖ut‖2 + ‖ηt‖2

µ,θ + 2ρε(t)〈ut, u〉+ 2〈F(u), 1〉 − 2〈g, u〉+ C, (29)

where C = 2
νρ‖g‖2

V−θ
+ C∗.

Then, we deduce from (3) and (11) that

2ρε(t)〈ut, u〉 6 2ρε(t)|〈ut, u〉| 6 ρν

2
‖u‖2

θ +
2ρL
νλθ

1
ε(t)‖ut‖2,
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and
±2〈g, u〉 6 2|〈g, u〉| 6 ρν

2
‖u‖2

θ +
2

νρ
‖g‖2

V−θ
.

Using (19), for some 0 < ν < 1, we have

2〈F(u), 1〉 > −(1− ν)‖u‖2
θ − C∗.

Thus, choosing ρ small enough, we obtain thatM(t) > 0.
Namely,

d
dt
M(t) + ρM(t) +

ρν

2
‖u‖2

θ − (ε′(t) + 3ρε(t))‖ut‖2 + (δ− 2k0ρ

ν
− ρ)‖ηt‖2

µ,θ

− 2ρ(ε′(t) + ρε(t))〈ut, u〉 6 ρ(C + C∗). (30)

By (3) and (11), we find that

−2ρ(ε′(t) + ρε(t))〈ut, u〉 > −ρν

2
‖u‖2

θ −
2ρ

νλθ
1

L2‖ut‖2. (31)

Hence,

d
dt
M(t) + ρM(t) 6 ρ(C + C∗),

that is,

M(t) 6 e−ρ(t−τ)M(τ) + C + C∗. (32)

For ε > 0, from (18), θ ∈ ( 2n
n+2 , n

2 ) and the interpolation inequality, we have

〈F(u), 1〉 =
∫

Ω
F(u)dx

6 C
∫

Ω
(|u|2 + |u|

2n
n−2 )dx

6 C(‖u‖2 + ‖∇u‖
2n

n−2 )

6 C‖u‖2 + C(Cε‖u‖+ ε‖u‖θ)
2n

n−2

6 C‖u‖
2n

n−2
θ .

Thus, for a small enough ρ there exist positive constants C, C1 and C2, such that

C‖z(t)‖2
Hθ

t
− C1 6M(t) 6 C‖z(t)‖

2n
n−2
Hθ

t
+ C2. (33)

Combining with (32), there exists a constant N1 > 0 such that

‖U(t, τ)z(τ)‖2
Hθ

t
6 Q1(‖z(τ)‖Hθ

τ
)e−ρ(t−τ) + N1,

where Q1(·) is an increasing positive function. Because z(τ) ∈ Bτ(R), the following
inequality is valid

‖U(t, τ)z(τ)‖2
Hθ

t
6 Q1(R)e−ρ(t−τ) + N1 6 2N1 = R2

0,

provided that τ 6 t− t0, where t0 = max{0, 1
ρ ln 2Q1(R)

N1
}.

This completes the proof. 2

Proof. Proof of Lemma 4:
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Assume that the initial data zi(τ), i = 1, 2, satisfy ‖zi(τ)‖Hθ
τ
6 R. It follows from

Theorem 4 that

‖zi(t)‖Hθ
t
= ‖U(t, τ)zi(τ)‖Hθ

t
6 R0. (34)

We substitute z̄(t) = (ū(t), ūt(t), η̄t(s)) = z1(t)− z2(t) into (15). Then,

ε(t)ūtt + Aθ ū +
∫ ∞

0
µ(s)Aθ η̄t(s)ds + f (u1)− f (u2) = 0 (35)

and z̄(τ) = z1(τ)− z2(τ).
Taking the scalar product of (35) with 2ūt(t), we have

d
dt
‖z̄‖2
Hθ

t
− ε′(t)‖ūt‖2 + δ‖η̄t‖2

µ,θ 6 −2〈 f (u1)− f (u2), ūt〉. (36)

From (18), (10) and (34), we have

−2〈 f (u1)− f (u2), ūt〉

62
∫

Ω
| f ′(ξ)||ū||ūt|dx

62C(
∫

Ω
(1 + |u2|

4
n−2 + |u1|

4
n−2 )

n
θ dx)

θ
n (

∫
Ω
|ū|

2n
n−2θ dx)

n−2θ
2n (

∫
Ω
|ūt|2dx)

1
2

62C(1 + ‖u2‖
4

n−2
θ + ‖u1‖

4
n−2
θ )‖ū‖θ‖ūt‖

6C(‖ū‖2
θ + ‖ūt‖2), (37)

where 2n
n−2θ > 4n

(n−2)θ . Substituting (37) into (36), we obtain

d
dt
‖z̄(t)‖2

Hθ
t
6 C(‖ū‖2

θ + ‖ūt‖2)

=
C

ε(t)
(ε(t)‖ū‖2

θ + ε(t)‖ūt‖2)

6
C

ε(t)
(L‖ū‖2

θ + ε(t)‖ūt‖2)

6
C(L + 1)

ε(t)
‖z̄(t)‖2

Hθ
t
.

Applying the Gronwall lemma, we finally have

‖z1(t)− z2(t)‖2
Hθ

t
6 ‖z̄(τ)‖2

Hθ
τ
· eC(L+1)

∫ t
τ

1
ε(s) ds

6 CeK(t−τ)‖z1(τ)− z2(τ)‖2
Hθ

τ
. (38)

The proof is completed.

3.3. The Existence of a Time-Dependent Attractor inHθ
t

Devoted to the difficulties arising from the critical exponent and noncompact memory
space, in this subsection, we use the method of asymptotic a priori estimates and the
technique of operator decomposition to verify the necessary compactness.

Since H ↪→ V−θ is dense, for every g ∈ V−θ and any $ > 0, there exists g$ ∈ H which
depends on g and $, such that

‖g− g$‖V−θ
6 $. (39)
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Assuming (18)–(20) hold, we write f = f0 + f1, where f0, f1 ∈ C2(R) fulfill

f0(0) = f1(0) = 0, (40)

2〈 f0(s), s〉 > 2〈F0(s), 1〉 − 1− ν

2
‖s‖2

θ − $, (41)

from which we obtain

2〈 f1(s), s〉 > 2〈F1(s), 1〉 − 1− ν

2
‖s‖2

θ − C∗ + $, (42)

2〈F0(s), 1〉 > −1− ν

2
‖s‖2

θ − $, (43)

2〈F1(s), 1〉 > −1− ν

2
‖s‖2

θ − C∗ + $, (44)

where 0 < 1− ν < λθ
1, C∗ > 0, Fi(u) =

∫ u
0 fi(r)dr, i = 1, 2, and ‖ · ‖θ is the norm of Vθ .

Furthermore, in the spaceHθ
t , we assume that

| f ′0(s)| 6 C(1 + |s|p), ∀s ∈ R, 0 6 p 6
4

n− 2
, n > 3, (45)

| f ′1(s)| 6 C(1 + |s|p), ∀s ∈ R, 0 6 p <
4

n− 2
, n > 3. (46)

Let Bt = {Bt(R0)}t∈R be a time-dependent absorbing set obtained in Theorem 4. For
a fixed τ ∈ R and any ‖z(τ)‖Hθ

τ
6 R, we decompose the solution z(t) = (u(t), ut(t), ηt) of

the problem in (15) and (16) as follows:

z(t) = U(t, τ)z(τ) = V(t, τ)z1(τ) + W(t, τ)z2(τ) = z1(t) + z2(t),

where

z1(t) = (v(t), vt(t), ζt(s)), z2(t) = (w(t), wt(t), ξt(s))

satisfy 

ε(t)vtt + Aθv +
∫ ∞

0 µ(s)Aθζt(s)ds + f0(v) = g− g$,

ζt
t = −ζt

s + vt,

v(x, t)|∂Ω = 0, ζt(x, t)|∂Ω = 0,

v(x, τ) = u0(x, t), vt(x, τ) = u1(x, t), x ∈ Ω, t 6 τ,

ζτ(x, s) = u0(x, τ)− u0(x, τ − s), (x, s) ∈ Ω×R+,

(47)

and 

ε(t)wtt + Aθw +
∫ ∞

0 µ(s)Aθξt(s)ds + f (u)− f0(v) = g$,

ξt
t = −ξt

s + wt,

w(x, t)|∂Ω = 0, ξt(x, t)|∂Ω = 0,

w(x, τ) = 0, wt(x, τ) = 0, ξτ(x, s) = 0.

(48)
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By the Galerkin approximation method, the existence and uniqueness of the solution of (47)
and (48) can be obtained.

Furthermore, akin to the proof of Theorem 4, for the solution z1(t) of (47), we get

Lemma 5. Let z1(t) be the solution of problem (47) with initial data z1(τ) = z(τ) satisfying
‖z(τ)‖2

Hθ
τ
6 R. Suppose that g ∈ V−θ and (12)–(14), (3) hold. If f0 satisfies (40), (41), (43)

and (45), for ε > 0, then there exists a positive constant $ = $(ε), such that the solution of
problem (47) satisfies

‖V(t, τ)z(τ)‖2
Hθ

t
6 Q2(‖z(τ)‖Hθ

τ
)e−ρ1(t−τ) 6 2ε, as τ 6 t− t1. (49)

where Q2(·) is an increasing positive function, ρ1 = ρ1(‖Bt‖Hθ
t
) is small enough and

t1 = t1(ε, Q2(R), ρ1).

Proof. Taking the inner product of (47) with 2(vt(t) + ρ1v(t)), we get

d
dt

(‖v‖2
θ + ε(t)‖vt‖2 + ‖ζt‖2

µ,θ + 2ρ1ε(t)〈v, vt〉+ 2〈F0(v), 1〉 − 2〈g− g$, v〉+ C)

+ ρ1(‖v‖2
θ + ε(t)‖vt‖2 + ‖ζt‖2

µ,θ + 2ρ1ε(t)〈v, vt〉+ 2〈F0(v), 1〉 − 2〈g− g$, v〉+ C)

+
ρ1ν

2
‖v‖2

θ − (ε′(t) + 3ρ1ε(t))‖vt‖2 + (δ− 2ρ1k0 − ρ1)‖ζt‖2
µ,θ (50)

− 2ρ1(ε
′(t) + ρ1ε(t))〈v, vt〉

6 ρ1($ + C),

where F0(s) =
∫ s

0 f0(r)dr.
We define the functional as follows:

M1(t) =‖v‖2
θ + ε(t)‖vt‖2 + ‖ζt‖2

µ,θ + 2ρ1ε(t)〈v, vt〉+ 2〈F0(v), 1〉 − 2〈g− g$, v〉+ C, (51)

where C = 8‖g− g$‖2
V−θ

+ $ = 8$2 + $.

In fact, by virtue of (41) and (45), we have − 1−ν
2 ‖v‖2

θ − $ 6 2〈F0(v), 1〉 6 C‖v‖
2n

n−2
θ .

Similarly, we can deduce that

2ρ1ε(t)〈v, vt〉 6 2ρ1ε(t)|〈v, vt〉| 6
1
8
‖v‖2

θ +
8ρ2

1L
λθ

1
ε(t)‖vt‖2,

2〈g− g$, v〉 6 2|〈g− g$, v〉| 6 1
8
‖v‖2

θ + 8‖g− g$‖2
V−θ

.

Then,

1
4
‖V(t, τ)z(τ)‖2

Hθ
t
6M1(t) 6 C‖V(t, τ)z(τ)‖

2n
n−2
Hθ

t
+ 16$2 + $. (52)

From (3) and (11), we have

−2ρ1(ε
′(t) + ρ1ε(t))〈v, vt〉 > −

ρ1ν

4
‖v‖2

θ −
4ρ1L2

λθ
1ν
‖vt‖2.

Choosing ρ1 small enough, we have

−ε′(t)− 3ρ1ε(t)− 4ρ1L2

λθ
1ν

> 0, δ− 2ρ1k0 − ρ1 > 0.
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Combining with the above estimates, we get

d
dt
M1(t) + ρ1M1(t) 6 ρ1(8$2 + 2$). (53)

Taking ε = 32$2 + 2$ + C(64$2 + 4$), we obtain from (52) and (53)

‖V(t, τ)z1(τ)‖2
Hθ

t
6 Q2(‖z(τ)‖Hθ

τ
)e−ρ1(t−τ) + ε.

Due to z(τ) ∈ Bτ(R), we find the estimate

‖V(t, τ)z(τ)‖2
Hθ

t
6 2ε,

provided that τ 6 t − t1, where t1 = max{0, 1
ρ1

ln Q2(R)
ε }. This completes the proof of

Lemma 6.

All in all, the following uniformly bound estimate holds:

sup
τ6t−t∗

{‖U(t, τ)z(τ)‖Hθ
t
+ ‖V(t, τ)z(τ)‖Hθ

t
+ ‖W(t, τ)z(τ)‖Hθ

t
} 6 2R0, (54)

where t∗ = max{0, 1
ρ1

ln Q2(R)
2ε , 1

ρ ln 2Q1(R)
R2

0
}.

Lemma 6. Let z2(t) be the solution of (48) with initial data z2(τ) satisfying ‖z2(τ)‖Hθ
τ
= 0. If

the assumptions (12)–(14), (18), (3) and (40)–(46) hold, then there exists N2 = N2(Bt) > 0,
such that

sup
τ6t−t∗

‖z2(t)‖Hθ+σ
t

= sup
τ6t−t∗

‖W(t, τ)z2(τ)‖Hθ+σ
t

6 N2, (55)

where σ = min{ θ
4 , (n+2)θ−2n

n−2 , n
2 − θ} and t∗ = t∗(R0, ρ, λ1, ‖g$‖).

Proof. Note that f = f0 + f1 implies that

f (u)− f0(v) = f (u)− f (v) + f (v)− f0(v) = f (u)− f (v) + f1(v),

therefore, taking the inner product of (48) with 2Aσ(wt(t) + ρw(t)), we obtain

d
dt

(‖w‖2
θ+σ + ε(t)‖wt‖2

σ + ‖ξt‖2
µ,θ+σ + 2ρε(t)〈wt, Aσw〉+ 2〈 f (u)− f0(v), Aσw〉 − 2〈g$, Aσw〉)

+
3ρ

2
‖w‖2

θ+σ − (ε′(t) + 2ρε(t))‖wt‖2
σ + (δ− 2ρk0)‖ξt‖2

µ,θ+σ − 2ρε′(t)〈wt, Aσw〉 (56)

+ 2ρ〈 f (u)− f0(v), Aσw〉 − 2ρ〈g$, Aσw〉

6 2〈 f ′(u)ut − f ′(v)vt, Aσw〉+ 2〈 f ′1(v)vt, Aσw〉.

Next, we will deal with each term on the right-hand of (56).
First, by virtue of (18), (10), (49) and (54), we have

2〈 f ′(u)ut − f ′(v)vt, Aσw)〉

6 C(
∫

Ω
(1 + |u|

4
n−2 )

n
θ−σ dx)

θ−σ
n (

∫
Ω
|ut|2dx)

1
2 (

∫
Ω
|Aσw|

2n
n−2(θ−σ) dx)

n−2(θ−σ)
2n

+ C(
∫

Ω
(1 + |v|

4
n−2 )

n
θ−σ dx)

θ−σ
n (

∫
Ω
|vt|2dx)

1
2 (

∫
Ω
|Aσw|

2n
n−2(θ−σ) dx)

n−2(θ−σ)
2n (57)

6 C(1 + ‖u‖
4

n−2
θ )‖ut‖‖w‖θ+σ + C(1 + ‖v‖

4
n−2
θ )‖vt‖‖w‖θ+σ

6
ρ

8
‖w‖2

θ+σ + C,
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where 4
n−2 ·

n
θ−σ 6 2n

n−2θ .
Second, by (46), (10) and (49), we get

−2〈 f ′1(v)vt, Aσw)〉 6 ρ

8
‖w‖2

θ+σ + C. (58)

Choosing a suitable constant C > 0, we define the functional:

M2(t) = ‖w‖2
θ+σ + ε(t)‖wt‖2

σ + ‖ξt‖2
µ,θ+σ + 2ρε(t)〈wt, Aσw〉

+ 2〈 f (u)− f0(v), Aσw〉 − 2〈g$, Aσw〉+ C, (59)

as ρ is small enough, we know that

1
2
‖W(t, τ)z2(τ)‖2

Hθ+σ
t

6M2(t) 6 2‖W(t, τ)z2(τ)‖2
Hθ+σ

t
+ C. (60)

Indeed, we can easily deduce that

2ρε(t)|〈wt, Aσw〉| 6 ρ‖w‖2
θ+σ +

ρL
λθ

1
ε(t)‖wt‖2

σ,

2|〈g$, Aσw〉| 6 ρ‖w‖2
θ+σ +

1
ρλθ−σ

1

‖g$‖2.

Thanks to (10), we have

2|〈 f (u)− f0(v), Aσw〉|
62|〈 f (u)− f (v), Aσw〉|+ 2|〈 f1(v), Aσw〉|

6C(
∫

Ω
(1 + |u|

4
n−2 + |v|

4
n−2 )

n
θ−σ dx)

θ−σ
n (

∫
Ω
|w|2dx)

1
2 (

∫
Ω
|Aσw|

2n
n−2(θ−σ) dx)

n−2(θ−σ)
2n

+ C(
∫

Ω
(1 + |v|γ)

n
θ−σ dx)

θ−σ
n (

∫
Ω
|v|2dx)

1
2 (

∫
Ω
|Aσw|

2n
n−2(θ−σ) dx)

n−2(θ−σ)
2n (61)

6C(1 + ‖u‖
4

n−2
θ + ‖v‖

4
n−2
θ )‖w‖θ‖w‖θ+σ + C(1 + ‖v‖γ

θ )‖v‖θ‖w‖θ+σ

6
1
4
‖w‖2

θ+σ + C,

where 2n
n−2θ > 4n

(n−2)(θ−σ)
> nγ

θ−σ .
It follows from the above estimates that

d
dt
M2(t) + ρM2(t) +

ρ

2
‖w‖2

θ+σ − (ε′(t) + 3ρε(t))‖wt‖2
σ + (δ− ρ− 2ρk0)‖ξt‖2

µ,θ+σ

− 2ρ(ε′(t) + ρε(t))〈wt, Aσw〉 6 ρ

4
‖w‖2

θ+σ + C. (62)

Obviously, we can gain

−2ρ(ε′(t) + ρε(t))〈wt, Aσw〉 > −ρ

4
‖w‖2

θ+σ −
4ρL2

λθ
1
‖wt‖2

σ. (63)

Substituting (63) into (62), we have

d
dt
M2(t) + ρM2(t)− (ε′(t) + 3ρε(t) +

4ρL2

λθ
1

)‖wt‖2
σ + (δ− 2ρk0 − ρ)‖ξt‖2

µ,θ+σ 6 C. (64)

Taking ρ small enough, we know

d
dt
M2(t) + ρM2(t) 6 C. (65)
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From (65) and (60), we obtain (55).
We completed the proof.

To verify the asymptotic compactness of the process U(t, τ) corresponding to the
problem in (15) and (16), we also need the following preliminary results.

For any ξ0 ∈ L2
µ(R+; Vθ), the Cauchy problem (see [13,29,30]){

ξt
t = −ξt

s + wt, t > τ,

ξτ = ξ0

(66)

has a unique solution ξt ∈ C([τ, ∞); L2
µ(R+; Vθ)). Then, for (66), we have the

explicit expression

ξt(x, s) =

{
w(x, t)− w(x, t− s), τ 6 s < t,

w(x, t), s > t.
(67)

Let Bt be the time-dependent absorbing set for the process U(t, τ) corresponding to
the problem in (15) and (16) inHθ

t obtained from Theorem 4. Then,

Lemma 7. For every given τ < T, we set

KT := ΠW(T, τ)Bτ .

Assume that the forcing term g ∈ V−θ . If the assumptions (12)–(14), (18)–(20), (3) and (40)–(46)
hold, then there exists a positive constant N4 = N4(‖B0‖Hθ

τ
), such that

(i) KT is bounded in L2
µ(R+; Vθ+σ) ∩ H1

µ(R+; Vσ);
(ii) supξ∈KT

‖ξ(s)‖2
Vθ 6 N4,

where σ = min{ θ
4 , (n+2)θ−2n

n−2 , n
2 − θ}, W(T, τ) is a solution operator of (48) and Π : Vθ+σ ×

Vσ × L2
µ(R+; Vθ+σ)→ L2

µ(R+; Vθ+σ) is a projection operator.

Proof. From (67), we conclude that

ξT
s (x, s) =

{
ws(x, T − s), τ 6 s < T,

0, s > T.
(68)

Applying Lemma 6, we know (i) holds.
Using (68) once again, we can easily deduce that

‖ξT(x, s)‖Vθ
=

{ ‖w(x, T)− w(x, T − s)‖Vθ
6 ‖w(x, T)‖Vθ

+ ‖w(x, T − s)‖Vθ
, τ < s < T,

‖w(x, T)‖Vθ
, s > T.

(69)

Clearly, it implies (ii) holds. The proof is complete.

Therefore, applying Lemma 3, we conclude thatKT is relatively compact in L2
µ(R+; Vθ).

Moreover, by the compact embedding Vθ+σ ×Vσ ↪→ Vθ × L2(Ω), we obtain:

Lemma 8. Let {W(T, τ)}τ6T be the process corresponding to the problem (48). If the assumptions
of Lemma 7 hold, then for any τ < T and given R > 0, W(T, τ)Bτ(R) is relatively compact inHθ

T.

Theorem 5. Let U(t, τ) : Hθ
τ → Hθ

t be the process generated by the problem in (15) and (16).
Assume that g ∈ V−θ . If (12)–(14), (18)–(20), (3) and (40)–(46) hold, then the process U(t, τ)
possesses an invariant time-dependent global attractor A = {At}t∈R inHθ

t .
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Proof. According to Lemmas 6 and 8, we consider the family K = {Kθ+σ
t }t∈R, where

Kθ+σ
t = {z(t) ∈ Hθ+σ

t : ‖z(t)‖Hθ+σ
t

6 M}.

By the compact embeddingHθ+σ
t ↪→ Hθ

t and Lemma 8, Kθ+σ
t is compact inHθ

t . In addition,
since the injection constant M is independent of t, the set K is uniformly bounded.

It follows from Theorem 4, Lemmas 5 and 6 that K is pullback attracting. In fact,

δt(U(t, τ)Bτ(R), Kθ+σ
t ) 6 Ce−ρ(t−τ), ∀ τ 6 t,

here, δt(·, ·) denotes the Hausdorff semidistance of two subsets of Hθ
t . Hence, the pro-

cess U(t, τ) is asymptotically compact, which implies the existence of the unique time-
dependent global attractor A = {At}t∈R of the process U(t, τ). Finally, the invariance of A
can be concluded by Lemma 4 (the continuity of the process U(t, τ) inHθ

t ).
We completed the proof.

3.4. The Regularity of the Time-Dependent Attractor

Here, we prove that the time-dependent attractor A = {At}t∈R is bounded in H2θ
t ,

where the bound is independent of t.
For any given τ ∈ R and z(τ) ∈ Aτ , we give a decomposition of the solution

U(t, τ)z(τ):

U(t, τ)z(τ) = z(t) = z1(t) + z2(t) = V1(t, τ)z1(τ) + W1(t, τ)z2(τ),

where

V1(t, τ)z1(τ) = (v(t), vt(t), ζt(s)), W1(t, τ)z2(τ) = (w(t), wt(t), ξt(s))

solve the equations, respectively,

ε(t)vtt + Aθv +
∫ ∞

0 µ(s)Aθζt(s)ds = 0,

ζt
t = −ζt

s + vt,

v(x, t)|∂Ω = 0, ζt(x, t)|∂Ω = 0,

v(x, τ) = u0(x, t), vt(x, τ) = u1(x, t), x ∈ Ω, t 6 τ,

ζτ(x, s) = u0(x, τ)− u0(x, τ − s), (x, s) ∈ Ω×R+,

(70)

and 

ε(t)wtt + Aθw +
∫ ∞

0 µ(s)Aθξt(s)ds + f (u) = g(x),

ξt
t = −ξt

s + wt,

w(x, t)|∂Ω=0, ξt(x, t)|∂Ω = 0,

w(x, τ) = 0, wt(x, τ) = 0, ξτ(x, s) = 0, x ∈ Ω, s ∈ R+.

(71)

As a special case of Lemma 5, we can get

‖V1(t, τ)z(τ)‖Hθ
t
6 Ce−ρ1(t−τ), ∀ τ 6 t− t̄1, (72)

where t̄1 = max{0, 1
ρ1

ln Q2(R)
2ε }.

Lemma 9. Let z2(t) be the solution of (71) with initial data z2(τ) ∈ Aτ satisfying ‖z2(τ)‖Hθ
τ
= 0.

If the assumptions (12)–(14), (18), (3) and (40)–(46) hold, then {At}t∈R is bounded inH2θ
t and

the bound is independent of t.



Mathematics 2022, 10, 2198 17 of 21

Proof. For θ ∈ ( 2n
n+2 , n

2 ), n > 3, we set

0 < σ0 = σ < min{ θ

4
,
(n + 2)θ − 2n

n− 2
,

n
2
− θ}, and σ0 < σ1 = min{ (n + 2)(θ + σ0)− 2n

n− 2
, θ}.

Taking the inner product of (71) with 2(Aσ1 wt + ρAσ1 w), we obtain

d
dt

(‖w‖2
θ+σ1

+ ε(t)‖wt‖2
σ1
+ ‖ξt‖2

µ,θ+σ1
+ 2ρε(t)〈wt, Aσ1 w〉+ 2〈 f (u)− g, Aσ1 w〉)

+
3
2

ρ‖w‖2
θ+σ1
− (ε′(t) + 2ρε(t))‖wt‖2

σ1
+ (δ− 2ρk0)‖ξt‖2

µ,θ+σ1

− 2ρε′(t)〈wt, Aσ1 w〉+ 2ρ〈 f (u)− g, Aσ1 w〉
6 2〈 f ′(u)ut, Aσ1 w〉. (73)

Set

M3(t) = ‖w‖2
θ+σ1

+ ε(t)‖wt‖2
σ1
+ ‖ξt‖2

µ,θ+σ1
+ 2ρε(t)〈wt, Aσ1 w〉

+ 2〈 f (u)− g, Aσ1 w〉+ C. (74)

Similar to (60), for ρ small enough, we have

1
2
‖W1(t, τ)z(τ)‖2

Hθ+σ1
t

6M3(t) 6 2‖W1(t, τ)z(τ)‖2
Hθ+σ1

t
+ C, (75)

and

d
dt
M3(t) + ρM3(t) +

ρ

4
‖w‖2

θ+σ1
6 2〈 f ′(u)ut, Aσ1 w〉+ ρC. (76)

Due to the invariance of A, we have

‖U(t, τ)z(τ)‖
Hθ+σ0

t
6 C,

where C is a generic constant depending on the size of At inHθ+σ0
t .

Using the embedding (10), we can deduce that

2〈 f ′(u)ut, Aσ1 w〉

6C(
∫

Ω
(1 + |u|

4
n−2 )

n
θ+σ0−σ1 dx)

θ+σ0−σ1
n · (

∫
Ω
|ut|

2n
n−2σ0 dx)

n−2σ0
2n

· (
∫

Ω
|Aσ1 w|

2n
n−2(θ−σ1) dx)

n−2(θ−σ1)
2n

6C(1 + ‖u‖
4

n−2
θ+σ0

)‖ut‖σ0‖w‖θ+σ1

6
ρ

4
‖w‖2

θ+σ1
+ C, (77)

where 4
n−2 ·

n
θ+σ0−σ1

6 2n
n−2(θ+σ0)

.
Therefore, we conclude that

d
dt
M3(t) + ρM3(t) 6 C.

Applying the Gronwall lemma and combining with (75), we obtain that there
exists N∗1 = N∗1(A) > 0, such that

sup
τ6t−t∗

‖z2(t)‖Hθ+σ1
t

= sup
τ6t−t∗

‖W1(t, τ)z2(τ)‖Hθ+σ1
t

6 N∗1 , (78)
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where t∗ = max{0, 1
ρ1

ln Q2(R)
2ε , 1

ρ ln 2Q1(R)
R2

0
}. Namely, ‖W1(t, τ)z2(τ)‖Hθ+σ1

t
is uniformly

bounded.
We denote

Kθ+σ1
t = {z(t) ∈ Hθ+σ1

t : ‖z(t)‖
Hθ+σ1

t
6 N4}.

It follows from (72) and Lemma 9 that

lim
τ→−∞

δt(U(t, τ)Aτ , Kθ+σ1
t ) = 0, ∀ t ∈ R.

The invariance of A implies that

δt(At, Kθ+σ1
t ) = 0.

Therefore, At ⊂ Kθ+σ1
t = Kθ+σ1

t . We can deduce that At is bounded inHθ+σ1
t (with a bound

independent of t ∈ R).
For θ ∈ ( 2n

n+2 , n
2 ), n > 3, we set

σ1 < σ2 =
(n + 2)(θ + σ1)− 2n

n− 2
.

Repeating the above process, we obtain that At is bounded inHθ+σ2
t (with a bound inde-

pendent of t ∈ R).
We set σmin = min{σi}, i = 1, 2, · · · . Repeating the above process at most [ θ

σmin
+ 1]

times, we can finally obtain that At is bounded in H2θ
t (with a bound independent of

t ∈ R).

3.5. The Asymptotic Regularity of the Solution

By using bootstrap methods, the following results can be obtained.

Lemma 10. Assume that the forcing term g ∈ V−θ . Let the assumptions (12)–(14), (18)–(20), (3)
and (40)–(46) hold. For any bounded (inHθ+σ

τ ) set Bθ+σ
τ , there is a positive constant N‖Bθ+σ

t ‖Hθ+σ
t

that depends on ‖Bθ+σ
t ‖Hθ+σ

t
, such that for any τ ∈ R and t2 6 t∗ 6 t,

‖U(t, τ)zτ‖2
Hθ+σ

t
6 N‖Bθ+σ‖Hθ+σ

t

, as τ 6 t− t2 and zτ ∈ Bθ+σ
τ ,

where σ = min{ θ
4 , (n+2)θ−2n

n−2 , n
2 − θ}.

Lemma 11. Let σ < ι = min{θ, (n+2)(θ+σ)−2n
n−2 }. Under the assumptions of Lemma 10, for any

bounded (inHθ+ι
τ ) set Bθ+ι

τ , there is a positive constant N‖Bθ+ι
t ‖Hθ+ι

t

that depends on ‖Bθ+ι
t ‖Hθ+ι

t
,

such that for any τ ∈ R and t3 6 t2 6 t,

‖U(t, τ)zτ‖2
Hθ+ι

t
6 N‖Bθ+ι

t ‖Hθ+ι
t

, as τ 6 t− t3 and zτ ∈ Bθ+ι
τ .

Lemma 12. Assume that σ < ι = min{θ, (n+2)(θ+σ)−2n
n−2 }. Under the assumptions of Lemma 10, for

any bounded (inHθ+ι
τ ) set Bθ+ι

τ , there is a positive constant J‖Bθ+ι
t ‖Hθ+ι

t

that depends on ‖Bθ+ι
t ‖Hθ+ι

t
,

such that for the solution z2(t) of Equation (48), for any τ ∈ R and t4 6 t3 6 t,

‖W(t, τ)zτ‖2
Hθ+κ0

t
6 J‖Bθ+ι

t ‖Hθ+ι
t

, as τ 6 t− t4 and zτ ∈ Bθ+ι
τ ,
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where ι < κ0 = min{θ, (n+2)(θ+ι)−2n
n−2 }.

Theorem 6 (Asymptotic regularity of solution). Let Ω be a bounded domain in Rn(n > 3)
with smooth boundary ∂Ω. Under the assumptions of Lemma 11, then there exist a bounded (in
H2θ

t ) set Bt ⊂ H2θ
t , a positive constant ν and a monotonically function Q(·), such that for any

bounded (inHθ
τ) set Bτ ⊂ Hθ

τ , any τ ∈ R, the following estimate holds:

δt(U(t, τ)Bτ ,Bt) 6 Q(‖Bτ‖Hθ
τ
)e−ν(t−τ), (79)

where δt is the Hausdorff semidistance inHθ
t and ν is independent of Bτ , g and τ.

Proof. Let Bt = {Bt(R0)}t∈R be the time-dependent absorbing set in Hθ
t obtained from

Theorem 4. From Lemmas 5 and 6, we can deduce that there exists a bounded (in Hθ+σ
t )

subset Aθ+σ
t ⊂ Hθ+σ

t , such that

δt(U(t, τ)Bτ(R0), Aθ+σ
t ) 6 δt(V(t, τ)Bτ(R0), Aθ+σ

t )

6 Q2(R0)e−ρ1(t−τ). (80)

In regard to Aθ+σ
τ , from Lemmas 5 and 12, it is easy to know that there exists a bounded

set Aθ+κ0
t inHθ+κ0

t , such that

δt(U(t, τ)Aθ+σ
τ , Aθ+κ0

t ) 6 δt(V(t, τ)Aθ+σ
t , Aθ+κ0

t )

6 Q2(‖Aθ+σ
τ ‖Hθ

τ
)e−ρ1(t−τ), (81)

where ρ1 is positive and only depends on ‖Aθ+σ‖Hθ
τ
, and κ0 = min{θ, (n+2)(θ+ι)−2n

n−2 }.
From (38), (80), (81) and Lemma 2, we obtain

δt(U(t, τ)Bτ(R0), Aθ+κ0
t ) 6 CQ2(R0)e−ρ2(t−τ), (82)

where C and ρ2 are both positive constants.
Fix κ0 = min{θ, (n+2)(θ+ι)−2n

n−2 } and σ = min{ θ
4 , (n+2)θ−2n

n−2 , n
2 − θ}. By a finite number

of steps (no more than [ θ
κ0

+ 1] steps), we can deduce that there exists a bounded (inH2θ
t )

set Bt ⊂ H2θ
t , such that

δt(U(t, τ)Bτ(R0),Bt) 6 Q(R0)e−ν(t−τ), (83)

where ν is dependent of R0.
For any bounded (inHθ

τ) set Bτ , by Theorem 4, there exists a t0 such that

U(t, τ)Bτ ⊂ Bt(R0), as τ 6 t− t0. (84)

Therefore,

δt(U(t, τ)Bτ ,Bt(R0)) 6 N3eνt0e−ν(t−τ), (85)

where N3 = sup{‖U(t, τ)Bτ‖Hθ
t
, τ 6 t− t0} < ∞.

By Lemma 2 once more, we can deduce that (79). The proof is complete.

4. Conclusions

For the undamped second-order abstract evolution equation with fading memory, when
the nonlinear term satisfies the critical exponential growth, the existence and asymptotic
regularity of the time-dependent attractor, as well as the asymptotic regularity of the solutions,
can be obtained by using the process theory, asymptotic prior technique and decomposition
technique. This result improves and generalizes some known results (see [9,23,30]).
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We will continue to study the asymptotic behavior of the solutions of the equation in
the strong topological space V2θ ×Vθ × L2

µ(R+; V2θ), and it is expected that corresponding
research results will be obtained.
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