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1. Introduction

In physics, there is a huge literature regarding the motion and collision of particles in
classical mechanics, quantum mechanics, the kinetic theory of gases, relativistic motion,
deterministic trajectories, random trajectories, interaction under electromagnetic forces,
gravitational forces, different kinds of fluids, and so on. However, the topic of two particles
colliding on the same real line having stochastic paths is not so broad. A typical assump-
tion is to consider elastic collisions where the momentum and energy of the system are
conserved. In 1965, Harris [1] published an interesting work dealing with this problem
where it was assumed that each particle moves independently of the other according to the
Wiener process. The initial position of such particles obeys a Poisson process on the line,
and they found conditions for the convergence to a diffusion process with an asymptotic
Gaussian distribution for the position with zero mean and standard deviation (2t/π)1/4.
Some generalizations of Harris’ ideas to collisions of multiple particles on the line were
made by Spitzer (1969) [2] and Major and Szasz (1980) [3], among other researchers. In
this paper, we develop similar ideas for two-particle collision, but considering telegraph
processes for the motion of them. We found that this basic mathematical setting can be
applied to some financial problems as well.

A spread option is a type of option where the payoff is based on the difference in
price between two underlying assets. As an example, the two assets could be crude oil and
heating oil. Spread options are generally traded over the counter, rather than on exchange.

The payoff for a spread call can be written as C = max(0, S1 − S2 − K), where S1 and
S2 are the prices of the two assets and K is a constant called the strike price. For a spread
put, it is P = max(0, K − S1 − S2). When K equals zero, a spread option is the same as
an option to exchange one asset for another. An explicit solution is available in this case,
or Margrabe’s formula, and this type of option is also known as a Margrabe option or

Mathematics 2022, 10, 2201. https://doi.org/10.3390/math10132201 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10132201
https://doi.org/10.3390/math10132201
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1563-8934
https://orcid.org/0000-0003-2199-115X
https://doi.org/10.3390/math10132201
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10132201?type=check_update&version=1


Mathematics 2022, 10, 2201 2 of 14

an outperformance option. In 1995, Kirk’s approximation was published [4], which is a
formula valid when K is small, but non-zero. Kirk’s approximation can also be derived
explicitly from Margrabe’s formula. Etesami (2020) [5] provides an explicit derivation of
Kirk’s approximation from Margrabe’s exchange option formula. Furthermore, a simple
derivation of Kirk’s approximation for spread options may be found in Chi-Fai Lo (2013) [6].
Pearson (1999) [7] published an algorithm requiring a one-dimensional numerical integra-
tion to compute the option value. Choi (2018) [8] showed that the numerical integral can
be performed very efficiently by using an appropriate rotation of the domain and Gauss–
Hermite quadrature. Li, Deng, and Zhou (2006) [9] published accurate approximation
formulas for both spread option prices and their Greeks. Pricing and hedging spread
options in energy markets may be found in Carmona and Durrleman (2003) [10].

Section 2 is devoted to finding an integral equation for the position of a particle
moving on the real line according to a telegraph process. This integral equation is related
to the random evolution in a Markov environment. Section 3 deals with modeling the
first collision of two telegraph particles on the real line. For such a purpose, the Laplace
transform of the renewal function is found, and numerical and asymptotic techniques are
applied to obtain the corresponding inverse Laplace transforms. The application of these
ideas to finance is elaborated in Section 4 for Margrabe’s spread option valuation, where
the two interacting telegraph processes are identified as two assets for spot prices under the
risk-neutral measure. Many numerical results are presented to assess the behavior of these
models. Finally, in Section 5, conclusions and some ideas for further work are discussed.

2. Integral Equation of the Telegraph Type for the Distribution Density of
Random Motion

Suppose that a particle moves in a line as follows: At any time t ≥ 0, it has one of
velocities v > 0 or −v. Starting from a point y ∈ R, the particle continues to move with
speed v > 0 during random time τ1, where τ1 is an exponentially distributed random
variable with parameter λ > 0, then the particle moves with speed −v during random time
τ2, where τ2 is also an exponentially distributed random variable with parameter λ > 0,
then the particle moves with speed v > 0, and so on.

Thus, in this case, after an even renewal epoch, the particle has velocity v, and after an
odd renewal epoch, it has velocity −v.

The motion of such particles can be represented by a random evolution: Denote by
ξ(t), t ≥ 0 an alternating Markov process in phase space T = {0, 1}, with the sojourn time
τi in a state i ∈ T, and the matrix of transition probabilities of the embedded Markov chain:

P =

(
0 1
1 0

)
.

Denote by x(y, t), t ≥ 0 the position of a particle at time t, which started from y.
Consider a function C on T:

C(ξ) =
{

v, if ξ = 0,
−v, if ξ = 1.

Let us introduce a random evolution S(y, t) in the Markov environment as follows:

S(y, t) = y +
∫ t

0
C(ξ(s)) ds. (1)

We can assume that x(y, t) = S(y, t) and such a particle will be called a telegraph particle.

3. The Laplace Transform for the Distribution of the First Collision of Two
Telegraph Particles

Let us consider a system of two telegraph processes Sl(yl , t), l = 1, 2 of the follow-
ing form:
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Sl(yl , t) = yl +
∫ t

0
C(ξl(s)) ds,

where ξl(t) is an alternating Markov process on the phase space T = {0, 1} and the sojourn
time τ

(l)
i in state i ∈ T, where τ

(l)
i is an exponentially distributed random variable with

parameter λl > 0.
Let xi(yi, t), t ≥ 0 be the position of a particle at time t, which started from yi. We

assume that at any time t, the process xi(yi, t) coincides with the order statistics S(i)(yi, t)
of processes Si(yi, t), i = 1, 2, that is

xi(yi, t) = S(i)(yi, t).

This nature of particles’ motion corresponds to the fact that each particle of the system
moves according to the respective telegraph process until a hard collision with another
particle. A hard collision of two particles means a collision in which the particles change
their direction of motion to the opposite, that is they exchange impulses. In terms of
processes, particles exchange telegraph processes that describe their motion.

Suppose that z = y2 − y1 > 0, and consider ∆(t) = x2(y2, t) − x1(y1, t). Let us
introduce the bivariate process η(t) = (ξ1(t), ξ2(t)). Assume η(0) = (k1, k2) and

τ(k1,k2)(z) = inf{t ≥ 0 : ∆(t) = 0}, k j ∈ {0, 1}. (2)

Let us consider the Laplace transform of the random variables τ(k1,k2)(z), ki ∈ {0, 1}.

ϕ(k1,k2)(s, z) = E
[
e
−sτ(k1,k2)

(z)
]
, s > 0.

Theorem 1. For λ1 ≤ λ2, we have

ϕ(0,1)(s, z) = e

 (λ2
2−λ2

1)
4v(s+λ1+λ2)

−

√(
λ2

2−λ2
1

4v(s+λ1+λ2)

)2

+
s2+2(λ1+λ2)s

4v2

 z

(3) (
λ2

2 − λ2
1
)

4v(s + λ1 + λ2)
−

√√√√( λ2
2 − λ2

1
4v(s + λ1 + λ2)

)2

+
s2 + 2(λ1 + λ2)s

4v2

,

ϕ(1,0)(s, 0) =
(s + λ1 + λ2)

2

λ1λ2 + λ2
1
− (λ1 + λ2)

2

2
(
λ1λ2 + λ2

1
) (4)

−

√√√√ (
λ2

2 − λ2
1
)2

4
(
λ1λ2 + λ2

1
)2 +

(s + λ1 + λ2)
2(s2 + 2(λ1 + λ2)s)(

λ1λ2 + λ2
1
)2

Proof. By using the ideas of renewal theory, we can write the following system of integral
equations for the Laplace transforms:

ϕ(0,1)(s, z) = e−
s+λ1+λ2

2v z +
λ1

2v

∫ z

0
e−

s+λ1+λ2
2v u ϕ(1,1)(s, z− u)du

+
λ2

2v

∫ z

0
e−

s+λ1+λ2
2v u ϕ(0,0)(s, z− u)du (5)

= e−
s+λ1+λ2

2v z

+
e−

s+λ1+λ2
2v z

2v

∫ z

0
e

s+λ1+λ2
2v u

(
λ1 ϕ(1,1)(s, u) + λ2 ϕ(0,0)(s, u)

)
du,
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ϕ(0,0)(s, z) = λ2

∫ ∞

0
e−(s+λ1+λ2)u ϕ(0,1)(s, z)du

+λ1

∫ ∞

0
e−(s+λ1+λ2)u ϕ(1,0)(s, z)du (6)

=
1

s + λ1 + λ2

(
λ2 ϕ(0,1)(s, z) + λ1 ϕ(1,0)(s, z)

)
,

ϕ(1,1)(s, z) = λ1

∫ ∞

0
e−(s+λ1+λ2)u ϕ(0,1)(s, z)du

+λ2

∫ ∞

0
e−(s+λ1+λ2)u ϕ(1,0)(s, z)du (7)

=
1

s + λ1 + λ2

(
λ1 ϕ(0,1)(s, z) + λ2 ϕ(1,0)(s, z)

)
,

ϕ(1,0)(s, z) =
1

2v

∫ ∞

0
e−

s+λ1+λ2
2v u

(
λ1 ϕ(0,0)(s, z + u) + λ2 ϕ(1,1)(s, z + u)

)
du (8)

=
e

s+λ1+λ2
2v z

2v

∫ ∞

z
e−

s+λ1+λ2
2v u

(
ϕ(0,0)(s, u) + ϕ(1,1)(s, u)

)
du.

Taking into account Equations (6) and (7), we have

ϕ(0,0)(s, z) + ϕ(1,1)(s, z) =
λ1 + λ2

s + λ1 + λ2

(
ϕ(0,1)(s, z) + ϕ(1,0)(s, z)

)
. (9)

Hence,

∂

∂z
ϕ(0,1)(s, z) = − s + λ1 + λ2

2v
ϕ(0,1)(s, z)

+
1

2v(s + λ1 + λ2)

(
λ2

2 ϕ(0,1)(s, z) (10)

+λ1λ2

(
ϕ(0,1)(s, z) + ϕ(1,0)(s, z)

)
+ λ2

1 ϕ(1,0)(s, z)
)

,

∂

∂z
ϕ(1,0)(s, z) =

s + λ1 + λ2

2v
ϕ(1,0)(s, z)

− 1
2v(s + λ1 + λ2)

(
λ2

2 ϕ(0,1)(s, z) (11)

+λ1λ2

(
ϕ(0,1)(s, z) + ϕ(1,0)(s, z)

)
+ λ2

1 ϕ(1,0)(s, z)
)

.

It is well known that the functions ϕ(1,0)(s, z) and ϕ(0,1)(s, z) satisfy the following
equation [11,12], where f (z) is the unknown

det

 ∂
∂z +

s+λ1+λ2
2v − λ2

2+λ1λ2
2v(s+λ1+λ2)

− λ2
1+λ1λ2

2v(s+λ1+λ2)
λ2

2+λ1λ2
2v(s+λ1+λ2)

∂
∂z −

s+λ1+λ2
2v +

λ2
1+λ1λ2

2v(s+λ1+λ2)

 f (z) = 0.

By calculating this determinant, we obtain

∂2

∂z2 f (z) +
λ2

1 − λ2
2

2v(s + λ1 + λ2)

∂

∂z
f (z)− s2 + 2(λ1 + λ2)s

4v2 f (z) = 0.

Therefore,
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f (z) = C1e

 (λ2
2−λ2

1)
4v(s+λ1+λ2)

− 1
2

√(
λ2

2−λ2
1

2v(s+λ1+λ2)

)2

+
s2+2(λ1+λ2)s

v2

z

(12)

+C2e

 (λ2
2−λ2

1)
4v(s+λ1+λ2)

+

√(
λ2

2−λ2
1

4v(s+λ1+λ2)

)2

+
s2+2(λ1+λ2)s

4v2

z

.

Given the fact that ϕ(0,1)(s, 0) = 1 and for all z > 0 lims→+∞ ϕ(0,1)(s, z) = 0, we obtain
that C1 = 1, C2 = 0, that is

ϕ(0,1)(s, z) = e

 (λ2
2−λ2

1)
4v(s+λ1+λ2)

−

√(
λ2

2−λ2
1

4v(s+λ1+λ2)

)2

+
s2+2(λ1+λ2)s

4v2

 z

.

On account of Equations (6) and (7), we have

ϕ(1,0)(s, 0) =
(s + λ1 + λ2)

2

λ1λ2 + λ2
1
− (λ1 + λ2)

2

2
(
λ1λ2 + λ2

1
)

−

√√√√ (
λ2

2 − λ2
1
)2

4
(
λ1λ2 + λ2

1
)2 +

(s + λ1 + λ2)
2(s2 + 2(λ1 + λ2)s)(

λ1λ2 + λ2
1
)2 .

In order to simplify the analysis, we set

λ2

λ1
= k ≥ 1,

and c = (k + 1)λ1. Thus, we obtain

ϕ(1,0)(s, 0) =
2(s + c)2 − c2 −

√
(c− 2λ1)

2c2 + 4(s + c)2(s2 + 2cs)

2cλ1
.

Denote by C(1,0)(t, z) the number of collisions of particles xi(yi, t), i = 1, 2, during
the time (0, t), t > 0 assuming that η(0) = (1, 0). It is easily verified that C(1,0)(t, z) is
the number of intersections in telegraph processes S1(y1, t) and S2(y2, t) assuming that(
ξi(0), ξ j(0)

)
= (0, 1).

Let us consider the following renewal function H(1,0)(t, z) = E[C(1,0)(t, z)]. By taking
into account the Laplace transform for the general renewal function [13], it follows from
Equation (9) that the Laplace transform Ĥ(1,0)(s, z) = L

(
H(1,0)(t, z), t

)
of the function

H(1,0)(t, z) with respect to t for z = 0 is given by

Ĥ(1,0)(s, 0) =
1
s

∞

∑
j=1

(
ϕ(1,0)(s, 0)

)j

=
2(s + c)2 − c2 −

√
(c− 2λ1)

2c2 + 4(s + c)2(s2 + 2cs)

s
(

2cλ1 − 2(s + c)2 + c2 +
√
(c− 2λ1)

2c2 + 4(s + c)2(s2 + 2cs)
) . (13)

Now, let us introduce the so-called Kac condition (hydrodynamic limit): For this, we
denote λ1 = ε−2, v = cε−1 as ε→ 0, that is v→ +∞ and λ1 → +∞ such that v2

λ1
→ c2.

It is well known [14] that under the Kac condition, the telegraph process S1(y1, t)
weakly converges to the Wiener process w1(t) ∼ N

(
y1, c2t

)
; see also [15]. It is easy to see

that under the same conditions, that is, where λ2= kε−2, v = cε−1 as ε → 0, the process
S2(y2, t) weakly converges to the Wiener process w2(t) ∼ N

(
y2, tc2/k

)
.
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Taking into account c = (k + 1)λ1 and assuming that k > 1, we have

lim
λ1→∞

Ĥ(1,0)(s, 0)
λ1

= lim
λ1→∞

2(s + c)2 − c2 −
√
(c− 2λ1)

2c2 + 4(s + c)2(s2 + 2cs)

sλ1

(
2cλ1 − 2(s + c)2 + c2 +

√
(c− 2λ1)

2c2 + 4(s + c)2(s2 + 2cs)
)

=
k− 1
4s2

It is easy to verify that the inverse Laplace transform with respect to s is

L−1

(
lim

λ1→∞

Ĥ(1,0)(s, 0)
λ1

)
= L−1

(
k− 1
4s2 , s, t

)
=

k− 1
4

t. (14)

In Figure 1, we plot the numerical inverse transform of
Ĥ(1,0)(s,0)

λ1
, including the asymp-

totic result that behaves as a linear function of t.

1 1.5 2 2.5 3 3.5 4 4.5 5

t

0

0.2

0.4

0.6

0.8

1

1.2

h
(1

,0
)(t

)/
1

limit result

inverse Laplace, 
1
 = 12

inverse Laplace, 
1
 = 30

inverse Laplace, 
1
 = 70

Figure 1. Numerical inverse Laplace transform of
Ĥ(1,0)(s,0)

λ1
of Equation (13) for different values of λ1.

The limit value is from Equation (14) and k = 2.

Thus, for k > 1, the number of collisions can be estimated as follows:

Ĥ(1,0)(s, 0) = O
(

ε−2
)
= O(λ1) = O

(
v2
)

,

as ε→ 0.
Now, if k = 1, that is λ1 = λ2 = λ, we have [16]

ϕ(1,0)(s, z) =
s + 2λ−

√
s2 + 4λs

s + 2λ +
√

s2 + 4λs
.

and

Ĥ(1,0)(s, 0) =
∞

∑
j=1

(
s + 2λ−

√
s2 + 4λs

s + 2λ +
√

s2 + 4λs

)j

=
s + 2λ−

√
s2 + 4λs

2s
√

s2 + 4λs
. (15)

In this case, we have

lim
λ→∞

Ĥ(1,0)(s, 0)
√

λ
= lim

λ→∞

s + 2λ−
√

s2 + 4λs
2
√

λs
√

s2 + 4λs
=

1
2

s−
3
2 .
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The inverse Laplace transform with respect to s is

L−1

(
lim

λ1→∞

Ĥ(1,0)(s, 0)
√

λ

)
= L−1

(
1
2

s−
3
2 , s, t

)
=

√
t
π

. (16)

In Figure 2, we plot the numerical inverse transform of
Ĥ(1,0)(s,0)√

λ
, including the asymp-

totic result that behaves as a function of
√

t.
Since the function Ĥ(1,0)(s, 0) does not depend on v for any k ≥ 1, x1(y1, t) w→w1(t) ∼

N
(
y1, tc2) and x2(y2, t) w→w2(t) ∼ N

(
y2, tc2/k

)
as λ1 → ∞ taking into account

Equations (14) and (16), we conclude that the number of collisions for k = 1 is radically
different from the number of collisions in the case where k > 1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

h
(t

)/
la

m
b
d
a

limit result

inverse Laplace,  = 3

inverse Laplace,  = 30

inverse Laplace,  = 70

Figure 2. Numerical inverse Laplace transform of
Ĥ(1,0)(s,0)√

λ
of Equation (15) for different values of λ.

The limit value is from Equation (16).

4. Margrabe’s Spread Options Valuations with Two Telegraph Processes

There are many kinds of spread options. For instance, in the foreign exchange market
(spread involves rates in different countries); in the fixed income market (spread between
different maturities, e.g., in United States of America, it is Notes-Bonds (NOB) spread);
there is also spread between quality levels, e.g., Treasury Bills-EuroDollars (TED spread);
in the agricultural futures markets (e.g., soybean complex spread and corn spread); in the
energy markets, there are crack spread options (e.g., gasoline crack spread, heating oil crack
spread) or spark spread-converting a specific fuel (e.g., natural gas) into electricity. We can
find this primary cross-commodity transaction in electric energy markets. For more details,
see Carmona and Durrleman (2003) [10].

4.1. Recap: Margrabe’s Spread Options Valuations

Margrabe’s approach to spread option valuation is to price [17]

e−rTEQ[max(XT −YT , 0)], (17)

where Xt and Yt are two assets for spot prices under the risk-neutral measure, and they are
modeled by two geometric Brownian motions (GBMs):

dXt = rXtdt + σXXtdBX
t

dYt = rYtdt + σYYtdBY
t .

(18)

We denote by r the interest rate and T a maturity, and the correlation between the two
Brownian motions BX

t and BY
t is a constant ρ. The change of numeraire is the most efficient
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method to solve this problem. Let us take Yt as the numeraire. Then, in the Y measure, EQ
Y ,

all assets discounted by Y must be martingales. Let V(t, Xt, Yt) be the value of the option
at time t. Since V must be an EQ

Y martingale, we have:

V(0, X0, Y0)

Y0
= EQ

Y

[
V(T, XT , YT)

YT

]
,

from which we derive

V(0, X0, Y0) = Y0EQ
Y

[
max

(
XT
YT
− 1, 0

)]
. (19)

We note that
XT
YT

=
X0

Y0
eσX BX

T−σY BY
T+(Itô drift term). (20)

We also note that the variance σ2
exp for the exponent in (20) is:

σ2
exp = Var[σXBX

T − σYBY
T + (Itô drift term)]

= Var[σXBX
T − σYBY

T ]
= T(σ2

X + σ2
Y − 2ρσXσY).

(21)

Since XT
YT

is log-normal distributed with variance σ2
exp, we have:

E
[

max
(

XT
YT
− K, 0

)]
= E

[
XT
YT

]
N(d1)− KN(d2),

where K is a strike price, and

d1,2 =
log[E(XT/YT)/K± 1

2 σ2
exp]

σexp
. (22)

For notational convenience, we denote d1,2 = d1 for the “plus” sign, and d1,2 = d2 for
the “minus” sign.

Collecting Equations (19)–(22), we finally have:

V(0, X0, Y0) = Y0

[
EQ

Y

(
XT
YT

N(d1)− N(d2)

)]
= X0N(d1)−Y0N(d2), (23)

where

d1,2 =
log(X0/Y0)± 1

2 σ2
exp

σexp
. (24)

We observe that there is no discounting because funding is embedded in the asset Y.

Remark 1. If we compare our result with the Black–Scholes formula, the value of the option of a call
in Equation (23) is similar to BS as if we used BS with X as the underlying asset and Y0 as the strike
price, with volatility σexp. We note that σ2

exp is the variance of log(XT/YT).

4.2. Two Telegraph Processes’ Dynamics

Let us have two telegraph processes on the real line with initial positions X0 and Y0 :

Xt := X0 + v
∫ t

0
(−1)NX(s)ds

Yt := Y0 + v
∫ t

0
(−1)NY(s)ds,

(25)
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where v > 0 is a velocity and Ni(t), i = X, Y, are two independent Poisson processes with
intensities λX > 0 and λY > 0. We can think about Xi(t) as the coordinates of two different
particles on the real line at time t.

Each of the equations in (25) can be presented in the following equivalent form:

Xt = X0 + v
NX(t)−1

∑
k=1

(−1)k−1(TX
k − TX

k−1) + v(t− TNX(t))(−1)NX(t) (26)

and

Yt = Y0 + v
NY(t)−1

∑
k=1

(−1)k−1(TY
k − TY

k−1) + v(t− TNY(t))(−1)NY(t), (27)

where T j
i , i = 0, 1, 2, . . . are the sequences of Poisson times corresponding to each Poisson

process NX(t) and NY(t); thus, j = X or Y, respectively.

We note that under different conditions for λX and λY, we will have different types of
convergence for Xt and Yt:

Condition 1. Suppose that λY = kλX , where k > 1 is a constant.
According to the previous results, if λX → +∞ and v → +∞ in such a manner that

v2

λX
→ σ2

X , then Xt converges weakly to the Wiener process WX(t) with variance σ2
Xt, and Yt

converges weakly to the Wiener process WY(t) with variance σ2
Yt := σ2

X
k t :

Xt →weakly σXWX(t)

Yt →weakly σYWY(t) =
σX√

k
WY(t)

(28)

when v2

λX
→ σ2

X , and WX(t) and WY(t) are two independent Wiener processes.

Condition 2. Suppose that λX 6= λY and Condition 1 is not satisfied. Thus, we need
once more Kac condition, besides v2

λX
→ σ2

X, for the weak convergence of Yt, namely we

suppose that v2

λY
→ σ2

Y when λX → +∞ and v→ +∞. We note that, if this is the case, then:

Xt →weakly σXWX(t)

Yt →weakly σYWY(t),
(29)

and we assume that the two Wiener processes in (29) may be correlated with correlation ρ.

Remark 2. Recent investigations of telegraph processes and their transformations were studied
in [16,18,19].

4.3. Margrabe’s Spread Option Valuations with Two Telegraph Processes

In this subsection, we will evaluate spread option for two assets of spot prices modeled
by two telegraph processes. We follow the approach presented in Section 4.1 above.

We use the following two GBM models for two assets:

dXt = rXtdt + σXXtdWX(t)

dYt = rYtdt + σYYtdWY(t).
(30)

We consider two cases below: (1) the dynamics for two assets in Equation (30) with
Condition 1 and (2) the dynamics for two assets in (30) with Condition 2.

We used the geometric Brownian motion model or exponential model in (30) for a
stock price to make the price positive.
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4.4. Margrabe’s Valuations with Two Telegraph Processes under Condition 1

Suppose that Condition 1 in Section 4.2 is satisfied, i.e., λY = kλX, where k > 1 is
a constant, and if λX → +∞ and v → +∞ in such a manner that v2

λX
→ σ2

X. Thus, we

approximate our volatilities in Equation (30) by σX ≈ v2

λX
and σY ≈ v2

kλX
. Therefore, the

dynamics for two assets in (30) becomes:

dXt = rXtdt + v2

λX
XtdWX(t)

dYt = rYtdt + v2

kλX
YtdWY(t).

(31)

Now, applying the method presented in Section 4.1, we have that the value of the
spread option at time t = 0 is given by:

V(0, X0, Y0) = X0N(d1)−Y0N(d2), (32)

where

d1,2 =
log(X0/Y0)± 1

2 T v2

λX
( k+1

k )

v√
λX

√
T( k+1

k )
. (33)

4.5. Margrabe’s Valuations with Two Telegraph Processes under Condition 2

Suppose that Condition 2 in Section 4.2 is satisfied, i.e., λY 6= λX, and v2

λX
→ σ2

X and
v2

λY
→ σ2

Y when λX → +∞ and v→ +∞.

Now, we approximate our volatilities in (30) by σX ≈ v2

λX
and σY ≈ v2

λY
. Therefore, the

dynamics for two assets in (30) becomes:

dXt = rXtdt + v2

λX
XtdWX(t)

dYt = rYtdt + v2

λY
YtdWY(t),

(34)

where two Wiener processes in Equation (34) are correlated with correlation ρ.
Using the method presented in Section 4.1, the value of the spread option at time t = 0

in this case is:

V(0, X0, Y0) = X0N(d1)−Y0N(d2), (35)

where

d1,2 =
log(X0/Y0)± 1

2 T[ v2

λX
+ v2

λY
− 2ρ v2

√
λXλY

]√
T[ v2

λX
+ v2

λY
− 2ρ v2√

λXλY
]

. (36)

We note that Formulas (35) and (36) are more general than (32) and (33). For instance,
if we take ρ = 0 in (35) and (36), then we obtain exactly (32) and (33).

Remark 3. Combining the two cases with Conditions 1 and 2 with correlated Wiener processes
WX(t) and WY(t), then we can obtain one more case, namely

V(0, X0, Y0) = X0N(d1)−Y0N(d2), (37)

where

d1,2 =
log(X0/Y0)± 1

2 T[ v2

λX
+ v2

kλX
− 2ρ v2

λX
√

k
]√

T[ v2

λX
+ v2

kλX
− 2ρ v2

λX
√

k
]

. (38)
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We note that if ρ = 0, then from Equations (37) and (38) follow Equations (32) and (33).

Remark 4. We should note that European call and put option pricing for stocks prices based on
one telegraph process were studied in [16,18,19].

Remark 5. In terms of market trading patterns, we can say that if the waiting time in each state
for the process ξ(t) increases, then it will represent a low liquidity market, and vice versa, if the
waiting time in each state decreases, then it will represent a high liquidity market. Furthermore, in a
high-frequency and algorithmic trading market structure, our model for a stock price with telegraph
process is more descriptive than the Black–Scholes model.

4.6. Numerical Results for Margrabe Valuations

In this section, we show some numerical examples of the behavior of V(0, X0, Y0) for
different three situations in Formulas (32), (35) and (37). We assume some typical data for
X0, Y0, v, λX, λY, ρ, etc. For instance, we present two plots of Equation (32) in Figure 3 by
varying maturity T and two plots in Figure 4 by varying velocity v:
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Figure 3. Dependence of value of the option V(0, X0, Y0) according to Equation (32) on maturity T
for X0 = 3, Y0 = 2 (left) and X0 = 50, Y0 = 50 (right).

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

 velocity, v

1

1.05

1.1

1.15

1.2

1.25

V
(0

,X
0
,Y

0
)

Function  V(0,X
0
=3,Y

0
=2), 

X
 = 0.01, T = 1

 k = 2

 k = 6

 k = 10

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

 velocity, v

0

2

4

6

8

10

12

14

V
(0

,X
0
,Y

0
)

Function  V(0,X
0
=50,Y

0
=50), 

X
 = 0.01, T = 1

 k = 2

 k = 6

 k = 10

Figure 4. Dependence of value of the option V(0, X0, Y0) according to Equation (32) on velocity v for
X0 = 3, Y0 = 2 (left) and X0 = 50, Y0 = 50 (right).

In Figure 5, we present two plots of Equation (35) by varying maturity T and two plots
in Figure 6 by varying velocity v. In these plots, we also show variations of the correlation
coefficient ρ.
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Figure 6. Dependence of value of the option V(0, X0, Y0) according to Equation (35) on velocity v for
X0 = 3, Y0 = 2 (left) and X0 = 50, Y0 = 50 (right).

In Figure 7, we present two plots of Equation (37) by varying maturity T and correla-
tion coefficient ρ and two plots in Figure 8 by varying velocity v. In these plots, we also
show variations of the correlation coefficient ρ.

Figure 7. Dependence of value of the option V(0, X0, Y0) according to Equation (37) on maturity T
and ρ for X0 = 3, Y0 = 2 and k = 2 (left) and X0 = 50, Y0 = 50 and k = 10 (right).
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Figure 8. Dependence of value of the option V(0, X0, Y0) according to Equation (37) on velocity v and
ρ for X0 = 3, Y0 = 2 and k = 2 (left) and X0 = 50, Y0 = 50 and k = 10 (right).

5. Conclusions and Further Work

In this paper, we studied elastic collisions of two particles with independent random
motion according to telegraph stochastic processes on the real line. We obtained an asymp-
totic estimation of the number of collisions under Kac’s condition for the cases where
the direction-switching processes have the same parameters (symmetric) and different
parameters (asymmetric). We applied numerical techniques for obtaining the inverse
Laplace transform for the mean number of collisions of the two particles, and we found
that such numerical results are consistent with the asymptotic result. As a continuation of
this analysis, we may model collisions of multiple particles moving on the real line where
each of them moves according to an independent telegraph process.

We also considered the financial application of these mathematical results to evaluate
Margrabe’s spread option for two assets of spot prices.

Of course, our models for spread options valuation have some limitations associated
with specific definitions of volatilities for both telegraph processes. Thus, our future work
will be related to the comparative analysis of our model with other already existing models,
such as Black–Scholes, jump-diffusion, etc. Another direction for our future work will be
using real data to calibrate the parameters of the model, such as v, λX , and λY.

Author Contributions: Conceptualization, A.A.P., A.S. and R.M.R.-D.; Formal analysis, A.A.P., A.S.
and R.M.R.-D.; Investigation, A.A.P., A.S. and R.M.R.-D.; Software, R.M.R.-D.; Writing—original
draft, A.A.P.; Writing—review & editing, A.A.P., A.S. and R.M.R.-D. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was partiallt supported by NSERC (NSERC RT732266 project).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The second author thanks NSERC for the continuous support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Harris, T.E. Diffusion with “Collisions” between Particles. J. Appl. Probab. 1965, 2, 323–338. [CrossRef]
2. Frank, S. Uniform Motion with Elastic Collision of an Infinite Particle System. J. Math. Mech. 1969, 18, 973–989.
3. Peter, M.; Domokos, S. On the Effect of Collisions on the Motion of an Atom in R1. Ann. Probab. 1980, 8, 1068–1078.
4. Kirk, E. Correlation in the Energy Markets. In Managing Energy Price Risk; Risk Publications and Enron: London, UK, 1995;

pp. 71–78.
5. Etesami, S.R. Spread Options: From Margrabe to Kirk. 2020. Available online: https://ssrn.com/abstract=3665654 (accessed on

31 May 2022). [CrossRef]

http://doi.org/10.2307/3212197
https://ssrn.com/abstract=3665654
http://dx.doi.org/10.2139/ssrn.3665654


Mathematics 2022, 10, 2201 14 of 14

6. Lo, C.-F. A Simple Derivation of Kirk’s Approximation for Spread Options. Appl. Math. Lett. 2013, 26, 904–907. [CrossRef]
7. Neil, D. An Efficient Approach for Pricing Spread Options. 1999. Available online: https://ssrn.com/abstract=7010 (accessed on

31 May 2022).
8. Choi, J. Sum of all Black–Scholes–Merton models: An efficient pricing method for spread, basket, and Asian options. J. Futur.

Mark. 2018, 38, 627–644. [CrossRef]
9. Li, M.; Deng, S.-J.; Zhou, J. Closed-Form Approximations for Spread Option Prices and Greeks. J. Deriv. Spring 2008, 15, 58–80.

[CrossRef]
10. Carmona R.; Durrleman, V. Pricing and Hedging Spread Options; Working Paper; Princeton University: Princeton, NJ, USA, 2003
11. Pogorui, A.A.; Rodríguez-Dagnino, R.M. One-dimensional semi-Markov evolutions with general Erlang sojourn times. Random

Oper. Stoch. Equ. 2005, 13, 399–405. [CrossRef]
12. Kolomiiets, T.; Pogorui, A.; Rodríguez-Dagnino, R.M. Solution of Systems of Partial Differential Equations by Using Properties of

Monogenic Functions on Commutative Algebras. J. Math. Sci. 2019, 239, 43–50. [CrossRef]
13. Cox D.R. Renewal Theory, Published by Methuen; John Wiley & Sons: London, UK; New York, NY, USA, 1962.
14. Korolyuk, V.S.; Limnios, N. Average and diffusion approximation for evolutionary systems in an asymptotic split phase space.

Ann. Appl. Probab. 2004, 14, 489–516. [CrossRef]
15. Kolesnik, A.D.; Ratanov, N. Telegraph Processes and Option Pricing; Springer: Heidelberg, Germany, 2013; Volume 204, p. 36.
16. Pogorui, A.; Swishchuk, A.; Rodríguez-Dagnino, R.M. Random Motion in Markov and Semi-Markov Random Environment 1:

Homogeneous and Inhomogeneous Random Motions; ISTE Ltd. & Wiley: London, UK, 2021; Volume 1.
17. Margrabe, W. The value to exchange one asset for another. J. Financ. 1978, 33, 177–186. [CrossRef]
18. Pogorui, A.; Swishchuk, A.; Rodríguez-Dagnino, R.M. Random Motion in Markov and Semi-Markov Random Environment 2:

High-Dimensional Random Motions and Financial Applications; ISTE Ltd. & Wiley: London, UK, 2021; Volume 2.
19. Pogorui, A.; Swishchuk, A.; Rodríguez-Dagnino, R.M. Transformations of Telegraph Processes and Their Financial Applications.

Risks 2021, 9, 147. [CrossRef]

http://dx.doi.org/10.1016/j.aml.2013.04.004
https://ssrn.com/abstract=7010
http://dx.doi.org/10.1002/fut.21909
http://dx.doi.org/10.3905/jod.2008.702506
http://dx.doi.org/10.1515/156939705775992420
http://dx.doi.org/10.1007/s10958-019-04286-x
http://dx.doi.org/10.1214/aoap/1075828059
http://dx.doi.org/10.1111/j.1540-6261.1978.tb03397.x
http://dx.doi.org/10.3390/risks9080147

	Introduction
	Integral Equation of the Telegraph Type for the Distribution Density of Random Motion
	The Laplace Transform for the Distribution of the First Collision of Two Telegraph Particles
	Margrabe's Spread Options Valuations with Two Telegraph Processes
	Recap: Margrabe's Spread Options Valuations
	Two Telegraph Processes' Dynamics
	Margrabe's Spread Option Valuations with Two Telegraph Processes
	Margrabe's Valuations with Two Telegraph Processes under Condition 1
	Margrabe's Valuations with Two Telegraph Processes under Condition 2
	Numerical Results for Margrabe Valuations

	Conclusions and Further Work
	References

