A Novel Method for Remaining Useful Life Prediction of Bearing Based on Spectrum Image Similarity Measures
Abstract
:1. Introduction
2. Description of the Proposed Approach
2.1. Image Creation
2.2. Similarity Calculation
2.3. Weight Distribution
2.4. RUL Estimation
3. Experiment and Analysis
3.1. Experimental Setup
3.2. Experimental Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, J.; Azamfar, M.; Li, F.; Lee, J. A systematic review of machine learning algorithms for prognostics and health management of rolling element bearings: Fundamentals, concepts and applications. Meas. Sci. Technol. 2020, 32, 012001. [Google Scholar] [CrossRef]
- Xia, P.C.; Huang, Y.X.; Li, P.; Liu, C.L.; Shi, L. Fault knowledge transfer assisted ensemble method for remaining useful life prediction. IEEE Trans. Ind. Inform. 2022, 18, 1758–1769. [Google Scholar] [CrossRef]
- Deng, F.Y.; Bi, Y.; Liu, Y.Q.; Yang, S.P. Deep-learning-based remaining useful life prediction based on a multi-scale dilated convolution network. Mathematics 2018, 6, 3035. [Google Scholar] [CrossRef]
- Teng, W.; Han, C.; Hu, Y.K.; Cheng, X.; Song, L.; Liu, Y.B. A robust model-based approach for bearing remaining useful life prognosis in wind turbines. IEEE Access 2020, 8, 47133–47143. [Google Scholar] [CrossRef]
- Li, N.P.; Xu, P.C.; Lei, Y.G.; Cai, X.; Kong, D.T. A self-data-driven method for remaining useful life prediction of wind turbines considering continuously varying speeds. Mech. Syst. Signal Process. 2022, 165, 108315. [Google Scholar] [CrossRef]
- Chen, Z.Z.; Cao, S.C.; Mao, Z.J. Remaining useful life estimation of aircraft engines using a modified similarity and supporting vector machine (SVM) approach. Energies 2018, 11, 28. [Google Scholar] [CrossRef] [Green Version]
- Behzad, M.; Arghand, H.A.; Bastami, A.R. Remaining useful life prediction of ball-bearings based on high-frequency vibration features. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2018, 232, 3224–3234. [Google Scholar] [CrossRef]
- Tran, V.T.; Pham, H.T.; Yang, B.S.; Nguyen, T.T. Machine performance degradation assessment and remaining useful life prediction using proportional hazard model and support vector machine. Mech. Syst. Signal Process. 2012, 32, 320–330. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.W.; Cecati, C.; Ding, S.X. A survey of fault diagnosis and fault-tolerant techniques-part I: Fault diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electron. 2015, 62, 3757–3767. [Google Scholar] [CrossRef] [Green Version]
- Gebraeel, N.; Lawley, M.; Liu, R.; Parmeshwaran, V. Residual life predictions from vibration-based degradation signals: A neural network approach. IEEE Trans. Ind. Electron. 2004, 51, 694–700. [Google Scholar] [CrossRef]
- Nistane, V.M.; Harsha, S.P. Prognosis of degradation progress of ball bearings using supervised machine learning. Proc. Inst. Mech. Eng. K J. Mul. 2018, 232, 183–198. [Google Scholar] [CrossRef]
- Mi, L.; Tan, W.; Chen, R. Multi-steps degradation process prediction for bearing based on improved back propagation neural network. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2013, 227, 1544–1553. [Google Scholar] [CrossRef]
- Kacprzynski, G.J.; Sarlashkar, A.; Roemer, M.J.; Hess, A.; Hardman, W. Predicting remaining life by fusing the physics of failure modeling with diagnostics. JOm 2004, 56, 29–35. [Google Scholar] [CrossRef]
- Huang, R.Q.; Xi, L.F.; Li, X.L.; Liu, C.R.; Qiu, H.; Lee, J. Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods. Mech. Syst. Signal Process. 2007, 21, 193–207. [Google Scholar] [CrossRef]
- Zio, E.; Maio, F.D. A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system. Reliab. Eng. Syst. Saf. 2010, 95, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Djeziri, M.A.; Benmoussa, S.; Zio, E. Review on Health Indices Extraction and Trend Modeling for Remaining Useful Life Estimation; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Yu, J.B. Bearing performance degradation assessment using locality preserving projections. Expert Syst. Appl. 2011, 38, 7440–7450. [Google Scholar] [CrossRef]
- Mahamad, A.K.; Saon, S.; Hiyama, T. Predicting remaining useful life of rotating machinery based artificial neural network. Comput. Math. Appl. 2010, 60, 1078–1087. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Li, W.; Qiu, M.Q. Remaining useful life prediction of bearing with vibration signals based on a novel indicator. Shock Vib. 2017, 2017, 8927937. [Google Scholar] [CrossRef] [Green Version]
- Ocak, H.; Loparo, K.A.; Discenzo, F.M. Online tracking of bearing wear using wavelet packet decomposition and probabilistic modeling: A method for bearing prognostics. J. Sound Vib. 2007, 302, 951–961. [Google Scholar] [CrossRef]
- Pan, Y.N.; Chen, J.; Guo, L. Robust bearing performance degradation assessment method based on improved wavelet packet–support vector data description. Mech. Syst. Signal Process 2009, 23, 669–681. [Google Scholar] [CrossRef]
- Dong, S.J.; Yin, S.R.; Tang, B.P.; Chen, L.L.; Luo, T.H. Bearing degradation process prediction based on the support vector machine and Markov model. Shock Vib. 2014, 2014, 717465. [Google Scholar] [CrossRef]
- Widodo, A.; Yang, B.S. Machine health prognostics using survival probability and support vector machine. Expert Syst. Appl. 2011, 38, 8430–8437. [Google Scholar] [CrossRef]
- Chen, X.F.; Shen, Z.J.; He, Z.J.; Sun, C.; Liu, Z.W. Remaining life prognostics of rolling bearing based on relative features and multivariable support vector machine. Proc. Inst. Mech. Eng. C J. Mech. 2013, 227, 2849–2860. [Google Scholar] [CrossRef]
- Tian, Z.G. An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring. J. Intell. Manuf. 2012, 23, 227–237. [Google Scholar] [CrossRef]
- Wu, S.J.; Gebraeel, N.; Lawley, M.A.; Yih, Y. A neural network integrated decision support system for condition-based optimal predictive maintenance policy. IEEE Trans. Syst. Man Cybern. A 2007, 37, 226–236. [Google Scholar] [CrossRef]
- Lee, J.; Ni, J.; Djurdjanovic, D.; Qiu, H.; Liao, H.T. Intelligent prognostics tools and e-maintenance. Comput. Ind. 2006, 57, 476–489. [Google Scholar] [CrossRef]
- Liu, Z.J.; Li, Q.; Liu, X.H.; Mu, C.D. A hybrid LSSVR/HMM-based prognostic approach. Sensors 2013, 13, 5542–5560. [Google Scholar] [CrossRef] [Green Version]
- Soualhi, A.; Razik, H.; Clerc, G.; Doan, D.D. Prognosis of bearing failures using hidden Markov models and the adaptive neuro-fuzzy inference system. IEEE Trans. Ind. Electron. 2014, 61, 2864–2874. [Google Scholar] [CrossRef]
- Tobon-Mejia, D.A.; Medjaher, K.; Zerhouni, N.; Tripot, G. A data-driven failure prognostics method based on mixture of Gaussians hidden Markov models. IEEE Trans. Reliab. 2012, 61, 491–503. [Google Scholar] [CrossRef] [Green Version]
- Niu, G.; Qian, F.; Choi, B.K. Bearing life prognosis based on monotonic feature selection and similarity modeling. Proc. Inst. Mech. Eng. C J. Mech. 2016, 230, 3183–3193. [Google Scholar] [CrossRef]
- Lin, J.S.; Dou, C.H. A novel method for condition monitoring of rotating machinery based on statistical linguistic analysis and weighted similarity measures. J. Sound Vib. 2017, 390, 272–288. [Google Scholar] [CrossRef]
- Li, W.; Qiu, M.Q.; Zhu, Z.C.; Wu, B.; Zhou, G.B. Bearing fault diagnosis based on spectrum images of vibration signals. Meas. Sci. Technol. 2016, 27, 035005. [Google Scholar] [CrossRef] [Green Version]
- Nectoux, P.; Gouriveau, R.; Medjaher, K.; Ramasso, E.; Morello, B.; Zerhouni, N.; Varnier, C. PRONOSTIA: An Experimental Platform for Bearings Accelerated Life Test. In Proceedings of the IEEE International Conference on Prognostics and Health Management, Denver, CO, USA, 18–21 June 2012; pp. 1–8. [Google Scholar]
- Li, N.P.; Lei, Y.G.; Lin, J.; Ding, S.X. An improved exponential model for predicting remaining useful life of rolling element barings. IEEE Trans. Ind. Electron. 2015, 62, 7762–7773. [Google Scholar] [CrossRef]
- Qiu, M.Q.; Li, W.; Jiang, F.; Zhu, Z.C. Remaining useful life estimation for rolling bearing with SIOS-based indicator and particle filtering. IEEE Access 2018, 6, 24521–24532. [Google Scholar] [CrossRef]
- Saxena, A.; Celaya, J.; Balaban, E.; Goebel, K.; Saha, B.; Saha, S.; Schwabacher, M. Metrics for Evaluating Performance of Prognostic Techniques. In Proceedings of the 2008 International Conference on Prognostics and Health Management (PHM), Denver, CO, USA, 6–9 October 2008; pp. 1–17. [Google Scholar]
- Saxena, A.; Celaya, J.; Saha, B.; Saha, S.; Goebel, K. Metrics for offline evaluation of prognostic performance. Int. J. Progn. Health Manag. 2010, 1, 4–23. [Google Scholar] [CrossRef]
Metric | With Spectrum Image | With Spectral Line | The Proposed Method |
---|---|---|---|
RMSE | 248.24 | 1093.74 | 62.98 |
MAPE | 0.36% | 2.43% | 0.21% |
Convergence | 400.94 | 1112.38 | 141.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Zhang, B.; Li, W.; Jiang, F. A Novel Method for Remaining Useful Life Prediction of Bearing Based on Spectrum Image Similarity Measures. Mathematics 2022, 10, 2209. https://doi.org/10.3390/math10132209
Wu B, Zhang B, Li W, Jiang F. A Novel Method for Remaining Useful Life Prediction of Bearing Based on Spectrum Image Similarity Measures. Mathematics. 2022; 10(13):2209. https://doi.org/10.3390/math10132209
Chicago/Turabian StyleWu, Bo, Bo Zhang, Wei Li, and Fan Jiang. 2022. "A Novel Method for Remaining Useful Life Prediction of Bearing Based on Spectrum Image Similarity Measures" Mathematics 10, no. 13: 2209. https://doi.org/10.3390/math10132209
APA StyleWu, B., Zhang, B., Li, W., & Jiang, F. (2022). A Novel Method for Remaining Useful Life Prediction of Bearing Based on Spectrum Image Similarity Measures. Mathematics, 10(13), 2209. https://doi.org/10.3390/math10132209