Analysis of a Stochastic Inventory Model on Random Environment with Two Classes of Suppliers and Impulse Customers
Abstract
:1. Introduction
1.1. Research Gap
1.2. The Perspective of This Work
2. Mathematical Framework of the Model
3. Model Analysis
- : The number of customers in the orbit of infinite size waiting place at time t.
- : The state of random environment at time t.
- : The number of items in the inventory at time t.
- : Phase of the arrival process at time t.
4. Joint Probability Distribution under Steady State
4.1. Stability Condition
4.2. Steady-State Probability Vector
5. A Few Significant System Peculiarities
- Mean inventory level, is given by
- Mean reorder for temporary supplier, is given by
- Mean reorder for regular supplier, is given by
- Mean number of customers in the orbit
- Mean loss rate of arrival of impulse customers
- Expected number of time the replenishment is to be done from temporary supplier
- Expected number of time the replenishment is to be done from regular supplier
- Overall retrial rate
- Success retrial rate
- Fractional success retrial rate
Construction of the Cost Feature
6. Numerical Analysis
- Hyper-exponential(HEX):
- Negative Correlation (NC):
- Positive Correlation (PC):
Results and Discussion
- We discuss the behavior of the cost function of two variables, , under hyper-exponential distribution. The values are divulged in bold in each column to indicate the minimum cost rate, whereas the least cost rate is specified in each row by underlining the values. As a result, a value (bold and underlined) represents the local minimum of the function . At = 28 and = 5, the optimal cost value = 5.7025. The function is convex, as shown in Table 1 and Figure 1. Figure 2 depicts a contour plot of the total cost function, which also demonstrates that the function is convex.
- Figure 7 compares the lead time rate of temporary () and regular () suppliers with their total expected cost value. Here, the total expected cost value decreases whenever and rates are increased.
- Table 2 shows that when increasing the lead time rate of the temporary supplier () increases the optimal cost value , whereas when increasing the lead time rate of the regular supplier () decreases the . The for the lead time rates of two suppliers decreases as the maximum inventory level (S) increases.
- As shown in Table 5, when s and s values rise, the mean inventory level () rises, but the mean number of customers in the orbit () and the mean loss rate of arrival of impulse customers () decreases.
7. Conclusions
7.1. Limitations
- This study deals with impulse customers and the probability of customers who may buy an item, and the complementary probability . Assuming the probability value is zero, in this case, not all incoming customers will purchase the item, which does not always happen in real-life situations.
- The sum of the fixed probability distribution values must be one.
7.2. Future Directions
- We will discuss multi-server with phase-type distribution for service.
- We plan to investigate multi-suppliers.
- We plan to study RE use with payment mode.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Notations and Abbreviations
The element of submatrix at (i,j) the position of A. | |
Zero matrix. | |
Identity matrix of appropriate dimension. | |
Identity matrix of dimension m. | |
A column vector of 1’s appropriate dimension. | |
Kronecker product of matrices A and B. | |
Kronecker sum of matrices A and B. | |
RE | Random Envirnonment. |
MAP | Markovian Arrival Process. |
References
- Soujanyaa, M.L.; Laxmi, P.V. Analysis on Dual Supply Inventory Model having Negative Arrivals and Finite Life Time Inventory. Reliab. Theory Appl. 2021, 16, 295–301. Available online: http://www.gnedenko.net/RTA/index.php/rta/article/view/778 (accessed on 28 April 2022).
- Yang, M.F.; Tseng, W.C. Three-echelon inventory model with permissible delay in payments under controllable lead time and backorder consideration. Math. Probl. Eng. 2014, 2014, 809149. [Google Scholar] [CrossRef]
- Anbazhagan, N.; Arivarignan, G. Two-commodity inventory system with individual and joint ordering policies. Int. J. Manag. Syst. 2003, 19, 129–144. [Google Scholar]
- Sivakumar, B.; Anbazhagan, N.; Arivarignan, G. Two-commodity inventory system with individual and joint ordering policies and renewal demands. Stoch. Anal. Appl. 2007, 25, 1217–1241. [Google Scholar] [CrossRef]
- Anbazhagan, N.; Kumaresan, V. Coordinated and joint ordering policies for two commodity inventory system. Iran. J. Oper. Res. 2012, 3, 94–105. [Google Scholar]
- Anbazhagan, N.; Arivarignan, G. Two commodity continuous review inventory system with coordinated reorder policy. Int. J. Inf. Manag. Sci. 2000, 11, 19–30. [Google Scholar]
- Kim, C.; Dudin, S. Analysis of BMAP(r)/M(r)/N(r) Type Queueing System Operating in Random Environment. J. Korean Inst. Ind. Eng. 2016, 42, 30–37. [Google Scholar]
- Kim, C.; Dudin, A.; Dudin, S.; Dudina, O. Analysis of an MMAP/PH1,PH2/N/∞ queueing system operating in a random environment. Int. J. Appl. Math. Comput. Sci. 2014, 24, 485–501. [Google Scholar] [CrossRef] [Green Version]
- Dudin, A.N.; Nazarov, A.A. The MMAP/M/R/0 queueing system with reservation of servers operating in a random environment. Probl. Inf. Transm. 2015, 51, 289–298. [Google Scholar] [CrossRef]
- Kim, C.; Dudin, A.; Dudina, O.; Kim, J. Queueing system operating in random environment as a model of a cell operation. Ind. Eng. Manag. Syst. 2016, 15, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.S.; Dudin, A.; Klimenok, V.; Khramova, V. Performance analysis of multi-server queueing system operating under control of a random environment. In Trends in Telecommunications Technologies; Christos, J.B., Ed.; IntechOpen: London, UK, 2010; ISBN 978-953-307-072-8. [Google Scholar]
- Kim, C.S.; Dudin, A.; Klimenok, V.; Khramova, V. Erlang loss queueing system with batch arrivals operating in a random environment. Comput. Oper. Res. 2009, 36, 674–697. [Google Scholar] [CrossRef]
- Kim, C.; Klimenok, V.; Lee, S.; Dudin, A. The BMAP/PH/1 retrial queueing system operating in random environment. J. Stat. Plan. Inference 2007, 137, 3904–3916. [Google Scholar] [CrossRef]
- Dudin, A.; Kim, C.S.; Dudin, S.; Dudina, O. Priority Retrial Queueing Model Operating in Random Environment with Varying Number and Reservation of Servers. Appl. Math. Comput. 2015, 269, 674–690. [Google Scholar] [CrossRef]
- Lucantoni, D. New results on the single server queue with a batch Markovian arrival process. Commun. Stat. Stoch. Model. 1991, 7, 1–46. [Google Scholar] [CrossRef]
- Nair, S.S.; Jose, K.P.A. PH Distributed Production Inventory Model with Different Modes of Service and MAP Arrivals. In Applied Probability and Stochastic Processes; Infosys Science Foundation Series; Springer: Singapore, 2020. [Google Scholar]
- Punalal, J.; Babu, S. The MAP/(PH, PH, PH)/1 Model with Self-Generation of Priorities, Customer Induced Interruption and Retrial of Customers. In Applied Probability and Stochastic Processes; Infosys Science Foundation Series; Springer: Singapore, 2020. [Google Scholar]
- Lee, S.; Dudin, S.; Dudina, O.; Kim, C.; Klimenok, V. A Priority Queue with Many Customer Types, Correlated Arrivals and Changing Priorities. Mathematics 2020, 8, 1292. [Google Scholar] [CrossRef]
- Klimenok, V.; Dudin, A.; Dudina, O.; Kochetkova, I. Queuing System with Two Types of Customers and Dynamic Change of a Priority. Mathematics 2020, 8, 824. [Google Scholar] [CrossRef]
- Kim, C.; Dudin, S.; Taramin, O.; Baek, J. Queueing system MAP|PH|N|N+R with impatient heterogeneous customers as a model of call center. Appl. Math. Model. 2013, 37, 958–976. [Google Scholar] [CrossRef]
- He, Q.-M. The Versatility of MMAP[K] and the MMAP[K]/G[K]/1 Queue. Queueing Syst. 2001, 38, 397–418. [Google Scholar] [CrossRef]
- Krishnamoorthy, A.; Joshua, A.N.; Kozyrev, D. Analysis of a Batch Arrival, Batch Service Queuing-Inventory System with Processing of Inventory While on Vacation. Mathematics 2021, 9, 419. [Google Scholar] [CrossRef]
- Neuts, M.F. Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach; Dover Publication: New York, NY, USA, 1994. [Google Scholar]
- Latouche, G.; Ramaswami, V. Introduction to Matrix Analytic Methods in Stochastic Modeling; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 1999. [Google Scholar] [CrossRef]
S/s | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|
24 | 5.8251 | 5.7887 | 5.7691 | 5.7673 | 5.7848 | 5.8239 | 5.8884 |
26 | 5.7800 | 5.7462 | 5.7260 | 5.7200 | 5.7290 | 5.7544 | 5.7985 |
28 | 5.7609 | 5.7302 | 5.7106 | 5.7025 | 5.7063 | 5.7230 | 5.7540 |
30 | 5.7634 | 5.7357 | 5.7173 | 5.7083 | 5.7090 | 5.7200 | 5.7422 |
32 | 5.7838 | 5.7590 | 5.7421 | 5.7329 | 5.7317 | 5.7389 | 5.7551 |
34 | 5.8194 | 5.7973 | 5.7818 | 5.7729 | 5.7707 | 5.7753 | 5.7872 |
S = 14 | S = 16 | S = 18 | S = 20 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1 | 6.6730 | 0.7 | 6.8189 | 0.1 | 6.3526 | 0.7 | 6.4803 | 0.1 | 6.1278 | 0.7 | 6.2380 | 0.1 | 5.9690 | 0.7 | 6.0646 |
0.2 | 6.7730 | 0.8 | 6.7955 | 0.2 | 6.4317 | 0.8 | 6.4552 | 0.2 | 6.1905 | 0.8 | 6.2132 | 0.2 | 6.0202 | 0.8 | 6.0414 |
0.3 | 6.8334 | 0.9 | 6.7730 | 0.3 | 6.4740 | 0.9 | 6.4317 | 0.3 | 6.2207 | 0.9 | 6.1905 | 0.3 | 6.0434 | 0.9 | 6.0202 |
0.4 | 6.8689 | 1.0 | 6.7516 | 0.4 | 6.4952 | 1.0 | 6.4099 | 0.4 | 6.2336 | 1.0 | 6.1697 | 0.4 | 6.0527 | 1.0 | 6.0009 |
0.5 | 6.8892 | 1.1 | 6.7315 | 0.5 | 6.5048 | 1.1 | 6.3897 | 0.5 | 6.2381 | 1.1 | 6.1505 | 0.5 | 6.0558 | 1.1 | 5.9832 |
0.6 | 6.9002 | 1.2 | 6.7125 | 0.6 | 6.5081 | 1.2 | 6.3710 | 0.6 | 6.2385 | 1.2 | 6.1330 | 0.6 | 6.0562 | 1.2 | 5.9671 |
S = 22 | S = 24 | S = 26 | S = 28 | ||||||||||||
0.1 | 5.8583 | 0.7 | 5.9431 | 0.1 | 5.7839 | 0.7 | 5.8619 | 0.1 | 5.7377 | 0.7 | 5.8129 | 0.1 | 5.7142 | 0.7 | 5.7903 |
0.2 | 5.9024 | 0.8 | 5.9217 | 0.2 | 5.8251 | 0.8 | 5.8426 | 0.2 | 5.7800 | 0.8 | 5.7956 | 0.2 | 5.7609 | 0.8 | 5.7748 |
0.3 | 5.9230 | 0.9 | 5.9024 | 0.3 | 5.8464 | 0.9 | 5.8251 | 0.3 | 5.8044 | 0.9 | 5.7800 | 0.3 | 5.7902 | 0.9 | 5.7609 |
0.4 | 5.9320 | 1.0 | 5.8848 | 0.4 | 5.8573 | 1.0 | 5.8093 | 0.4 | 5.8185 | 1.0 | 5.7659 | 0.4 | 5.8083 | 1.0 | 5.7484 |
0.5 | 5.9360 | 1.1 | 5.8689 | 0.5 | 5.8635 | 1.1 | 5.7950 | 0.5 | 5.8277 | 1.1 | 5.7531 | 0.5 | 5.8207 | 1.1 | 5.7371 |
0.6 | 5.9379 | 1.2 | 5.8543 | 0.6 | 5.8678 | 1.2 | 5.7820 | 0.6 | 5.8345 | 1.2 | 5.7415 | 0.6 | 5.8300 | 1.2 | 5.7268 |
S = 14 | S = 16 | S = 18 | S = 20 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25 | 6.4712 | 10 | 6.5893 | 25 | 6.1603 | 10 | 6.2936 | 25 | 5.9435 | 10 | 6.0855 | 25 | 5.7932 | 10 | 5.9397 |
26 | 6.5718 | 11 | 6.6260 | 26 | 6.2508 | 11 | 6.3212 | 26 | 6.0258 | 11 | 6.1065 | 26 | 5.8688 | 11 | 5.9558 |
27 | 6.6724 | 12 | 6.6628 | 27 | 6.3412 | 12 | 6.3488 | 27 | 6.1082 | 12 | 6.1275 | 27 | 5.9445 | 12 | 5.9719 |
28 | 6.7730 | 13 | 6.6995 | 28 | 6.4317 | 13 | 6.3765 | 28 | 6.1905 | 13 | 6.1485 | 28 | 6.0202 | 13 | 5.9880 |
29 | 6.8736 | 14 | 6.7363 | 29 | 6.5221 | 14 | 6.4041 | 29 | 6.2729 | 14 | 6.1695 | 29 | 6.0958 | 14 | 6.0041 |
30 | 6.9742 | 15 | 6.7730 | 30 | 6.6126 | 15 | 6.4317 | 30 | 6.3552 | 15 | 6.1905 | 30 | 6.1715 | 15 | 6.0202 |
31 | 7.0749 | 16 | 6.8098 | 31 | 6.7030 | 16 | 6.4593 | 31 | 6.4376 | 16 | 6.2115 | 31 | 6.2472 | 16 | 6.0363 |
32 | 7.1755 | 17 | 6.8465 | 32 | 6.7935 | 17 | 6.4869 | 32 | 6.5199 | 17 | 6.2325 | 32 | 6.3228 | 17 | 6.0524 |
33 | 7.2761 | 18 | 6.8832 | 33 | 6.8839 | 18 | 6.5145 | 33 | 6.6023 | 18 | 6.2535 | 33 | 6.3985 | 18 | 6.0685 |
34 | 7.3767 | 19 | 6.9200 | 34 | 6.9744 | 19 | 6.5421 | 34 | 6.6846 | 19 | 6.2745 | 34 | 6.4742 | 19 | 6.0846 |
35 | 7.4773 | 20 | 6.9567 | 35 | 7.0648 | 20 | 6.5697 | 35 | 6.7670 | 20 | 6.2955 | 35 | 6.5498 | 20 | 6.1007 |
S = 22 | S = 24 | S = 26 | S = 28 | ||||||||||||
25 | 5.6923 | 10 | 5.8403 | 25 | 5.6297 | 10 | 5.7769 | 25 | 5.5974 | 10 | 5.7425 | 25 | 5.5896 | 10 | 5.7316 |
26 | 5.7624 | 11 | 5.8527 | 26 | 5.6948 | 11 | 5.7866 | 26 | 5.6582 | 11 | 5.7500 | 26 | 5.6467 | 11 | 5.7375 |
27 | 5.8324 | 12 | 5.8651 | 27 | 5.7600 | 12 | 5.7962 | 27 | 5.7191 | 12 | 5.7575 | 27 | 5.7038 | 12 | 5.7433 |
28 | 5.9024 | 13 | 5.8775 | 28 | 5.8251 | 13 | 5.8058 | 28 | 5.7800 | 13 | 5.7650 | 28 | 5.7609 | 13 | 5.7492 |
29 | 5.9724 | 14 | 5.8900 | 29 | 5.8903 | 14 | 5.8155 | 29 | 5.8409 | 14 | 5.7725 | 29 | 5.8180 | 14 | 5.7551 |
30 | 6.0424 | 15 | 5.9024 | 30 | 5.9554 | 15 | 5.8251 | 30 | 5.9018 | 15 | 5.7800 | 30 | 5.8751 | 15 | 5.7609 |
31 | 6.1124 | 16 | 5.9148 | 31 | 6.0206 | 16 | 5.8348 | 31 | 5.9626 | 16 | 5.7875 | 31 | 5.9323 | 16 | 5.7668 |
32 | 6.1825 | 17 | 5.9273 | 32 | 6.0857 | 17 | 5.8444 | 32 | 6.0235 | 17 | 5.7950 | 32 | 5.9894 | 17 | 5.7727 |
33 | 6.2525 | 18 | 5.9397 | 33 | 6.1508 | 18 | 5.8540 | 33 | 6.0844 | 18 | 5.8025 | 33 | 6.0465 | 18 | 5.7785 |
34 | 6.3225 | 19 | 5.9521 | 34 | 6.2160 | 19 | 5.8637 | 34 | 6.1453 | 19 | 5.8100 | 34 | 6.1036 | 19 | 5.7844 |
35 | 6.3925 | 20 | 5.9645 | 35 | 6.2811 | 20 | 5.8733 | 35 | 6.2062 | 20 | 5.8175 | 35 | 6.1607 | 20 | 5.7903 |
= 0.1 | = 0.2 | ||||||||||
8 | 9 | 10 | 11 | 12 | 8 | 9 | 10 | 11 | 12 | ||
5 | 4.6560 | 4.6566 | 4.6572 | 4.6578 | 4.6584 | 6.3673 | 6.3679 | 6.3685 | 6.3691 | 6.3697 | |
6 | 4.8806 | 4.8812 | 4.8818 | 4.8824 | 4.8830 | 6.5919 | 6.5925 | 6.5931 | 6.5936 | 6.5942 | |
7 | 5.1051 | 5.1057 | 5.1063 | 5.1069 | 5.1075 | 6.8164 | 6.8170 | 6.8176 | 6.8182 | 6.8188 | |
8 | 5.3297 | 5.3303 | 5.3309 | 5.3315 | 5.3321 | 7.0410 | 7.0416 | 7.0422 | 7.0428 | 7.0433 | |
9 | 5.5543 | 5.5549 | 5.5554 | 5.5560 | 5.5566 | 7.2655 | 7.2661 | 7.2667 | 7.2673 | 7.2679 | |
10 | 5.7788 | 5.7794 | 5.7800 | 5.7806 | 5.7812 | 7.4901 | 7.4907 | 7.4913 | 7.4919 | 7.4925 | |
11 | 6.0034 | 6.0040 | 6.0046 | 6.0051 | 6.0057 | 7.7146 | 7.7152 | 7.7158 | 7.7164 | 7.7170 | |
12 | 6.2279 | 6.2285 | 6.2291 | 6.2297 | 6.2303 | 7.9392 | 7.9398 | 7.9404 | 7.9410 | 7.9416 | |
13 | 6.4525 | 6.4531 | 6.4537 | 6.4543 | 6.4548 | 8.1638 | 8.1644 | 8.1649 | 8.1655 | 8.1661 | |
14 | 6.6770 | 6.6776 | 6.6782 | 6.6788 | 6.6794 | 8.3883 | 8.3889 | 8.3895 | 8.3901 | 8.3907 | |
15 | 6.9016 | 6.9022 | 6.9028 | 6.9034 | 6.9040 | 8.6129 | 8.6135 | 8.6141 | 8.6146 | 8.6152 | |
= 0.3 | = 0.4 | ||||||||||
8 | 9 | 10 | 11 | 12 | 8 | 9 | 10 | 11 | 12 | ||
5 | 8.0786 | 8.0792 | 8.0798 | 8.0804 | 8.0810 | 9.7899 | 9.7905 | 9.7911 | 9.7916 | 9.7922 | |
6 | 8.3032 | 8.3037 | 8.3043 | 8.3049 | 8.3055 | 10.0144 | 10.0150 | 10.0156 | 10.0162 | 10.0168 | |
7 | 8.5277 | 8.5283 | 8.5289 | 8.5295 | 8.5301 | 10.2390 | 10.2396 | 10.2402 | 10.2408 | 10.2414 | |
8 | 8.7523 | 8.7529 | 8.7534 | 8.7540 | 8.7546 | 10.4635 | 10.4641 | 10.4647 | 10.4653 | 10.4659 | |
9 | 8.9768 | 8.9774 | 8.9780 | 8.9786 | 8.9792 | 10.6881 | 10.6887 | 10.6893 | 10.6899 | 10.6905 | |
10 | 9.2014 | 9.2020 | 9.2026 | 9.2031 | 9.2037 | 10.9127 | 10.9132 | 10.9138 | 10.9144 | 10.9150 | |
11 | 9.4259 | 9.4265 | 9.4271 | 9.4277 | 9.4283 | 11.1372 | 11.1378 | 11.1384 | 11.1390 | 11.1396 | |
12 | 9.6505 | 9.6511 | 9.6517 | 9.6523 | 9.6528 | 11.3618 | 11.3624 | 11.3629 | 11.3635 | 11.3641 | |
13 | 9.8750 | 9.8756 | 9.8762 | 9.8768 | 9.8774 | 11.5863 | 11.5869 | 11.5875 | 11.5881 | 11.5887 | |
14 | 10.0996 | 10.1002 | 10.1008 | 10.1014 | 10.1020 | 11.8109 | 11.8115 | 11.8121 | 11.8126 | 11.8132 | |
15 | 10.3241 | 10.3247 | 10.3253 | 10.3259 | 10.3265 | 12.0354 | 12.0360 | 12.0366 | 12.0372 | 12.0378 |
S = 20 | S = 22 | S = 24 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
s | s | s | |||||||||
2 | 13.0196 | 0.0013 | 0.2345 | 2 | 14.3643 | 0.0010 | 0.2309 | 2 | 15.7293 | 0.0008 | 0.2276 |
3 | 13.2335 | 0.0009 | 0.2285 | 3 | 14.5581 | 0.0007 | 0.2256 | 3 | 15.9029 | 0.0005 | 0.2229 |
4 | 13.4608 | 0.0006 | 0.2232 | 4 | 14.7655 | 0.0004 | 0.2210 | 4 | 16.0901 | 0.0003 | 0.2188 |
5 | 13.7039 | 0.0004 | 0.2187 | 5 | 14.9896 | 0.0003 | 0.2170 | 5 | 16.2942 | 0.0002 | 0.2153 |
6 | 13.9615 | 0.0003 | 0.2150 | 6 | 15.2305 | 0.0002 | 0.2137 | 6 | 16.5161 | 0.0002 | 0.2124 |
7 | 14.2286 | 0.0002 | 0.2120 | 7 | 15.4855 | 0.0001 | 0.2109 | 7 | 16.7548 | 0.0001 | 0.2100 |
8 | 14.4968 | 0.0001 | 0.2095 | 8 | 15.7494 | 0.0001 | 0.2087 | 8 | 17.0071 | 0.0001 | 0.2080 |
S = 26 | S = 28 | S = 30 | |||||||||
s | s | s | |||||||||
2 | 17.1128 | 0.0006 | 0.2246 | 2 | 18.5131 | 0.0005 | 0.2218 | 2 | 19.9282 | 0.0004 | 0.2193 |
3 | 17.2671 | 0.0004 | 0.2204 | 3 | 18.6490 | 0.0003 | 0.2182 | 3 | 20.0472 | 0.0002 | 0.2161 |
4 | 17.4343 | 0.0003 | 0.2168 | 4 | 18.7972 | 0.0002 | 0.2150 | 4 | 20.1776 | 0.0002 | 0.2133 |
5 | 17.6181 | 0.0002 | 0.2137 | 5 | 18.9612 | 0.0001 | 0.2123 | 5 | 20.3228 | 0.0001 | 0.2109 |
6 | 17.8201 | 0.0001 | 0.2112 | 6 | 19.1431 | 0.0001 | 0.2100 | 6 | 20.4850 | 0.0001 | 0.2089 |
7 | 18.0401 | 0.0001 | 0.2090 | 7 | 19.3434 | 0.0001 | 0.2081 | 7 | 20.6654 | 0.0000 | 0.2073 |
8 | 18.2766 | 0.0001 | 0.2072 | 8 | 19.5616 | 0.0000 | 0.2065 | 8 | 20.8642 | 0.0000 | 0.2059 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinitha, V.; Anbazhagan, N.; Amutha, S.; Jeganathan, K.; Shrestha, B.; Song, H.-K.; Joshi, G.P.; Moon, H. Analysis of a Stochastic Inventory Model on Random Environment with Two Classes of Suppliers and Impulse Customers. Mathematics 2022, 10, 2235. https://doi.org/10.3390/math10132235
Vinitha V, Anbazhagan N, Amutha S, Jeganathan K, Shrestha B, Song H-K, Joshi GP, Moon H. Analysis of a Stochastic Inventory Model on Random Environment with Two Classes of Suppliers and Impulse Customers. Mathematics. 2022; 10(13):2235. https://doi.org/10.3390/math10132235
Chicago/Turabian StyleVinitha, V., N. Anbazhagan, S. Amutha, K. Jeganathan, Bhanu Shrestha, Hyoung-Kyu Song, Gyanendra Prasad Joshi, and Hyeonjoon Moon. 2022. "Analysis of a Stochastic Inventory Model on Random Environment with Two Classes of Suppliers and Impulse Customers" Mathematics 10, no. 13: 2235. https://doi.org/10.3390/math10132235
APA StyleVinitha, V., Anbazhagan, N., Amutha, S., Jeganathan, K., Shrestha, B., Song, H. -K., Joshi, G. P., & Moon, H. (2022). Analysis of a Stochastic Inventory Model on Random Environment with Two Classes of Suppliers and Impulse Customers. Mathematics, 10(13), 2235. https://doi.org/10.3390/math10132235