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Abstract

:

This paper explores the random environment with two classes of suppliers and impulse customers. The system’s greatest inventory size is S, and it has an infinitely large orbit. In this case, there are two categories of suppliers: temporary suppliers and regular suppliers. Whenever the inventory approaches r, we place on order   Q 1   (=  S − r  ) unit items to a temporary supplier. Similarly, when the inventory level drops to s (<   Q 1  < r  ), we place an order for   Q 2   (=  S − s > s + 1  ) units of items to our regular supplier. Two types of suppliers’ lead times are considered to be exponentially distributed. Here, the customers who arrive from different states of the random environment (RE) are followed by the Markovian arrival process. If there is no inventory in the system when the customer arrives, they are automatically assigned to an orbit. The model was examined in steady state by using the matrix-analytic approach. Finally, the numerical examples for our structural model are discussed.
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1. Introduction


Inventory management faces many replenishment difficulties. If the supplier’s activities are affected during replenishment, customers may be unable to get vital supplies. As a result, we use two suppliers, referred to in this paper as “regular suppliers” and “temporary suppliers”. For instance, let’s consider textile shops. The system always gives the order to the regular supplier, but the temporary supplier supplies trending dresses, so the system decides to make a trial for a temporary supplier at the same time to ensure the system doesn’t lose the regular supplier. Good connections with servers and customers are among these objectives, and customers should avoid being sent back due to inventory shortage and helping to minimise the total cost. Following that, all arriving customers have the option of purchasing or not purchasing their items after the detailed inquiries in N different states of random environment (RE) in this paper.



Soujanyaa and Vijaya Laxmi [1] investigated perishable inventory systems with dual supply chains and negative customers. They considered the lead time and perishable rate to be exponentially distributed, the arrival process followed by Poisson, and found a limiting time distribution. Finally, they demonstrate numerical examples for cost rate function and system performance parameters. Yang and Tseng [2] considered a three-echelon inventory model with a backorder and permissible delay in payments under a controllable lead time. The queueing-inventory system literature has more ordering policies such as [3,4,5,6].



The system’s behavior is determined by the current state of the Markovian random process with a finite state space. The technique of this operation in a fixed state is called a “random environment”. The system makes an effort to avoid crowds while also being mindful of not losing customers. The system also has several modalities for receiving the demand. This effort helps to satisfy all the customers without any customer accumulation. Kim and Dudin [7] considered a multi-server and impatient customer in the queueing system with a random environment. The service time is a phase-type distribution. They derived ergodicity conditions for this system with an infinite buffer. Some numerical results are presented. Kim et al. [8] investigated a multi-server queueing system and two types of customers with infinite buffers. The system is operating in a random environment, and the arrival stream is marked as a Markovian arrival process. Non-preemptive priority is given to type 1 customers over type 2 customers. The service time for two types of customers has a phase-type distribution with different parameters. The correlation in the arrival process is depicted numerically in the section.



In this article, we consider the arrival process as MAP under the fixed state of a random environment. Whenever the states of a random environment are changed, the parameters of the arrival flow and retrying flow are changed as well. Here, we give some reviews about the random environment (see [9,10,11,12,13,14]). In the 1970s, Neuts introduced the Versatile Markovian Point Process (VMPP) as the Markovian arrival process. The VMPP had extensive notations when it was first developed; however, it was considerably simplified by Lucantoni [15], and this process has been known as the Markovian arrival process ever since. The Markovian arrival process was greatly vetted in the literature [16,17,18,19,20,21]. See Krishnamurthy et al. [22] for details on the batch Markovian arrival process in the queueing-inventory system.



In this paper, all the arriving customers go into orbit at inventory level zero, and the arriving customers from orbit may or may not buy the product. For example, customers wait for the trending dresses at a nearby textile shop. At the textile shop, after coming across the trending dresses, the customer went to the shop, but the dress colour or size did not fit the customer. At that point, the customer didn’t buy the product and left the system. The responses to the last poll inspired our investigation, and there is no research into random environments with two supply chains to the best of our knowledge.



1.1. Research Gap


The authors above work with RE in the queuing system. This article examines RE in the inventory. The authors above handle the two-echelon chain, and both orders are obtained. In this article, we place an order with a temporary supplier, in case we have not received the order from the temporary supplier when the inventory level has reached some reordering point, we cancel that order and place the order with our regular supplier.




1.2. The Perspective of This Work


The model representation of the stochastic inventory model with two classes of suppliers and impulse customers on RE is portrayed in Section 2. In Section 3 the model analysis is portayed. The joint probability distribution of the number of customers in the orbit of infinite size, and the inventory level is evaluated in Section 4. We measure some important system peculiarities and construct the cost function in Section 5. Some numerical examples are provided in Section 6 and, finally, we describe a conclusion in Section 7.





2. Mathematical Framework of the Model


In this section, we discuss the random environment in the stochastic inventory system with two classes of suppliers named “temporary suppliers” and “regular suppliers”. In this system, an infinite-sized orbit is added, and here there is no waiting space attached to the system. The system has a maximum S units of items. Whenever the inventory level approaches r, we place an order with the temporary supplier for   Q 1   items, where    Q 1  = S − r  . Similarly, whenever the inventory level reaches   s ( s <  Q 1  < r )  , we will order    Q 2  = S − s  ( > s + 1 )    items to the regular supplier and immediately cancel the order for   Q 1   items from the temporary supplier. Both lead times of temporary and regular suppliers are exponentially distributed with   β 1   and   β 2   respectively.



The customers arrive according to a Markovian arrival process (MAP) from N different states of RE. Customers who require a single item have the option to choose any arrival mode (state) of the RE. The behaviour of the model depends on the state of the RE. The RE is used on the stochastic process    J 2   ( t )   , which is an irreducible continuous time Markov chain with the state space   { 1 , 2 , … , N }   and the infinitesimal generator H. The stationary row vector   η 1   of the RE is to be obtained by using    η 1  H = 0 ,   η 1  e = 1 .   The underlying Markov chain    J 4   ( t )    of the MAP has a generator   D  (  j 2  )   , which is a square matrix of dimension m with    D  (  j 2  )   =  D 0  (  j 2  )   +  D 1  (  j 2  )     in a fixed state    j 2   ( = 1 , 2 , … , N )   . In this case,   D 0  (  j 2  )    denotes no arrival matrix of size m and   D 1  (  j 2  )    denotes an arrival matrix of size m under fixed state   j 2  . The arrival process of customer representation is   (  D 0  (  j 2  )   ,  D 1  (  j 2  )   )   under fixed state   j 2  . The average arrival rate   λ  (  j 2  )    of a customer is defined by    λ  (  j 2  )   =  η 2  (  j 2  )    D 1  (  j 2  )   e  , where stationary row vector   η 2  (  j 2  )    of size   1 × m   is to be obtained by using    η 2  (  j 2  )    D  (  j 2  )   = 0  and   η 2  (  j 2  )   e = 1   under fixed state   j 2  .



Not all incoming customers buy the product, those customers are referred to as impulse customers. Assume that customers buy the product with probability   p  (  j 2  )    and the complementary probability   q  (  j 2  )    under fixed state   j 2  . The service process of the system is assumed to be instantaneous when the inventory level is positive. When the arriving customers find the stock stage is empty, they should enter into orbit. Even though the mode of approach to entering the system is different for each customer, once the customer enters the orbit, they will be considered retrial customers. Retrial customers have the option of choosing another arriving mode of RE during the retry without considering the previous choice of different states of RE. The retrial customers will get into service only if the stock stage is positive. The time between two successive retrials is exponentially distributed with a transition rate   θ  (  j 2  )   .




3. Model Analysis


In this sector, we construct the transition rate matrix on the stochastic inventory system. The Markov process of the form   {  (  J 1   ( t )  ,  J 2   ( t )  ,  J 3   ( t )  ,  J 4   ( t )  )  , t ≥ 0 }   with state space


  E = {  (  j 1  ,  j 2  ,  j 3  ,  j 4  )  :  j 1  ≥ 0 ;  1 ≤  j 2  ≤ N ;  0 ≤  j 3  ≤ S ;  1 ≤  j 4  ≤ m } ,  








where




	
   J 1   ( t )   : The number of customers in the orbit of infinite size waiting place at time t.



	
   J 2   ( t )   : The state of random environment at time t.



	
   J 3   ( t )   : The number of items in the inventory at time t.



	
   J 4   ( t )   : Phase of the arrival process at time t.








The process’s infinitesimal generator P is generated by
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Here,    j 2  = 1 , 2 , … , N :  




 [image: Mathematics 10 02235 i003]










 [image: Mathematics 10 02235 i004]









Here,    j 2  = 1 , 2 , … , N :  
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For   k = 1  and  2   and    j 2  = 1 , 2 , … , N  :
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where    b 1  =  p  (  j 2  )    D 1  (  j 2  )     and    d i k  =  D 0  (  j 2  )   +   δ ¯   i 0    q  (  j 2  )    D 1  (  j 2  )   −  (  δ  i 0    β 2  +  δ  i 1    β 2  +  δ  i 2    β 1  +  δ  k 2     δ ¯   i 0    θ  (  j 2  )   +  δ  k 2    δ  i 0    q  (  j 2  )    θ  (  j 2  )   )   I m  ,    i = 0 , 1 , 2  and  3  .



It may be noted that the   A 01  ,   A 10  ,   A 00  , and   A 11   are all square matrices of dimension   k 1   and the matrices    A  (  j 2  )   ,   B  (  j 2  )   ,   C 1  (  j 2  )    and ,   C 2  (  j 2  )     are dimension   k 2  , where    j 2  = 1 , 2 , … , N .  




4. Joint Probability Distribution under Steady State


We give the condition for stability through a theorem on the stochastic inventory system. Let us consider   G =  A 10  +  A 11  +  A 01   . It is easy to visualize that G is given by




 [image: Mathematics 10 02235 i009]









Here    j 2  = 1 , 2 , … , N :  
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where    b 2  =  b 1  +  p  (  j 2  )    θ  (  j 2  )    I m    and    f i  =  d i 2  +  δ  i 0    D 1  (  j 2  )   +  q  (  j 2  )    θ  (  j 2  )    I m  ,  i = 0 , 1 , 2  and  3 .  



Here,  Y  denotes the steady-state probability vector of G.



where


  Y = (  Y 1  ,  Y 2  , … ,  Y N  ) ,  










   Y  j 2   =  (  Y  (  j 2  , 0 )   ,  Y  (  j 2  , 1 )   , … ,  Y  (  j 2  , S )   )  ,  1 ≤  j 2  ≤ N .  











The below system of equations are derived from   Y G = 0  :


      ∑   j 2  = 1  N   Y  j 2    (  δ   j 2  1    F  ( 1 )   +  H   j 2  1   )  = 0        ∑   j 2  = 1  N   Y  j 2    (  δ   j 2  2    F  ( 2 )   +  H   j 2  2   )  = 0      ⋮       ∑   j 2  = 1  N   Y  j 2    (  δ   j 2  N    F  ( N )   +  H   j 2  N   )  = 0 .     











The steady-state probability vector   Y i   is obtained from the above system of equations and the normalizing condition (  Y e = 1  ).



4.1. Stability Condition


We give the condition for stability through theorem on the stochastic inventory system.



Theorem 1.

The stochastic inventory system under study is stable if and only if


       ∑   j 2  = 1  N   Y  j 2    A  (  j 2  )   e <  ∑   j 2  = 1  N   Y  j 2    B  (  j 2  )   e .      



(1)









Proof. 

From the standard results of Neuts [23] on the positive recurrence of P we have


  Y  A 01  e < Y  A 10  e ,  



(2)




and by applying the structure of the matrices   A 10   and   A 01   and  Y  the declared results follow. □





It can be seen from the structure of the rate matrix P and from the Theorem 1, that the Markov process   {  (  J 1   ( t )  ,  J 2   ( t )  ,  J 3   ( t )  ,  J 4   ( t )  )  , t ≥ 1 }   with the state space E is regular.




4.2. Steady-State Probability Vector


In this section, we calculate steady-state probability. Let  Θ  be the steady-state probability vector of the matrix P and it is obtained from   Θ P = 0  ,   Θ e = 1  , where


  Θ = (  Θ 0  ,  Θ 1  ,  Θ 2  , … ) ,  








where


     Θ  j 1     =     (  Θ  (  j 1  , 1 )   ,  Θ  (  j 1  , 2 )   ,  Θ  (  j 1  , 3 )   , ⋯  ,  Θ  (  j 1  , N )   )  ,  j 1  = 0 , 1 , 2 , ⋯  ,       Θ  (  j 1  ,  j 2  )     =     (  Θ  (  j 1  ,  j 2  , 0 )   ,  Θ  (  j 1  ,  j 2  , 1 )   ,  Θ  (  j 1  ,  j 2  , 2 )   , ⋯  ,  Θ  (  j 1  ,  j 2  , S )   )  ,  j 1  = 0 , 1 , 2 , ⋯  ,  j 2  = 1 , 2 , ⋯  , N ,       Θ  (  j 1  ,  j 2  ,  j 3  )     =     (  Θ  (  j 1  ,  j 2  ,  j 3  , 1 )   ,  Θ  (  j 1  ,  j 2  ,  j 3  , 2 )   , ⋯  ,  Θ  (  j 1  ,  j 2  ,  j 3  , m )   )  ,  j 1  = 0 , 1 , 2 , ⋯  ,  j 2  = 1 , 2 , ⋯  , N ,          j 3  = 0 , 1 , 2 , ⋯  , S .     











The relation   Θ P = 0   leads to the following system of equations:


   Θ 0   A 00  +  Θ 1   A 10  = 0  



(3)






   Θ   j 1  − 1    A 01  +  Θ  j 1    A 11  +  Θ   j 1  + 1    A 10  = 0 ,   (  j 1  ≥ 1 )  .  



(4)







The Markov process   {  (  J 1   ( t )  ,  J 2   ( t )  ,  J 3   ( t )  ,  J 4   ( t )  )  , t ≥ 0 }   on the state space E and the limiting distribution


    Θ  (  j 1  ,  j 2  ,  j 3  ,  j 4  )   =  lim  t → ∞   P r  [  J 1   ( t )  =  j 1  ,  J 2   ( t )  =  j 2  ,  J 3   ( t )  =  j 3  ,  J 4   ( t )  =  j 4  |  J 1   ( 0 )  ,  J 2   ( 0 )  ,  J 3   ( 0 )  ,  J 4   ( 0 )  ]  ,   








where   Θ  (  j 1  ,  j 2  ,  j 3  ,  j 4  )    is the steady-state probability for the state   (  j 1  ,  j 2  ,  j 3  ,  j 4  )  , exists and is independent of the initial state.



Theorem 2.

When the stability condition   {  (  J 1   ( t )  ,  J 2   ( t )  ,  J 3   ( t )  ,  J 4   ( t )  )  , t ≥ 0 }   holds well, the steady-state probability vector Θ is given by


    Θ i  =  Θ 0   R i  , i ≥ 1 ,   



(5)




where the rate matrix  R , it is defined by
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and satisfies the matrix quadratic equation


    R 2   A 10  + R  A 11  +  A 01  = 0 .   



(6)









Proof. 

The proof follows from the well-known result on matrix geometric property given by Neuts [23]. □





Theorem 3.

The stationary probability vector   Θ 0   is the unique solution of the system


    Θ 0   (  A 00  + R  A 10  )  = 0 ,   



(7)




and subject to the normalising condition


    Θ 0    ( I − R )   − 1   e = 1 .   



(8)









Proof. 

The proof is based on Neuts’ [23] well-known matrix geometric property. And see [24] more details about the property. □





Once  R  is found, the boundary probability vector   Θ 0   is computed by using the Equations (7) and (8), and the probability vectors    Θ i  , i ≥ 1   can be obtained from Equation (5).





5. A Few Significant System Peculiarities


In the segment, we examine a few significant peculiarities measures.




	
Mean inventory level,   η I   is given by



    η I  =  ∑   j 1  = 0  ∞   ∑   j 2  = 1  N   ∑   j 3  = 1  S   j 3   Θ  (  j 1  ,  j 2  ,  j 3  )   e .   



	
Mean reorder for temporary supplier,   η  R 1    is given by



    η  R 1   =  ∑   j 1  = 0  ∞   ∑   j 2  = 1  N   p  (  j 2  )    D 1  (  j 2  )    [  Θ  (  j 1  ,  j 2  , r + 1 )   ]  e +  ∑   j 1  = 1  ∞   ∑   j 2  = 1  N   p  (  j 2  )    θ  (  j 2  )    [  Θ  (  j 1  ,  j 2  , r + 1 )   ]  e .   



	
Mean reorder for regular supplier,   η  R 2    is given by



    η  R 2   =  ∑   j 1  = 0  ∞   ∑   j 2  = 1  N   p  (  j 2  )    D 1  (  j 2  )    [  Θ  (  j 1  ,  j 2  , s + 1 )   ]  e +  ∑   j 1  = 1  ∞   ∑   j 2  = 1  N   p  (  j 2  )    θ  (  j 2  )    [  Θ  (  j 1  ,  j 2  , s + 1 )   ]  e .   



	
Mean number of customers in the orbit



   η  O C   =  Θ 0  R   ( I − R )   − 2   e .  



	
Mean loss rate of arrival of impulse customers



    η  L C   =  ∑   j 1  = 0  ∞   ∑   j 2  = 1  N   ∑   j 3  = 1  S   q  (  j 2  )    D 1  (  j 2  )    Θ  (  j 1  ,  j 2  ,  j 3  )   e +  ∑   j 1  = 1  ∞   ∑   j 2  = 1  N   ∑   j 3  = 1  S   q  (  j 2  )    θ  (  j 2  )    Θ  (  j 1  ,  j 2  ,  j 3  )   e .   



	
Expected number of time the replenishment is to be done from temporary supplier



    η  T S   =  ∑   j 1  = 0  ∞   ∑   j 2  = 1  N   ∑   j 3  = s + 1  r   β 1   Θ  (  j 1  ,  j 2  ,  j 3  )   e .   



	
Expected number of time the replenishment is to be done from regular supplier



    η  R S   =  ∑   j 1  = 0  ∞   ∑   j 2  = 1  N   ∑   j 3  = 0  s   β 2   Θ  (  j 1  ,  j 2  ,  j 3  )   e .   



	
Overall retrial rate



    η  O R   =  ∑   j 1  = 1  ∞   ∑   j 2  = 1  N   θ  (  j 2  )    Θ  (  j 1  ,  j 2  )   e .   



	
Success retrial rate



    η  S R   =  ∑   j 1  = 1  ∞   ∑   j 2  = 1  N   ∑   j 3  = 1  S   θ  (  j 2  )    Θ  (  j 1  ,  j 2  ,  j 3  )   e .   



	
Fractional success retrial rate



   η  F S R   =   η  S R    η  O R    .  








Construction of the Cost Feature


To construct the expected total cost function per unit time is provided by



  C  ( S , s )  =  c h   η I  +  c w   η  O C   +  c  T S    η  R 1   +  c  r s    η  R 2   +  c  i l    η  L C   ,   where   c h  : The inventory carrying cost per unit time.



  c w  : Waiting cost of a customer in the orbit per unit time.



  c  t s   : Setup cost per order for temporary supplier.



  c  r s   : Setup cost per order for regular supplier.



  c  i l   : Lost cost of a impulse customer per unit time.





6. Numerical Analysis


We give a few descriptive numerical examples that expose the convexity of the expected cost rate and consider that orders are received with 2 different states of RE; these are confined by the infinitesimal generator


   H =      − 0.10     0.10       0.01     − 0.01      .  











The MAP for appearance of customers are




	
Hyper-exponential(HEX):


    D 0  ( 1 )   =      − 1.90    0     0    − 0.19      ,  D 1  ( 1 )   =      1.710     0.190       0.171     0.019      ;  










    D 0  ( 2 )   =      − 2.85    0     0    − 0.285      ,  D 1  ( 2 )   =      2.565     0.285       0.2565     0.0285      .  











	
Negative Correlation (NC):



   D 0  ( 1 )   =      − 1.00222     1.00222    0     0    − 1.00222    0     0   0    − 225.75      ,     D 1  ( 1 )   =     0   0   0      0.01002    0    0.99220       223.49250    0    2.25750      ;  



   D 0  ( 2 )   =      − 2.35     2.35    0     0    − 2.35    0     0   0    − 3.5      ,     D 1  ( 2 )   =     0   0   0      0.0235    0    2.3265       3.465    0    0.035      .  



	
Positive Correlation (PC):



   D 0  ( 1 )   =      − 1.00222     1.00222    0     0    − 1.00222    0     0   0    − 225.75      ,     D 1  ( 1 )   =     0   0   0      0.99220    0    0.01002       2.25750    0    223.49250      ;     D 0  ( 2 )   =      − 2.35     2.35    0     0    − 2.35    0     0   0    − 3.5      ,     D 1  ( 2 )   =     0   0   0      2.3265    0    0.0235       0.035    0    3.465      .  








The demand process has negative (positive) correlated arrival with coefficient of variance    c  v a r   ( 1 )   = 2  λ  ( 1 )    η 2  ( 1 )     ( −  D 0  ( 1 )   )   − 1   e − 1 =  1.986 ( 1.986 )    and coefficient of correlation    c  c o r   ( 1 )   =  (  λ  ( 1 )    η 2  ( 1 )   )    ( −  D 0  ( 1 )   )   − 1    D 1  ( 1 )     ( −  D 0  ( 1 )   )   − 1    ) e − 1 )  /  c  v a r   ( 1 )   =  − 0.4889 ( 0.4889 )    with an arrival rate    λ  ( 1 )   = 1.0  .



The demand process has negative (positive) correlated arrival with coefficient of variance    c  v a r   ( 2 )   = 2  λ  ( 2 )    η 2  ( 2 )     ( −  D 0  ( 2 )   )   − 1   e − 1 =  0.9342 ( 0.9342 )    and coefficient of correlation    c  c o r   ( 2 )   =  (  λ  ( 2 )    η 2  ( 2 )   )    ( −  D 0  ( 2 )   )   − 1    D 1  ( 2 )     ( −  D 0  ( 2 )   )   − 1    ) e − 1 )  /  c  v a r   ( 2 )   =  − 0.2595 ( 0.2595 )    with an arrival rate    λ  ( 2 )   = 1.7594  .



Some discussion about numerical examples of our perspective model and its obtainment with the parameters    p  ( 1 )   = 0.8 ,   q  ( 1 )   = 1 −  p  ( 1 )   ,   β 1  = 0.2 ,   λ 1  ( 1 )   = 1 ,   β 2  = 0.9 ,   θ  ( 1 )   = 5 ,   p  ( 2 )   = 0.6 ,   q  ( 2 )   = 1 −  p  ( 2 )   ,   θ  ( 2 )   = 4.8 ,   λ 1  ( 2 )   = 1.5 ,  R = 2   and cost values are    c h  = 0.1 ,   c w  = 10 ,   c  t s   = 28 ,   c  r s   = 15 ,   c  i l   = 10   are listed in the Results and Discussion section.



Results and Discussion


	
We discuss the behavior of the cost function of two variables,   C ( S , s )  , under hyper-exponential distribution. The values are divulged in bold in each column to indicate the minimum cost rate, whereas the least cost rate is specified in each row by underlining the values. As a result, a value (bold and underlined) represents the local minimum of the function   C ( S , s )  . At   S *   = 28 and   s *   = 5, the optimal cost value    C *   ( S , s )    = 5.7025. The function   C ( S , s )   is convex, as shown in Table 1 and Figure 1. Figure 2 depicts a contour plot of the total cost function, which also demonstrates that the function   C ( S , s )   is convex.



	
Figure 3 and Figure 4 show that the mean reorder for temporary supplier   (  η  R 1   )   and regular supplier (  η  R 2   ) compare with s and r respectively. Figure 3 demonstrates that   η  R 1    decreases and   η  R 2    increases, whenever s increases. Figure 4 shows that   η  R 1    is increased and regular suppliers   η  R 2    is decreased whenever r is increased.



	
Figure 5 and Figure 6 show that the mean number of times the replenishment is to be done from a temporary supplier   (  η  T S   )   and regular supplier   (  η  R S   )  . Here, Figure 5 shows that   η  T S    decreases and   η  R S    increases whenever s increases. Figure 6 shows that when r increases,   η  T S    increases and   η  R S    decreases.



	
Figure 7 compares the lead time rate of temporary (  β 1  ) and regular (  β 2  ) suppliers with their total expected cost value. Here, the total expected cost value decreases whenever   β 1   and   β 2   rates are increased.



	
Table 2 shows that when increasing the lead time rate of the temporary supplier (  β 1  ) increases the optimal cost value    C *   ( S , s )   , whereas when increasing the lead time rate of the regular supplier (  β 2  ) decreases the    C *   ( S , s )   . The    C *   ( S , s )    for the lead time rates of two suppliers decreases as the maximum inventory level (S) increases.



	
When the setup cost for temporary supplier (  c  t s   ) and regular supplier (  c  r s   ) increases, the value of    C *   ( S , s )    increases in Table 3. When S increases, the value of    C *   ( S , s )    decreases. When the values of    c h  ,   c w  ,   c  i l     increase, so does the value of    C *   ( S , s )    as shown in Table 4.



	
As shown in Table 5, when s and s values rise, the mean inventory level (  η I  ) rises, but the mean number of customers in the orbit (  η  O C   ) and the mean loss rate of arrival of impulse customers (  η  L C   ) decreases.








7. Conclusions


In this paper, we discussed two classes of suppliers in the stochastic inventory system on the RE. These two classes of suppliers have a huge impact on the management of the inventory system and also reduce replenishment difficulties. We showed the minimised total expected cost rate (refer to Table 1 and Figure 1) and showed it via a contour plot (refer Figure 2). When the lead time rate of both suppliers is smaller, the total expected cost value of the regular supplier is greater than the total expected cost value of the temporary supplier. Moreover, when the lead time rate of both suppliers goes up, the total expected cost value of the regular supplier is smaller than the total expected cost value of the temporary supplier (refer Table 2). Similarly, when the setup cost value is small, the total expected cost value of the temporary supplier is smaller than the total expected cost value of the regular supplier. Furthermore, when the setup cost value goes up, the total expected cost value of the temporary supplier is greater than the total expected cost value of the regular supplier (refer Table 3). Finally, we showed that both the value of the setup cost and the lead time rate are small, the best supplier is a temporary supplier, and both have higher value, making the best supplier a regular supplier.



7.1. Limitations


	
This study deals with impulse customers and the probability of customers who may buy an item,   p  j 2    and the complementary probability   q  j 2   . Assuming the probability   q  j 2    value is zero, in this case, not all incoming customers will purchase the item, which does not always happen in real-life situations.



	
The sum of the fixed probability distribution values must be one.







7.2. Future Directions


	
We will discuss multi-server with phase-type distribution for service.



	
We plan to investigate multi-suppliers.



	
We plan to study RE use with payment mode.
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Notations and Abbreviations


The following Notations and Abbreviations are used in this manuscript:



	   [ A ]   i j   
	The element of submatrix at (i,j) the position of A.



	 0 
	Zero matrix.



	 I 
	Identity matrix of appropriate dimension.



	  I m  
	Identity matrix of dimension m.



	 e 
	A column vector of 1’s appropriate dimension.



	  A ⊗ B  
	Kronecker product of matrices A and B.



	  A ⊕ B  
	Kronecker sum of matrices A and B.



	RE
	Random Envirnonment.



	MAP
	Markovian Arrival Process.



	   δ ¯   i j   
	  1 −  δ  i j   .  



	  k 1  
	  N ( S + 1 ) m  



	  k 2  
	  ( S + 1 ) m  
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Figure 1. Total expected cost rate as a function of s and S. 
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Figure 2. Contour plot of total expected cost rate. 
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Figure 3. Mean reorder rate for two suppliers vs. s. 
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Figure 4. Mean reorder rate for two suppliers vs. r. 






Figure 4. Mean reorder rate for two suppliers vs. r.



[image: Mathematics 10 02235 g004]







[image: Mathematics 10 02235 g005 550] 





Figure 5.   η  T S    and   η  R S    vs. s. 
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Figure 6.   η  T S    and   η  R S    vs. r. 
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Figure 7. The total expected cost value for different values of   β 1   and   β 2  . 
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Table 1. Total expected cost rate as a function of s and S.
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	S/s
	2
	3
	4
	5
	6
	7
	8





	24
	5.8251
	5.7887
	5.7691
	5.7673
	5.7848
	5.8239
	5.8884



	26
	5.7800
	5.7462
	5.7260
	5.7200
	5.7290
	5.7544
	5.7985



	28
	5.7609
	5.7302
	5.7106
	5.7025
	5.7063
	5.7230
	5.7540



	30
	5.7634
	5.7357
	5.7173
	5.7083
	5.7090
	5.7200
	5.7422



	32
	5.7838
	5.7590
	5.7421
	5.7329
	5.7317
	5.7389
	5.7551



	34
	5.8194
	5.7973
	5.7818
	5.7729
	5.7707
	5.7753
	5.7872
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Table 2. The optimal cost value for different values of lead times.
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S = 14

	
S = 16

	
S = 18

	
S = 20






	
   β 1   

	
    C *   ( S , s )    

	
   β 2   

	
    C *   ( S , s )    

	
   β 1   

	
    C *   ( S , s )    

	
   β 2   

	
    C *   ( S , s )    

	
   β 1   

	
    C *   ( S , s )    

	
   β 2   

	
    C *   ( S , s )    

	
   β 1   

	
    C *   ( S , s )    

	
   β 2   

	
    C *   ( S , s )    




	
0.1

	
6.6730

	
0.7

	
6.8189

	
0.1

	
6.3526

	
0.7

	
6.4803

	
0.1

	
6.1278

	
0.7

	
6.2380

	
0.1

	
5.9690

	
0.7

	
6.0646




	
0.2

	
6.7730

	
0.8

	
6.7955

	
0.2

	
6.4317

	
0.8

	
6.4552

	
0.2

	
6.1905

	
0.8

	
6.2132

	
0.2

	
6.0202

	
0.8

	
6.0414




	
0.3

	
6.8334

	
0.9

	
6.7730

	
0.3

	
6.4740

	
0.9

	
6.4317

	
0.3

	
6.2207

	
0.9

	
6.1905

	
0.3

	
6.0434

	
0.9

	
6.0202




	
0.4

	
6.8689

	
1.0

	
6.7516

	
0.4

	
6.4952

	
1.0

	
6.4099

	
0.4

	
6.2336

	
1.0

	
6.1697

	
0.4

	
6.0527

	
1.0

	
6.0009




	
0.5

	
6.8892

	
1.1

	
6.7315

	
0.5

	
6.5048

	
1.1

	
6.3897

	
0.5

	
6.2381

	
1.1

	
6.1505

	
0.5

	
6.0558

	
1.1

	
5.9832




	
0.6

	
6.9002

	
1.2

	
6.7125

	
0.6

	
6.5081

	
1.2

	
6.3710

	
0.6

	
6.2385

	
1.2

	
6.1330

	
0.6

	
6.0562

	
1.2

	
5.9671




	
S = 22

	
S = 24

	
S = 26

	
S = 28




	
   β 1   

	
    C *   ( S , s )    

	
   β 2   

	
    C *   ( S , s )    

	
   β 1   

	
    C *   ( S , s )    

	
   β 2   

	
    C *   ( S , s )    

	
   β 1   

	
    C *   ( S , s )    

	
   β 2   

	
    C *   ( S , s )    

	
   β 1   

	
    C *   ( S , s )    

	
   β 2   

	
    C *   ( S , s )    




	
0.1

	
5.8583

	
0.7

	
5.9431

	
0.1

	
5.7839

	
0.7

	
5.8619

	
0.1

	
5.7377

	
0.7

	
5.8129

	
0.1

	
5.7142

	
0.7

	
5.7903




	
0.2

	
5.9024

	
0.8

	
5.9217

	
0.2

	
5.8251

	
0.8

	
5.8426

	
0.2

	
5.7800

	
0.8

	
5.7956

	
0.2

	
5.7609

	
0.8

	
5.7748




	
0.3

	
5.9230

	
0.9

	
5.9024

	
0.3

	
5.8464

	
0.9

	
5.8251

	
0.3

	
5.8044

	
0.9

	
5.7800

	
0.3

	
5.7902

	
0.9

	
5.7609




	
0.4

	
5.9320

	
1.0

	
5.8848

	
0.4

	
5.8573

	
1.0

	
5.8093

	
0.4

	
5.8185

	
1.0

	
5.7659

	
0.4

	
5.8083

	
1.0

	
5.7484




	
0.5

	
5.9360

	
1.1

	
5.8689

	
0.5

	
5.8635

	
1.1

	
5.7950

	
0.5

	
5.8277

	
1.1

	
5.7531

	
0.5

	
5.8207

	
1.1

	
5.7371




	
0.6

	
5.9379

	
1.2

	
5.8543

	
0.6

	
5.8678

	
1.2

	
5.7820

	
0.6

	
5.8345

	
1.2

	
5.7415

	
0.6

	
5.8300

	
1.2

	
5.7268
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Table 3. The optimal cost value for different setup cost values of two suppliers.
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S = 14

	
S = 16

	
S = 18

	
S = 20






	
   c  t s    

	
    C *   ( S , s )    

	
   c  r s    

	
    C *   ( S , s )    

	
   c  t s    

	
    C *   ( S , s )    

	
   c  r s    

	
    C *   ( S , s )    

	
   c  t s    

	
    C *   ( S , s )    

	
   c  r s    

	
    C *   ( S , s )    

	
   c  t s    

	
    C *   ( S , s )    

	
   c  r s    

	
    C *   ( S , s )    




	
25

	
6.4712

	
10

	
6.5893

	
25

	
6.1603

	
10

	
6.2936

	
25

	
5.9435

	
10

	
6.0855

	
25

	
5.7932

	
10

	
5.9397




	
26

	
6.5718

	
11

	
6.6260

	
26

	
6.2508

	
11

	
6.3212

	
26

	
6.0258

	
11

	
6.1065

	
26

	
5.8688

	
11

	
5.9558




	
27

	
6.6724

	
12

	
6.6628

	
27

	
6.3412

	
12

	
6.3488

	
27

	
6.1082

	
12

	
6.1275

	
27

	
5.9445

	
12

	
5.9719




	
28

	
6.7730

	
13

	
6.6995

	
28

	
6.4317

	
13

	
6.3765

	
28

	
6.1905

	
13

	
6.1485

	
28

	
6.0202

	
13

	
5.9880




	
29

	
6.8736

	
14

	
6.7363

	
29

	
6.5221

	
14

	
6.4041

	
29

	
6.2729

	
14

	
6.1695

	
29

	
6.0958

	
14

	
6.0041




	
30

	
6.9742

	
15

	
6.7730

	
30

	
6.6126

	
15

	
6.4317

	
30

	
6.3552

	
15

	
6.1905

	
30

	
6.1715

	
15

	
6.0202




	
31

	
7.0749

	
16

	
6.8098

	
31

	
6.7030

	
16

	
6.4593

	
31

	
6.4376

	
16

	
6.2115

	
31

	
6.2472

	
16

	
6.0363




	
32

	
7.1755

	
17

	
6.8465

	
32

	
6.7935

	
17

	
6.4869

	
32

	
6.5199

	
17

	
6.2325

	
32

	
6.3228

	
17

	
6.0524




	
33

	
7.2761

	
18

	
6.8832

	
33

	
6.8839

	
18

	
6.5145

	
33

	
6.6023

	
18

	
6.2535

	
33

	
6.3985

	
18

	
6.0685




	
34

	
7.3767

	
19

	
6.9200

	
34

	
6.9744

	
19

	
6.5421

	
34

	
6.6846

	
19

	
6.2745

	
34

	
6.4742

	
19

	
6.0846




	
35

	
7.4773

	
20

	
6.9567

	
35

	
7.0648

	
20

	
6.5697

	
35

	
6.7670

	
20

	
6.2955

	
35

	
6.5498

	
20

	
6.1007




	
S = 22

	
S = 24

	
S = 26

	
S = 28




	
   c  t s    

	
    C *   ( S , s )    

	
   c  r s    

	
    C *   ( S , s )    

	
   c  t s    

	
    C *   ( S , s )    

	
   c  r s    

	
    C *   ( S , s )    

	
   c  t s    

	
    C *   ( S , s )    

	
   c  r s    

	
    C *   ( S , s )    

	
   c  t s    

	
    C *   ( S , s )    

	
   c  r s    

	
    C *   ( S , s )    




	
25

	
5.6923

	
10

	
5.8403

	
25

	
5.6297

	
10

	
5.7769

	
25

	
5.5974

	
10

	
5.7425

	
25

	
5.5896

	
10

	
5.7316




	
26

	
5.7624

	
11

	
5.8527

	
26

	
5.6948

	
11

	
5.7866

	
26

	
5.6582

	
11

	
5.7500

	
26

	
5.6467

	
11

	
5.7375




	
27

	
5.8324

	
12

	
5.8651

	
27

	
5.7600

	
12

	
5.7962

	
27

	
5.7191

	
12

	
5.7575

	
27

	
5.7038

	
12

	
5.7433




	
28

	
5.9024

	
13

	
5.8775

	
28

	
5.8251

	
13

	
5.8058

	
28

	
5.7800

	
13

	
5.7650

	
28

	
5.7609

	
13

	
5.7492




	
29

	
5.9724

	
14

	
5.8900

	
29

	
5.8903

	
14

	
5.8155

	
29

	
5.8409

	
14

	
5.7725

	
29

	
5.8180

	
14

	
5.7551




	
30

	
6.0424

	
15

	
5.9024

	
30

	
5.9554

	
15

	
5.8251

	
30

	
5.9018

	
15

	
5.7800

	
30

	
5.8751

	
15

	
5.7609




	
31

	
6.1124

	
16

	
5.9148

	
31

	
6.0206

	
16

	
5.8348

	
31

	
5.9626

	
16

	
5.7875

	
31

	
5.9323

	
16

	
5.7668




	
32

	
6.1825

	
17

	
5.9273

	
32

	
6.0857

	
17

	
5.8444

	
32

	
6.0235

	
17

	
5.7950

	
32

	
5.9894

	
17

	
5.7727




	
33

	
6.2525

	
18

	
5.9397

	
33

	
6.1508

	
18

	
5.8540

	
33

	
6.0844

	
18

	
5.8025

	
33

	
6.0465

	
18

	
5.7785




	
34

	
6.3225

	
19

	
5.9521

	
34

	
6.2160

	
19

	
5.8637

	
34

	
6.1453

	
19

	
5.8100

	
34

	
6.1036

	
19

	
5.7844




	
35

	
6.3925

	
20

	
5.9645

	
35

	
6.2811

	
20

	
5.8733

	
35

	
6.2062

	
20

	
5.8175

	
35

	
6.1607

	
20

	
5.7903
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Table 4. Total expected cost values for different cost values.
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  c h   = 0.1

	
  c h   = 0.2




	
   c w   

	
8

	
9

	
10

	
11

	
12

	
8

	
9

	
10

	
11

	
12




	
   c  i l    

	
5

	
4.6560

	
4.6566

	
4.6572

	
4.6578

	
4.6584

	
6.3673

	
6.3679

	
6.3685

	
6.3691

	
6.3697




	
6

	
4.8806

	
4.8812

	
4.8818

	
4.8824

	
4.8830

	
6.5919

	
6.5925

	
6.5931

	
6.5936

	
6.5942




	
7

	
5.1051

	
5.1057

	
5.1063

	
5.1069

	
5.1075

	
6.8164

	
6.8170

	
6.8176

	
6.8182

	
6.8188




	
8

	
5.3297

	
5.3303

	
5.3309

	
5.3315

	
5.3321

	
7.0410

	
7.0416

	
7.0422

	
7.0428

	
7.0433




	
9

	
5.5543

	
5.5549

	
5.5554

	
5.5560

	
5.5566

	
7.2655

	
7.2661

	
7.2667

	
7.2673

	
7.2679




	
10

	
5.7788

	
5.7794

	
5.7800

	
5.7806

	
5.7812

	
7.4901

	
7.4907

	
7.4913

	
7.4919

	
7.4925




	
11

	
6.0034

	
6.0040

	
6.0046

	
6.0051

	
6.0057

	
7.7146

	
7.7152

	
7.7158

	
7.7164

	
7.7170




	
12

	
6.2279

	
6.2285

	
6.2291

	
6.2297

	
6.2303

	
7.9392

	
7.9398

	
7.9404

	
7.9410

	
7.9416




	
13

	
6.4525

	
6.4531

	
6.4537

	
6.4543

	
6.4548

	
8.1638

	
8.1644

	
8.1649

	
8.1655

	
8.1661




	
14

	
6.6770

	
6.6776

	
6.6782

	
6.6788

	
6.6794

	
8.3883

	
8.3889

	
8.3895

	
8.3901

	
8.3907




	
15

	
6.9016

	
6.9022

	
6.9028

	
6.9034

	
6.9040

	
8.6129

	
8.6135

	
8.6141

	
8.6146

	
8.6152




	
  c h   = 0.3

	
  c h   = 0.4




	
   c w   

	
8

	
9

	
10

	
11

	
12

	
8

	
9

	
10

	
11

	
12




	
   c  i l    

	
5

	
8.0786

	
8.0792

	
8.0798

	
8.0804

	
8.0810

	
9.7899

	
9.7905

	
9.7911

	
9.7916

	
9.7922




	
6

	
8.3032

	
8.3037

	
8.3043

	
8.3049

	
8.3055

	
10.0144

	
10.0150

	
10.0156

	
10.0162

	
10.0168




	
7

	
8.5277

	
8.5283

	
8.5289

	
8.5295

	
8.5301

	
10.2390

	
10.2396

	
10.2402

	
10.2408

	
10.2414




	
8

	
8.7523

	
8.7529

	
8.7534

	
8.7540

	
8.7546

	
10.4635

	
10.4641

	
10.4647

	
10.4653

	
10.4659




	
9

	
8.9768

	
8.9774

	
8.9780

	
8.9786

	
8.9792

	
10.6881

	
10.6887

	
10.6893

	
10.6899

	
10.6905




	
10

	
9.2014

	
9.2020

	
9.2026

	
9.2031

	
9.2037

	
10.9127

	
10.9132

	
10.9138

	
10.9144

	
10.9150




	
11

	
9.4259

	
9.4265

	
9.4271

	
9.4277

	
9.4283

	
11.1372

	
11.1378

	
11.1384

	
11.1390

	
11.1396




	
12

	
9.6505

	
9.6511

	
9.6517

	
9.6523

	
9.6528

	
11.3618

	
11.3624

	
11.3629

	
11.3635

	
11.3641




	
13

	
9.8750

	
9.8756

	
9.8762

	
9.8768

	
9.8774

	
11.5863

	
11.5869

	
11.5875

	
11.5881

	
11.5887




	
14

	
10.0996

	
10.1002

	
10.1008

	
10.1014

	
10.1020

	
11.8109

	
11.8115

	
11.8121

	
11.8126

	
11.8132




	
15

	
10.3241

	
10.3247

	
10.3253

	
10.3259

	
10.3265

	
12.0354

	
12.0360

	
12.0366

	
12.0372

	
12.0378
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Table 5. Ramification of some measures.






Table 5. Ramification of some measures.





	
S = 20

	
S = 22

	
S = 24






	
s

	
   η I   

	
   η  O C    

	
   η  L C    

	
s

	
   η I   

	
   η  O C    

	
   η  L C    

	
s

	
   η I   

	
   η  O C    

	
   η  L C    




	
2

	
13.0196

	
0.0013

	
0.2345

	
2

	
14.3643

	
0.0010

	
0.2309

	
2

	
15.7293

	
0.0008

	
0.2276




	
3

	
13.2335

	
0.0009

	
0.2285

	
3

	
14.5581

	
0.0007

	
0.2256

	
3

	
15.9029

	
0.0005

	
0.2229




	
4

	
13.4608

	
0.0006

	
0.2232

	
4

	
14.7655

	
0.0004

	
0.2210

	
4

	
16.0901

	
0.0003

	
0.2188




	
5

	
13.7039

	
0.0004

	
0.2187

	
5

	
14.9896

	
0.0003

	
0.2170

	
5

	
16.2942

	
0.0002

	
0.2153




	
6

	
13.9615

	
0.0003

	
0.2150

	
6

	
15.2305

	
0.0002

	
0.2137

	
6

	
16.5161

	
0.0002

	
0.2124




	
7

	
14.2286

	
0.0002

	
0.2120

	
7

	
15.4855

	
0.0001

	
0.2109

	
7

	
16.7548

	
0.0001

	
0.2100




	
8

	
14.4968

	
0.0001

	
0.2095

	
8

	
15.7494

	
0.0001

	
0.2087

	
8

	
17.0071

	
0.0001

	
0.2080




	
S = 26

	
S = 28

	
S = 30




	
s

	
   η I   

	
   η  O C    

	
   η  L C    

	
s

	
   η I   

	
   η  O C    

	
   η  L C    

	
s

	
   η I   

	
   η  O C    

	
   η  L C    




	
2

	
17.1128

	
0.0006

	
0.2246

	
2

	
18.5131

	
0.0005

	
0.2218

	
2

	
19.9282

	
0.0004

	
0.2193




	
3

	
17.2671

	
0.0004

	
0.2204

	
3

	
18.6490

	
0.0003

	
0.2182

	
3

	
20.0472

	
0.0002

	
0.2161




	
4

	
17.4343

	
0.0003

	
0.2168

	
4

	
18.7972

	
0.0002

	
0.2150

	
4

	
20.1776

	
0.0002

	
0.2133




	
5

	
17.6181

	
0.0002

	
0.2137

	
5

	
18.9612

	
0.0001

	
0.2123

	
5

	
20.3228

	
0.0001

	
0.2109




	
6

	
17.8201

	
0.0001

	
0.2112

	
6

	
19.1431

	
0.0001

	
0.2100

	
6

	
20.4850

	
0.0001

	
0.2089




	
7

	
18.0401

	
0.0001

	
0.2090

	
7

	
19.3434

	
0.0001

	
0.2081

	
7

	
20.6654

	
0.0000

	
0.2073




	
8

	
18.2766

	
0.0001

	
0.2072

	
8

	
19.5616

	
0.0000

	
0.2065

	
8

	
20.8642

	
0.0000

	
0.2059
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