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Abstract: Quantum decision theory has been successfully applied to multi-attribute group decision-
making (MAGDM) to model decision-makers’ interference and superposition effects in recent years.
Existing quantum models assume that interference effects among decision-makers are symmetric.
However, asymmetric interference effects have been ignored. We propose a VIKOR-based linguistic
distribution assessments (LDAs) model considering asymmetric interference effects in a quantum
decision scenario. Firstly, we combine VIKOR with LDAs to obtain a compromise solution in a
fuzzy multi-attribute decision scenario with conflicting attributes. Secondly, an aggregation frame-
work based on quantum probability theory is constructed to explore group preferences considering
asymmetric interference effects among decision-makers. Finally, the model is compared with other
methods to confirm its validity and stability.
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1. Introduction

In the field of decision-making theory, multi-attribute group decision-making (MAGDM)
is a significant branch, and its approaches [1–3] have been widely studied and applied in
emergency decision-making [4], health systems [5], and supplier selection [6,7]. A typical
MAGDM problem includes three aspects: a problem to be solved; several decision-makers
with different backgrounds; obtainment of a common opinion from multiple decision-
makers. In this section, we review the development of the related methods and put forward
the problem that needs further study.

1.1. Literature Review

Along with the increasing complexity of decision-making environments in real deci-
sion scenarios and the limitations of human knowledge, preferences expressed by linguistic
information are more acceptable and widely used. Linguistic information has been ex-
tended into diversified forms to accommodate various complex decisions, e.g., virtual
linguistic term sets [8], probabilistic linguistic term sets (PLTSs) [9], 2-tuple linguistic
model [10], hesitant fuzzy linguistic term sets (HFLTSs) [11], etc. The abovementioned
linguistic models can depict individual linguistic evaluation well, but they cannot express
group evaluations with numerous linguistic terms (LTs). Currently, group evaluations are
becoming increasingly important in decision-making, particularly when customers are
willing to seek advice on websites. In view of this situation, online platforms such as some
travel websites (ctrip.com (accessed on 12 March 2022)) can also provide group evaluations
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in the form of linguistic distribution, such as, ‘85% of tourists think the destination is
very good, 12% think it is moderate, and 3% think it is poor’. By understanding these
linguistic distribution reviews, tourists can make better choices. Therefore, establishing a
scientific expression model to gather group linguistic evaluations and integrally depict the
quantitative distribution is essential.

The concept of linguistic distribution assessments (LDAs) was first proposed by
Zhang et al. [12]. LDAs can make an overall summary of group linguistic assessment
statistically. LDAs are feasible in describing qualitative and quantitative information both
of individuals and groups, and they have been applied in various decision-making prob-
lems [12–14]. A group LDA usually should include three parts: LTs, probability distribution,
and sample capacity information. The sample capacity information is significant for an
LDA since the probability distribution is mainly determined by it. However, most of the
previous research on group LDAs [13,14] ignored this key element, which is inappropriate.
To address this issue, Wu et al. [15] proposed LDAs with sample capacity to ensure the
objectivity of the probability distribution when dealing with a MAGDM problem. LDAs
are commonly measured by distance measure. However, the previous distance measure of
LDAs [14] is not applicable to calculate the difference of LDAs with sample capacity, so a
new distance measure method is needed for this type of LDA.

It is important to choose an appropriate multi-attribute decision-making (MADM)
method when solving a MAGDM problem. Different MADM models have their own
characteristics. There is no MADM method that is superior to the others in all aspects.
Hafezalkotob et al. [16] classified the MADM aggregation methods into three categories:
value measure methods, outranking methods, and compromise methods. Value measure
methods include Simple Additive Weighting (SAW) [17] and Weighted Aggregated Sum
Product Assessment (WASPAS) [18], etc. Outranking methods mainly refer to Elimination
and Choice Expressing the Reality (ELECTRE) [19], Preference Ranking Organization
Method for Enrichment of Evaluations (PROMETHEE) [20], etc. Compromise methods
incorporate TOPSIS (Technique for Order Performance by Similarity to Ideal Solution) [21],
VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) [22], etc. In many real
cases, attributes often conflict with each other. The VIKOR method, which was introduced
by Opricovic [23], is a popular method to handle conflicting attributes to obtain compromise
solutions. A comparison between the VIKOR method and other MADM methods also was
carried out by Opricovic and Tzeng [24,25]. They showed some advantages of the VIKOR
method. Furthermore, various extended forms of VIKOR methods have been developed,
such as the hesitant fuzzy VIKOR [26], dual hesitant fuzzy VIKOR [27], hesitant fuzzy
linguistic VIKOR [28], and interval type-2 fuzzy VIKOR [22], etc. However, the VIKOR
method combined with LDAs with sample capacity has not been studied. This combination
will be helpful to improve the accuracy of fuzzy decision-making.

Most existing group decision-making (GDM) models assume that the decision-makers
make independent decisions, which is unreasonable in reality [29]. In the process of inte-
grating individual results into a group decision result, the dependence of decision-makers
in a MAGDM problem, which is also called the interference effects in quantum decision
theory (QPT), has attracted growing concern. QPT can be used to construct dynamic sys-
tems [30,31], and it has been widely studied and applied in different fields, e.g., cognitive
and human behavioral sciences [32,33], psychology [34,35], decision-making [36–38], and
artificial quantum intelligence [36], etc. Many paradoxes can not be explained by classical
probability theory (CPT): the Ellsberg paradox [39], the disjunction fallacy [40,41], the order
effect [42,43], etc., can be well-explained in QPT framework. Some recent studies on cogni-
tive psychology [44–46] verified that the quantum probability theory can develop a group
decision model which can simulate the real decision-making process of human beings.
They [44–46] believe that human thoughts can be regarded as superposition waves, thus
the concept of “interference” emerged. Given the strong ability of the QPT framework to
capture the intuitive feeling of uncertainty, ambiguity, or conflict, it is natural to extend it to
deal with MAGDM problems [29]. However, the previous studies assumed that interference



Mathematics 2022, 10, 2236 3 of 23

effects among decision-makers are symmetric. In other words, for different alternatives,
the influence of opinion between decision-makers is equal. There is not enough evidence
to prove that this assumption is correct. Therefore, MAGDM problems with respect to
asymmetric interference effects deserve further study.

1.2. Motivations and Innovations

Through the above discussion and analysis, the main motivations of this paper include
the following three aspects:

1. Although LDAs with sample capacity can well-express group linguistic evaluation,
the distance measure of LDAs in previous studies is not applicable to LDAs with
sample capacity. Therefore, it is necessary to develop a new distance measure to
compare LDAs with sample capacity.

2. The problem of attributes conflict can be handled by VIKOR method; we try to extend
VIKOR method to the context of LDAs. When considering the interaction of decision-
makers in a group, how to reflect the group interaction relationship based on this
method?

3. In the process of dealing with MAGDM problems, it is necessary to consider the asym-
metric influence among decision-makers when using QPT. Therefore, it is significant
to explore the asymmetric interference effect in the quantum decision framework.

Hence, this paper develops a VIKOR-based linguistic MAGDM model in the quantum
decision framework to obtain compromise results and reflect the dependency of decision-
makers. The main innovations are as follows:

1. A new distances measure is developed for LDAs, which can preserve the integrity of
linguistic information.

2. We propose an LDAs–VIKOR method to obtain a set of compromise results instead of
a single result. It provides a new decision-making mechanism for decision-makers
when circumstances are uncertain.

3. We combine the QPT with the LDAs–VIKOR method to reflect the interaction among
decision-makers. The asymmetric interference is proposed to describe the degree of
interaction of a group in a more detailed and realistic manner.

The rest of this paper is arranged as follows. Section 2 introduces the concept of LDAs
with sample capacity and QPT. Section 3 proposes the asymmetric interference effects
among decision-makers in group decision-making (GDM) and verifies its rationality by
formula derivation. Section 4 constructs an LADs-VIKOR model to solve the MAGDM
problem in a quantum decision scenario. A case study is presented to validate the effec-
tiveness of the proposed model in Section 5. The sensitivity and discussion display the
flexibility of our model. Finally, advantages, limitations, and future studies are given in
Section 6.

2. Preliminaries

In this section, we briefly introduce the basic concepts of LDAs with sample capacity,
QPT, and the interference term. This section provides the basis for the following sections.

2.1. LDAs with Sample Capacity for Group Evaluations

LDAs are very common, and they can depict fuzzy information. As we know, there
are two types of LDAs: “individual evaluations” and “group evaluations” (see Figure 1).
In general, LDAs depend on a linguistic term set L = {lv|v = 0, . . . , g} which is pre-given.
Individual evaluation refers to a decision-maker who is irresolute about several linguistic
terms, then he/she can use LDA to express his/her opinion. Group evaluation mean that
there are N members in a group. Each member in the group provides only one linguistic
term for the evaluation event. Then the N evaluations given by N members make up an
LDA of group evaluation. Most LDAs are group evaluations, e.g., online reviews movie
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ratings, hotel rankings, etc. Thus, we concentrate on group evaluations of LDAs. Wu
et al. [15] defined the concept of LDAs with sample capacity.
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Definition 1 [15]. Let L = {ltv|v = 0, . . . , g}, an LDA is defined as: T = {(ltv, pv)|ltv ∈L, pv ∈
[0, 1], ∑v pv = 1, size = N}, or T = {(ltv, Nv)|ltv ∈L, Nv ∈ [0, N], ∑v Nv = N, size = N}.
where N is the total sample capacity of the LDA, the term (ltv, pv) and (ltv, Nv) are the prob-
abilitypv and size Nv with respect to the linguistic term ltv.

Example 1. Suppose a travel destination on Ctrip is rated by 68 tourists; 45 of them think it is
“very good”, 15 of them think it is “good”, 5 of them think it is “moderate”, 3 of them think it is
“bad”, and none of them think it is “very bad”. These linguistic evaluations can be summarized into
an LDA: T = {(lt0, 45/68), (lt1, 15/68), (lt2, 5/68), (lt3, 3/68), (lt4, 0/68)|N = 68}, where
{lt0, lt1, lt2, lt3, lt4} corresponds to the linguistic terms {very bad, bad, moderate, good, very good}.

LDAs are equal if their values of expected utility are same [12]. Hence the comparison
of LDAs can be defined as follow:

Definition 2 (Score function) [15]. Let T = {(ltv, pv)|ltv ∈L, pv ∈ [0, 1], ∑t pv = 1, size = N}
be an LDA, the score function of T is given as:

E(T) =
1

g + 1 ∑g
v=0 pv· f (ltv) (1)

where g + 1 is the total number of L, v = (0, 1, 2, . . . g). f is the linguistic scale function.
According to the score function (expected utility function), for any two LDAs T1 and T2, we

can conclude that [15]:

(1) If E(T1) > E(T2), then T1 � T2;
(2) If E(T1) < E(T2), then T1 ≺ T2;
(3) If E(T1) = E(T2), then T1 ∼ T2.

2.2. Quantum Probability Theory (QPT) and the Interference Term

In the framework of CPT, the events are subspaces of sample space Φ, while in QPT,
the events are regarded as subspaces of the Hilbert space, which are mutually exclusive
or related [29]. Take an event with two basic states Ω = {M1, M2} as an example: the
Hilbert space consists of a set of orthonormal basis vectors, which can be written by:
|ψ〉 = ϕ1exp(iθ1)|M1〉+ ϕ2exp(iθ2)|M2〉, where |M1〉 = (1,0), |M2〉 = (0,1).

Hilbert space of two-dimensional quantum probability is shown in Figure 2.
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According to Born’s rule [47], the square of the probability amplitude equals to the
classical probability [48]. So, the conversion relationship between probability amplitude
and classical probability is:

P(M1) = |ϕ1 exp(iθ1)|2 = ϕ1
2, P(M2) = |ϕ2 exp(iθ2)|2 = ϕ2

2 (2)

where P(Mi) is the classical probability of state Mi.
A path graph is usually used to represent the dependency of a set of variables. Buse-

meyer et al. [49] firstly proposed an experimental study of the decision process by com-
paring Markov and quantum model. By using conditional probabilities, the probability of
single path P(X → M→ Y) is given by:

P(X → M→ Y) = P(X)·P(M|X)·P(Y|M) (3)

According to Feynman’s first rule, the probability for the same single path obtained
by CPT and QPT is equal. If there are two paths from X to Y, we can not distinguish
which path will be taken to get to the final state. Moreira and Wichert [50] named it an
indistinguishable path from an initial state X to a final state Y. In classical Markov model
(Figure 3a), if there are two paths X → N → Y and X → M→ Y from an initial state X to
a final state Y, the final probability of Y is given by:

P(X → Y) = P(X)·P(N| X)·P(Y|N) + P(X)·P(M| X)·P(Y|M) (4)
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Quantum probability theory holds that the target state can be realized by the superpo-
sition of path trajectories when several paths are not observed. The transition from initial
state to final state has multiple unobserved paths (Figure 3b). So, the final probability of Y
is equal to the square of amplitude. It can be written as:

P(X → Y) =
∣∣∣ϕX ·ϕN|X ·ϕY|N + ϕX ·ϕM|X ·ϕY|M

∣∣∣2
=

∣∣∣ϕX ·ϕN|X ·ϕY|N

∣∣∣2 + ∣∣∣ϕX ·ϕM|X ·ϕY|M

∣∣∣2+
2·
∣∣∣ϕX ·ϕN|X ·ϕY|N

∣∣∣·∣∣∣ϕX ·ϕM|X ·ϕY|M

∣∣∣cosθ

(5)
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The term cosθ is interpreted as a quantum interference term, which is non-existent in
CPT. The main difference between CPT and QPT is the term cosθ.

Due to the interference term 2·
∣∣∣ϕX ·ϕN|X ·ϕY|N

∣∣∣·∣∣∣ϕX ·ϕM|X ·ϕY|M

∣∣∣cosθ, the probability
produced by the total amplitude law (Equation (5)) violates the total probability law
(Equation (4)). The probability generated by the total amplitude law is consistent with
total probability law if cosθ = 0. In other words, the quantum probability degenerates into
classical probability if cosθ = 0.

3. Asymmetric Interference Effects between Decision-Makers

The application of quantum decision theory to MAGDM has been discussed and its ef-
fectiveness has been verified by the previous studies [15,29]. The interference effects among
decision-makers will affect the result of decision-making. However, Yager [51] pointed
out that social influence in social network analysis can be classified into two situations,
which are called symmetric influence and asymmetric influence. We assume that A and
B are two entities, where A influences B does not necessarily mean that B also influences
A in the same degree. A and B may be in an asymmetric relationship [52]. Inspired by
the asymmetric relationship in social network analysis, we will discuss the asymmetric
influence, which can be regarded as asymmetric interference effects, in quantum decision
theory. In this section, we use the example in the literature [29] to illustrate that asymmetric
interference does exist in MAGDM.

Example 2. A director asks two decision-makers named DM1 and DM2 to use probability to assess
the risk of two projects A1 and A2; the weights of them are respectively P(DM1) and P(DM2).
The quantum decision process is shown in Figure 4.

Mathematics 2022, 10, x FOR PEER REVIEW 6 of 22 
 

 

The term 𝑐𝑜𝑠𝜃 is interpreted as a quantum interference term, which is non-existent 

in CPT. The main difference between CPT and QPT is the term 𝑐𝑜𝑠𝜃.  

Due to the interference term 2 ∙ |𝜑𝑋 ∙ 𝜑𝑁|𝑋 ∙ 𝜑𝑌|𝑁| ∙ |𝜑𝑋 ∙ 𝜑𝑀|𝑋 ∙ 𝜑𝑌|𝑀|𝑐𝑜𝑠𝜃, the proba-

bility produced by the total amplitude law (Equation (5)) violates the total probability law 

(Equation (4)). The probability generated by the total amplitude law is consistent with 

total probability law if 𝑐𝑜𝑠𝜃 = 0. In other words, the quantum probability degenerates 

into classical probability if 𝑐𝑜𝑠𝜃 = 0. 

3. Asymmetric Interference Effects between Decision-Makers 

The application of quantum decision theory to MAGDM has been discussed and its 

effectiveness has been verified by the previous studies [15,29]. The interference effects 

among decision-makers will affect the result of decision-making. However, Yager [51] 

pointed out that social influence in social network analysis can be classified into two situ-

ations, which are called symmetric influence and asymmetric influence. We assume that 

𝐴 and 𝐵 are two entities, where 𝐴 influences 𝐵 does not necessarily mean that 𝐵 also 

influences 𝐴 in the same degree. 𝐴 and 𝐵 may be in an asymmetric relationship [52]. 

Inspired by the asymmetric relationship in social network analysis, we will discuss the 

asymmetric influence, which can be regarded as asymmetric interference effects, in quan-

tum decision theory. In this section, we use the example in the literature [29] to illustrate 

that asymmetric interference does exist in MAGDM. 

Example 2. A director asks two decision-makers named 𝐷𝑀1 𝑎𝑛𝑑 𝐷𝑀2 to use probability to as-

sess the risk of two projects 𝐴1  and 𝐴2 ; the weights of them are respectively 𝑃(𝐷𝑀1)  and 

𝑃(𝐷𝑀2). The quantum decision process is shown in Figure 4. 

1A 2A

1DM
2DM

Initial opinion

 

Figure 4. Quantum decision process of assessing two alternatives. 

In [29], the interference terms of 𝐴1 and 𝐴2 are the same. This means that the inter-

ference effect between 𝐷𝑀1 and 𝐷𝑀2  is symmetric. However, the influence from 

𝐷𝑀1 to 𝐷𝑀2 may be not equal to the influence from 𝐷𝑀2 to 𝐷𝑀1, i.e., the interference be-

tween 𝐷𝑀1 and 𝐷𝑀2 is asymmetric. Let us deduce the existence of asymmetric interfer-

ence by the quantum interference law of total probability. According to Born’s rule [47], 

the probability of 𝐴1 is equal to the square of the amplitude probability. When two deci-

sion-makers are evaluating 𝐴1 , a decision maker can be regarded as a path. In other 

words, there are two possible paths pointing to 𝐴1. Based on the total probability quan-

tum interference law [50], the amplitude probability can be calculated by summing of the 

two possible paths. Then the probability of 𝐴1 can be obtained by: 

𝑃(𝐴1) = |𝜑𝐷𝑀1
𝜑𝐴1|𝐷𝑀1

+ 𝜑𝐷𝑀2
𝜑𝐴1|𝐷𝑀2

|
2
 (6) 

where  

𝜑𝐷𝑀1
= √𝑃(𝐷𝑀1)𝑒𝑖𝜃𝐷𝑀1 , 𝜑𝐴1|𝐷𝑀1

= √𝑃(𝐴1|𝐷𝑀1)𝑒𝑖𝜃𝐴1|𝐷𝑀1 , 

𝜑𝐷𝑀2
= √𝑃(𝐷𝑀2)𝑒𝑖𝜃𝐷𝑀2 , 𝜑𝐴1|𝐷2

= √𝑃(𝐴1|𝐷𝑀2)𝑒𝑖𝜃𝐴1|𝐷𝑀2 .  

Figure 4. Quantum decision process of assessing two alternatives.

In [29], the interference terms of A1 and A2 are the same. This means that the in-
terference effect between DM1 and DM2 is symmetric. However, the influence from
DM1 to DM2 may be not equal to the influence from DM2 to DM1, i.e., the interference
between DM1 and DM2. is asymmetric. Let us deduce the existence of asymmetric interfer-
ence by the quantum interference law of total probability. According to Born’s rule [47], the
probability of A1 is equal to the square of the amplitude probability. When two decision-
makers are evaluating A1, a decision maker can be regarded as a path. In other words, there
are two possible paths pointing to A1. Based on the total probability quantum interference
law [50], the amplitude probability can be calculated by summing of the two possible paths.
Then the probability of A1 can be obtained by:

P(A1) =
∣∣∣ϕDM1 ϕA1|DM1

+ ϕDM2 ϕA1|DM2

∣∣∣2 (6)

where

ϕDM1 =
√

P(DM1)e
iθDM1 , ϕA1|DM1

=
√

P(A1|DM1 )e
iθA1 |DM1 ,

ϕDM2 =
√

P(DM2)e
iθDM2 , ϕA1|D2

=
√

P(A1|DM2 )e
iθA1 |DM2 .
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Expand P(A1) to obtain:

P(A1) =
∣∣∣ϕDM1 ϕA1|DM1

+ ϕDM2 ϕA1|DM2

∣∣∣2
=

∣∣∣ϕDM1 ϕA1|DM1
+ ϕDM2 ϕA1|DM2

∣∣∣ · ∣∣∣ϕDM1 ϕA1|DM1
+ ϕDM2 ϕA1|DM2

∣∣∣∗
=

∣∣∣√P(DM1)e
iθDM1 ·

√
P(A1 | DM1)e

iθA1 |DM1 +
√

P(DM2)e
iθDM2 ·

√
P(A1 | DM2)e

iθA1 |DM2

∣∣∣·∣∣∣√P(DM1)e
−iθD1 ·

√
P(A1 | DM1)e

−iθA1 |D1 +
√

P(DM2)e
−iθD2 ·

√
P(A1 | DM2)e

−iθA1 |DM2

∣∣∣
= P(DM1)P(A1 | DM1) + P(DM2)P(A1 | DM2)+√

P(DM1)
√

P(A1 | DM1)
√

P(DM2)
√

P(A1 | DM2)e
i(θDM1−θDM2+θA1 |DM1

−θA1 |DM2
)√

P(DM1)
√

P(A1 | DM1)
√

P(DM2)
√

P(A1 | DM2)e
−i(θDM1−θD2+θA1

|DM1−θA1 |DM2
)

(7)

Knowing that:

cos
(

θDM1 − θDM2 + θA1|DM1
− θA1|DM2

)
=
(

ei(θDM1−θDM2+θA1 |DM1
−θA1 |DM2) + e−i(θDM1−θDM2+θA1 |DM1

−θA1 |DM2)
)

/2,

then P(A1) can be written as:

P(A1) = P(DM1)P(A1|DM1 ) + P(DM2)P(A1|DM2 )+

2
√

P(DM1)
√

P(A1|DM1 )
√

P(DM2)
√

P(A1|DM2 )cos
(

θDM1 − θDM2 + θA1|DM1
− θA1|DM2

) (8)

Analogically, the probability of alternative A2 can be written as:

P(A2) =
∣∣∣ϕDM1 ϕA2|DM1

+ ϕDM2 ϕA2|DM2

∣∣∣2
=

∣∣∣ϕDM1 ϕA2|DM1
+ ϕDM2 ϕA2|DM2

∣∣∣ · ∣∣∣ϕDM1 ϕA2|DM1
+ ϕDM2 ϕA2|DM2

∣∣∣∗
=

∣∣∣√P(DM1)e
iθDM1 ·

√
P(A2 | DM1)e

iθA2 |DM1 +
√

P(DM2)e
iθDM2 ·

√
P(A2 | DM2)e

iθA2 |DM2

∣∣∣·∣∣∣√P(DM1)e
−iθDM1 ·

√
P(A2 | DM1)e

−iθA2 |DM1 +
√

P(DM2)e
−iθDM2 ·

√
P(A2 | DM2)e

−iθA2 |DM2

∣∣∣
= P(DM1)P(A2 | DM1) + P(DM2)P(A2 | DM2)+

2
√

P(DM1)
√

P(A2 | DM1)
√

P(DM2)
√

P(A2 | DM2)cos
(

θDM1 − θDM2 + θA2|DM1
− θA2|DM2

)
(9)

Moreira et al. [50] only considered the case of one alternative. They assigned θDM1 −
θDM2 + θA2|DM1

− θA2|DM2
and θDM1 − θDM2 + θA1|DM1

− θA1|DM2
to θx, and did not take

θA1|DM1
− θA1|DM2

into account. He et al. [29] generalized the group decision problem to
MAGDM on the basis of [50]. They concluded that θA1|DM1

is equal to θA1|DM2
, and θA2|DM1

is equal to θA2|DM2
. Therefore, the value of phase difference is equal to the phase of DM1 mi-

nus the phase of DM2, i.e., θDM1 − θDM2 . However, compared Equation (8) with Equation (9),

the interference terms of A1 and A2, i.e., cos
(

θDM1 + θA1|DM1
− θDM2 − θA1|DM2

)
and

cos
(

θDM1 + θA2|DM1
− θDM2 − θA2|DM2

)
, are different. For A1 and A2, the interference

terms of them will varies with the value of θA1|DM1
− θA1|DM2

and θA2|DM1
− θA2|DM2

. It
is obvious that these phase difference should not be ignoring, and interference terms are
not always equal. In other words, the cos values are distinct when θA1|DM1

6= θA1|DM2
and θA2|DM1

6= θA2|DM2
.

We name the situation in [29,50] symmetric interference (interference effects between
decision-makers on different alternatives is the same), and we separate asymmetric inter-
ference from interference effects.

Definition 3. (Symmetric interference and asymmetric interference) For s decision-makers eval-
uating m alternatives, the interference effects among any pair of decision-makers, i.e., DMp and
DMq, p, q = (1, . . . , s), is symmetric interference if θAi |DMp = θAi |DMq . Otherwise, we name it
as asymmetric interference, when θAi |DMp 6= θAi |DMq , i = (1, . . . , m).
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From the analysis of Equations (8) and (9), one can easily find that asymmetric inter-
ference exists in a MAGDM problem. The interference effects of two decision-makers on
different alternatives may be a little more or a little less than the other, which is more in
line with a realistic decision-making situation. Therefore, our paper mainly discusses the
decision-makers’ asymmetric interference effects in MAGDM. Although the interference ef-
fects may exist among more than two decision-makers, we can transform such interference
effects into a set of interference effects among two decision-makers. Now we can generalize
it to the case of s decision-makers evaluating m alternatives, as shown in Figure 5.
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In terms of Figure 5, we can generalize Equations (8) and (9) to the situation when s.
decision-make evaluate m alternatives. Based on the total probability quantum interference
law [50], the probability of Ai, i = 1, . . . m considering the asymmetric interference can be
calculated by:

P(Ai) =
∣∣∣∑s

k=1 ϕDMk ϕAi |DMk

∣∣∣2
= ∑s

k=1 P(DMk)·P(Ai|DMk )+

2 ∑s−1
k=1 ∑s

k′=k+1

√
P(DMk)

√
P(Ai|DMk )√

P(DMk′)
√

P(Ai|DMk′ )cos
(

θDMk + θAi |DMk
− θDMk′

− θAi |DMk′

) (10)

where k = 1, . . . , s represents a decision-maker, and k′ represents another decision-maker
who interacts with the decision-maker k. Let θDMk + θAi |DMk

= θik, θDMk′
+ θAi |DMk′

= θik′ ,
Equation (10) can be simplified to:

P(Ai) = ∑s
k=1 P(DMk)·P(Ai|DMk )+

2 ∑s−1
k=1 ∑s

k′=k+1

√
P(DMk)

√
P(Ai|DMk )√

P(DMk′)
√

P(Ai|DMk′ )cos(θik − θik′)

(11)

4. An LDAs–VIKOR MAGDM Model Considering Asymmetric Interference in
Quantum Decision Framework

In this section, we extend the VIKOR method to solve the MAGDM problems with
LDAs in a quantum decision scenario. We will propose the LDAs–VIKOR first to form
the opinion of each subgroup, and then discuss the asymmetric interference effects when
integrating all subgroups’ opinions in a quantum decision scenario.



Mathematics 2022, 10, 2236 9 of 23

4.1. Problem Description

An LDAs-MAGDM problem includes m alternatives xi (i = 1, . . . , m) and n attributes
cj(j = 1, . . . , n), and a decision group consists of several subgroups. Here, a subgroup
can be viewed as a decision-maker as mentioned in Section 3, and an LAD of a subgroup
is the “group evaluation” mentioned in Section 2.1. For simplicity, the k-th subgroup is
represented by dk(k = 1, . . . , z). ωj = (ω1, . . . , ωn), and λ = (λ1, . . . , λz) are the subjective
weights of attributes and subgroups, respectively. Team members in each subgroup can
express their opinions by the pre-given LTs with freedom. Then, the linguistic evaluation
given by team members of each subgroup is collected and summarized into LDA; the k-th
subgroup’s LDAs preference matrix is listed as:

Xk =
(
xij
)k

=

 xk
11 · · · xk

1n
...

. . .
...

xk
m1 · · · xk

mn


where xk

ij is an LDA of alternative xi towards attribute cj provided by subgroup dk. The
method proposed in this paper dealing with MAGDM problem mainly consists of nine
steps, and the graphic process is shown in Figure 6.
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1. Establish a decision group including z subgroups d1, d2, . . . , dz, and determine alter-
natives and attributes;

2. Collect the linguistic evaluation information of each subgroup and form the LDAs
matrix of subgroup dk;

3. Determine the weights of attributes and subgroups;
4. Determine the positive ideal points and negative ideal points in each column of each

subgroup’s LDAs matrix;
5. Calculate the LDAs overall utility and LDAs individual regret of dk according to

positive ideal points and negative ideal points;
6. Integrate all subgroups’ LDAs overall utility and LDAs individual regret in the quan-

tum decision framework considering the asymmetric interference effects, respectively;
7. Obtain the group LDAs overall utility and LDAs individual regret;
8. Calculate the general LDAs–VIKOR index of each alternative;
9. Rank the alternative according to the ranking rules of LDAs–VIKOR.

4.2. The Quantum LDAs–VIKOR Decision Model for MAGDM

Compared with the traditional MAGDM framework based on VIKOR, the critical
parts of the method proposed in this paper are steps 5, 6, 7, and 8. These steps are crucial
for an LDAs–VIKOR method, building a quantum framework that considers asymmetric
interference effects.

4.2.1. The LDAs–VIKOR Method

To solve MAGDM problem with conflicting attributes, our study proposes an LADs-
VIKOR method. Opricovic [23] developed VIKOR method according to Lp-metric:

Lp,j =
{
∑n

j=1

[
ωj

(
T∗j − Tij

)
/
(

T∗j − T−j
)]p}1/p

, 1 ≤ p ≤ ∞; i = 1, . . . , m

where ωj = (ω1, . . . , ωn) is the weight of attributes as before and T∗j and T−j are the positive
ideal point and negative ideal point, respectively, of the j-th column of the attribute. Then,
the overall utility and individual regret is defined in the form of LDAs as:

Definition 4. The LDAs overall utility measure (LDAS) over alternative xi can be calculated by:

LDASi = ∑n
j=1

[
ωjd

(
T∗j , Tij

)
/d
(

T∗j , T−j
)]

(12)

Definition 5. The LDAs individual regret measure (LDAR) over alternative xi can be calculated by:

LDARi = maxj

[
ωjd

(
T∗j , Tij

)
/d
(

T∗j , T−j
)]

(13)

The general LDAs–VIKOR index LDAQi of alternative xi is:

LDAQi = γ
(LDASi − LDAS∗)
(LDAS− − LDAS∗)

+ (1− γ)
(LDARi − LDAR∗)
( LDAR− − LDAR∗)

(14)

where LDAS∗ = minLDASi, LDAS− = maxLDASi, LDAR∗ = minLDARi, LDAR− =
maxLDARi, and γ ∈ [0, 1] represents the weight of the overall utility. If γ > 0.5, it means
that the decision-maker tends to choose the maximum overall utility strategy; if γ < 0.5,
the decision-maker tends to choose the minimum individual regret strategy and reaches a
consensus if v = 0.5.

Based on the value of LDAQi and the following two conditions, we can rank the
alternatives.
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Con1: Acceptable advantage. LDAQm − LDAQ1 ≥ 1/(m− 1), if m = 2, then the first
and second position in the rank list of LDAQi are the alternative x1 and x2, respectively;

Con2: Acceptable stability. x1 should also be the best in the rank list of LDASi or
LDARi.

1. If both Con1 and Con2 are satisfied, then x1 is the best solution.
2. If Con1 is not satisfied, then {x1, . . . , xm} is a set of compromise solutions whenever

the maximum value of m satisfy the formula: LDAQm − LDAQ1 < 1/(m− 1).
3. If Con2 is not satisfied, then the compromise solutions are alternatives x1 and x2.

The determination of distance d
(

T∗j , Tij

)
and d

(
T∗j , T−j

)
is the key to calculate LDASi

and LDARi. The previous studies of distance measurements for measuring LDAs have
some limitations; for example, the use of the max and min operator would lead to loss of
information [14]. To address this issue, a new distance measurement for LDAs with sample
capacity is defined as follows.

Definition 6. Let T1 = {
(
l1
v , p1

v
)∣∣l1

v ∈ L, p1
v ∈ [0, 1], ∑v p1

v = 1, size = N} and T2 = {
(
l2
v , p2

v
)∣∣l2

v ∈ L, p2
v ∈ [0, 1], ∑v p2

v = 1, size = N} be any two LDAs. The generalized distance measure
between T1 and T2 can then be defined as follows:

d(T1, T2) =
1

g + 1 ∑g
v=0{[ f

(
l1
v

)
p1

v]
∝
−
[

f
(

l2
v

)
p2

v

]∝
]}

1
∝ (15)

where g + 1 is the total number of L, v = (0, 1, 2, . . . g), and f is the linguistic scale function
as before.

Evidently, with the different value of ∝, it represents different distance expressions.

(1) When ∝= 1, it is the Hamming-Hausdorff distance;
(2) When ∝= 2, it is the Euclidean-Hausdorff distance.

Theorem 1. Let T1 = {
(
l1
v, p1

v
)∣∣l1

v ∈L, p1
v ∈ [0, 1], ∑v p1

v = 1, size = N}, T2 = {
(
l2
v, p2

v
)∣∣l2

v ∈L,
p2

v ∈ [0, 1], ∑v p2
v = 1, size = N} and T3 = {

(
l3
v , p3

v
)∣∣l3

v ∈ L, p3
v ∈ [0, 1], ∑v p3

v = 1, size = N}
be any three LDAs. Then, Equation (15) satisfied the following properties:

(1) Non-negativity: d(T1, T2) ≥ 0;
(2) Reflexivity: d(T1, T1) = 0;
(3) Reciprocity: d(T1, T2) = d(T2, T1);
(4) Transitivity: if d(T1, T2) = 0,d(T2, T3) = 0, then d(T1, T3) = 0.

Properties (1)–(3) are easily proved, and their proofs are omitted. We give the proof of
property (4) as follows:

Proof. According to Definition 6, if d(T1, T2) = 0, d(T2, T3) = 0, then, T1 ∼ T2 and T2 ∼ T3,
we can deduce that T1 ∼ T3, then d(T1, T3) = 0. �

4.2.2. Form Opinion of Subgroup dk by LDAs–VIKOR Method

First, we collect LDAs information to form LDAs decision matrix of each subgroup.
Then we can use Equation (1) to compare LDAs in each column of the formed matrix to
determine the positive ideal LDAs T∗kj and the negative ideal LDAs T−k

j of the j-th column.

Here, we adopt the linguistic scale function in [14]: f (ltv) = f
(

ltϑ(t)

)
= ϑ(x) = x/2t′, x =

{0, 1, . . . , 2t′}. Second, let T∗kj = maxjTk
ij, T−k

j = minjTk
ij, if the j-th column represents a

benefit (if represents a cost then reverse). Then, we use the newly proposed LDAs distance
measurement in Section 4.2.1 to calculate the LDASk

i and LDARk
i .

(1) The LDAs overall utility over alternative xi of subgroup dk could be calculated
as follows:

LDASk
i = ∑n

j=1

[
ωk

j d
(

T∗kj , Tk
ij

)
/d
(

T∗kj , T−k
j

)]
(16)
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(2) The LDAs individual regret over alternative xi of subgroup dk could be calculated
as follows:

LDARk
i = max

[
ωk

j d
(

T∗kj , Tk
ij

)
/d
(

T∗kj , T−k
j

)]
(17)

where ωk
j is the weight of attribute cj of subgroup dk. d

(
T∗kj , Tk

ij

)
and d

(
T∗kj , T−k

j

)
represent the distance to “ideal” solution of each alternative. It can be computed by
Equation (15).

4.2.3. Aggregate Opinions of All Subgroups in Quantum Decision Framework

After deriving the evaluation result (LDASk
i and LDARk

i ) of each subgroup based on
the LDAs–VIKOR method, we need to integrate the evaluation results of all subgroups by
an effective information integration technology to derive the group’s LDASi and LDARi to
compute the final closeness coefficient LDAQi to the ideal solution of each alternative. Now,
let us explore the asymmetric opinions interference among subgroups in a quantum-based
aggregation mode first.

1. Asymmetric opinion interference among any two subgroups in a quantum decision
framework.

The classical total probability law can be written as Equation (18). It is also depicted
as the classical “Bayes network” (BN).

P(xi) = ∑z
k=1 P(dk)P( xi|dk), i = 1, 2 . . . , m, k = 1, 2, . . . , z (18)

where ∑z
k=1 P(dk) = 1. In this way, we can derive LDASi and LDARi of xi in the form of

probability, respectively,

LDASi
′ = ∑z

k=1 P(dk)P(LDA Si|dk) (19)

LDARi
′ = ∑z

k=1 P(dk)P( LDARi|dk) (20)

where P( LDASi|dk) = LDASk
i /∑m

i=1 LDASk
i , P( LDARi|dk) = LDARk

i /∑m
i=1 LDARk

i . P(dk)
is the weight of subgroup dk.

In QPT, the subjective belief state is a superposition of several specific states. In this
situation, one can extend the classical BN to a quantum-based BN (see Figure 7) based
on [29]. The belief state in the first layer can be written by |D〉, and the decision state in the
second layer by |X〉, respectively.

|D〉 = ∑z
k=1 ϕ(dk)|dk〉 (21)

|X〉 = ∑m
i=1 ϕ(xi)|xi〉 (22)

For example, we assume that there is a belief state |d1〉 in Hilbert space, then the
corresponding amplitude probability is ϕ(d1). An intermediate state can be represented by
|X|D 〉, which joints the belief state and decision state. The state |X|D 〉 can be written as:

|X|D 〉 = ∑z
k=1 ∑m

i=1 ϕ( xi|dk)| xi|dk〉 (23)

State |X〉 can be determined through z×m possible paths:

|X〉 = |D〉 × |X|D 〉 = ∑z
k=1 ∑m

i=1 ϕ(dk)ϕ( xi|dk)|xi〉| xi|dk〉 (24)
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During the process of decision-making, subgroups’ opinions are often integrated
simultaneously by the final decision-maker (director) instead of one-by-one. Therefore, the
paths are naturally indistinguishable, and the decision state’s probability can be represented
by the square of the summation of the amplitude probabilities of all possible paths. The
probability of xi can be easily obtained by Equation (25) according to the total probability
quantum interference law [50]:

P(xi) =
∣∣∣∑z

k=1 eθdk ψ(dk)e
θxi |dk ψ( xi|dk)

∣∣∣2 (25)

He et al. [29] let the phase angles belonging to any possible paths that point to the
identical alternative to be the same, i.e., θxi |d1

= θxi |d2
= . . . = θxi |dz , then the interference

term is cos(θk − θk′). However, as mentioned in Section 3, θxi |d1
= θxi |d2

= . . . = θxi |dz is
just a special case, i.e., the symmetric interference effects. The more common situation is
the asymmetric interference. i.e., θxi |d1

6= θxi |d2
6= . . . 6= θxi |dz , or some are equal and some

are not equal, then the expansion of Equation (25) can be written as:

P(xi) = [∑z
k=1 P(dk)P(xi|dk)+

2 ∑z−1
k=1 ∑z

k′=k+1

√
P(dk)

√
P(xi|dk)√

P(dk′)
√

P(xi|dk′) cos(θik − θik′)]/η

(26)

η is a normalization operator, η = ∑m
i=1

∣∣∣∑z
k=1 eθdk ψ(dk)e

θxi |dk ψ( xi|dk)
∣∣∣2.

Now, the LDASi and LDARi of xi can be rewritten as:

LDASi = &[LDAS′i + 2 ∑z−1
k=1 ∑z

k′=k+1

√
P(dk)

√
P(LDASi|dk)√

P(dk′)
√

P(LDASi|dk′) cos(θik − θik′)]/η1
(27)

LDARi = [LDAR′i + 2 ∑z−1
k=1 ∑z

k′=k+1

√
P(dk)

√
P(LDARi|dk)√

P(dk′)
√

P(LDARi|dk′) cos(θik − θik′)]/η2
(28)

where k and k′ represents different subgroup that interact with each other. Let βikk′ =
θik − θik′ , βikk′ ∈ [0, 2π], which can be regarded as the subjective psychological feeling of
the director towards subgroups’ different opinions; it can also can be interpreted as the direc-
tor’s subjective beliefs. Three typical βikk′ values are shown in Figure 8, corresponding to:

• When βikk′ = π/2, and βikk′ = 3π/2, there is no interference among subgroups. Each
subgroup is considered completely independent to others. Then the proposed model
degenerates into the classical Bayesian network.
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• When βikk′ ∈ [0, π/2) and (3π/2, 2π], there exists positive interference among two
subgroups. If βikk′ = 0 and 2π, their opinions are completely affected positively. The
subgroups are regarded as complete positive-related.

• When βikk′ ∈ (π/2, 3π/2), there exists negative interference among two subgroups,
if βikk′ = π, their opinions are completely affected negatively. The subgroups are
regarded as complete negative-related.
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2. Determine the value of the interference terms by belief entropy.

From Equation (26), one can find that the parameters’ (βikk′ ) number will expand mas-
sively as the number of subgroups increases. The determination of βikk′ is very important
for using quantum probability theory, but there is no authoritative method yet. One method
of determining the interference terms is similarity heuristic [53]; the other is based on belief
entropy [54,55]. Since the similarity heuristic is highly subjective, we choose to adopt belief
entropy to determine the value of asymmetric interference terms. The expression of belief
entropy is defined by [56]:

Db = −Eb = ∑L⊆X MLlog2ML/
(

2|L| − 1
)

(29)

where X is the set of options or events, L is a subset of X, the evidence’s support degree
on X is represented by mass function ML, |L| is the cardinality of L, which represents the
number of the final choices or answers to a query. In our MAGDM problem, |L| either
represents the subgroups’ number in the first layer or the choice under each subgroup in
the second layer. The key of obtaining the belief entropy is to determine ML. Here, we
substitute belief distance [54] to ML. The similarities of two of the decision vectors can
be measured by belief distance. The belief distance is closely related to the connection
vector [55], which is denoted by the combination of any two subgroups with respect to the

same alternative. One can write it as:
⇀
ξ =

[
µiq
ϑiq

]
, i = 1, . . . , m, q = 1, . . . , z(z− 1)/2. The

function of belief distance is defined as follows:

Biq =
∣∣µiq +

(∣∣µiq − δ
∣∣− ∣∣ϑiq − δ

∣∣)/(∣∣µiq − δ
∣∣+ ∣∣ϑiq − δ

∣∣)∣∣ (30)

If
∣∣µiq − δ

∣∣ ≤ ∣∣ϑiq − δ
∣∣, then we should switch the position of µiq and ϑiq. δ = 1/z rep-

resents the average probability of each subgroup. The deviation degree of µiq and ϑiq from
the average probability is represented by

∣∣µiq − δ
∣∣ and

∣∣ϑiq − δ
∣∣, and ML in Equation (29)

can be substituted with Biq. The belief entropy can be modified as:

Diq = Biqlog2Biq/
(

2L − 1
)

(31)

It is easy to find that the Equation (31) has some differences compared with Equation (29).
The summation of the Equation (31) is canceled, and L is fixed to 2. The reason for these
modifications is because this paper considers the interaction between any two subgroups
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instead of the whole group. We can use Equation (32) to normalize D′ iq to ensure that D′ iq
is in [−1, 1]:

D′ iq = 2
[(

Diq −minDb
)
/(maxDb −minDb)

]
− 1 (32)

where maxDb = 0, minDb = (2− δ)/log2(2− δ)/
(

2z(z−1)/2 − 1
)

. For the detailed deriva-
tion process of the maxDb and minDb, please refer to [55].

According to [54], cosβikk′ can be replaced by D′ iq, i.e., D′ iq = cosβikk′ , and we can
calculate the exact value of LDASi, LDARi. The value of the general LDAs–VIKOR index
LDAQi can also be computed by Equation (14).

5. Case Study

In this section, we apply the proposed model to evaluate internet finance service
(IFS), which is adopted from [57]. An enterprise hopes to select an internet financial
platform to promote capital flow and ensure its security. After preliminary screening, four
alternative platforms need to be finally evaluated; A1: Alipay, A2: YeePay, A3: JD Finance,
A4: ShengPay. The internet finance platform evaluation includes five attributes; c1: Cultural
Environment, c2: Technical Innovation, c3: Policy Support, c4: Industrial Competitiveness, cr5:
International Influence. The director forms three subgroups d1, d2, d3 to participate in the
evaluation problem, their weighting vector λ = {0.4, 0.3, 0.3} is pre-given, and the weights
of five attributes are also pre-given by subgroups, respectively (see Tables 1–3). A set of
LTs are given as: LTs = {lt0 : very bad, lt1 : bad, lt2 : moderate, lt3 : good, lt4 : very good}.
Each team member in a subgroup can choose an element in the set of LTs to evaluate
alternatives to form LDAs. For example, let 16 team members give evaluation to the cj
of Ai, where 8 of them think it is very good, 6 of them think it is good, 2 of them think it
is moderate, and none of them think it is bad or very bad. Then, the LDA can be written
as: {(lt0, 0/16), (lt1, 0/16), (lt2, 2/16), (lt3, 6/16), (lt4, 8/16)|N = 16}. The number 0/16
represents the probability distribution of lt0 when the sample capacity is 16.

Table 1. LDAs decision matrix of d1.

c1 (0.2) c2 (0.3) c3 (0.1) c4 (0.2) c5 (0.2)

A1


(lt0, 0/16), (lt1, 0/16),
(lt2, 0/16), (lt3, 8/16),
(lt4, 8/16)

∣∣N1
11 = 16




(lt0, 0/20), (lt1, 0/20),
(lt2, 0/20), (lt3, 10/20),
(lt4, 10/20)

∣∣N1
12 = 20



(lt0, 0/16), (lt1, 0/16),
(lt2, 4/16), (lt3, 4/16),
(lt4, 8/16)

∣∣N1
13 = 16



(lt0, 0/20), (lt1, 0/20),
(lt2, 2/20), (lt3, 4/20),
(lt4, 14/20)

∣∣N1
14 = 20



(lt0, 0/20), (lt1, 0/20),
(lt2, 2/20), (lt3, 6/20),
(lt4, 12/20)

∣∣N1
15 = 20


A2


(lt0, 0/16), (lt1, 0/16),
(lt2, , 2/16), (lt3, 8/16),
(lt4, 6/16)

∣∣N1
21 = 16




(lt0, 0/20), (lt1, 0/20),
(lt2, 6/20), (lt3, 10/20),
(lt4, 4/20)

∣∣N1
22 = 20



(lt0, 0/16), (lt1, 0/16),
(lt2, 4/16), (lt3, 6/16),
(lt4, 6/16)

∣∣N1
23 = 16



(lt0, 0/20), (lt1, 0/20),
(lt2, 7/20), (lt3, 9/20),
(lt4, 4/20)

∣∣N1
24 = 20



(lt0, 0/20), (lt1, 0/20),
(lt2, 6/20), (lt3, 8/20),
(lt4, 6/20)

∣∣N1
25 = 20


A3


(lt0, 0/16), (lt1, 0/16),
(lt2, , 0/16), (lt3, 6/16),
(l4, 10/16)

∣∣N1
31 = 16




(lt0, 0/20), (lt1, 0/20),
(lt2, , 0/20), (lt3, 6/20),
(lt4, 14/20)

∣∣N1
32 = 20



(lt0, 0/16), (lt1, 0/16),
(lt2, 4/16), (lt3, 2/16),
(lt4, 10/16)

∣∣N1
33 = 16



(lt0, 0/20), (lt1, 0/20),
(lt2, 2/20), (lt3, 6/20),
(lt4, 12/20)

∣∣N1
34 = 20



(lt0, 0/20), (lt1, 0/20),
(lt2, 4/20), (lt3, 4/20),
(lt4, 12/20)

∣∣N1
35 = 20


A4


(lt0, 0/16), (lt1, 0/16),
(lt2, , 6/16), (lt3, 6/16),
(lt4, 4/16)

∣∣N1
41 = 16




(lt0, 0/20), (lt1, 0/20),
(lt2, , 6/20), (lt3, 8/20),
(lt4, 6/20)

∣∣N1
42 = 20



(lt0, 0/16), (lt1, 0/16),
(lt2, 6/16), (lt3, 6/16),
(lt4, 4/16)

∣∣N1
43 = 16



(lt0, 0/20), (lt1, 0/20),
(lt2, 3/20), (lt3, 9/20),
(lt4, 8/20)

∣∣N1
44 = 20




(lt0, 0/20), (lt1, 0/20),
(lt2, 6/20), (lt3, 10/20),
(lt4, 4/20)

∣∣N1
45 = 20


Table 2. LDAs decision matrix of d2.

c1 (0.2) c2 (0.2) c3 (0.3) c4 (0.1) c5 (0.2)

A1

(lt0, 0/10), (lt1, 0/10),
(lt2, 0/10), (lt3, 4/10),
(lt4, 6/10)

∣∣N2
11 = 10


(lt0, 0/15), (lt1, 0/15),
(lt2, 0/15), (lt3, 6/15),
(lt4, 9/15)

∣∣N2
12 = 15


(lt0, 0/15), (lt1, 0/15),
(lt2, 2/15), (lt3, 4/15),
(lt4, 9/15)

∣∣N2
13 = 15


(lt0, 0/15), (lt1, 0/15),
(lt2, 3/15), (lt3, 6/15),
(lt4, 6/15)

∣∣N2
14 = 15


(lt0, 0/15), (lt1, 0/15),
(lt2, 2/15), (lt3, 3/15),
(lt4, 10/15)

∣∣N2
15 = 15


A2

(lt0, 0/10), (lt1, 0/10),
(lt2, 0/10), (lt3, 6/10),
(lt4, 4/10)

∣∣N2
21 = 10


(lt0, 0/15), (lt1, 0/15),
(lt2, 3/15), (lt3, 6/15),
(lt4, 6/15)

∣∣N2
22 = 15


(lt0, 0/15), (lt1, 0/15),
(lt2, 3/15), (lt3, 3/15),
(lt4, 9/15)

∣∣N2
23 = 15


(lt0, 0/15), (lt1, 0/15),
(lt2, 3/15), (lt3, 4/15),
(lt4, 8/15)

∣∣N2
24 = 15


(lt0, 0/15), (lt1, 0/15),
(lt2, 4/15), (lt3, 3/15),
(lt4, 8/15)

∣∣N2
25 = 15


A3

(lt0, 0/10), (lt1, 0/10),
(lt2, 0/10), (lt3, 8/10),
(lt4, 2/10)

∣∣N2
31 = 10


(lt0, 0/15), (lt1, 0/15),
(lt2, 0/15), (lt3, 9/15),
(lt4, 6/15)

∣∣N2
32 = 15


(lt0, 0/15), (lt1, 0/15),
(lt2, 1/15), (lt3, 2/15),
(lt4, 12/15)

∣∣N2
33 = 15


(lt0, 0/15), (lt1, 0/15),
(lt2, 1/15), (lt3, 7/15),
(lt4, 7/15)

∣∣N2
34 = 15


(lt0, 0/15), (lt1, 0/15),
(lt2, 3/15), (lt3, 3/15),
(lt4, 9/15)

∣∣N2
35 = 15


A4

(lt0, 0/10), (lt1, 0/10),
(lt2, 4/10), (lt3, 4/10),
(lt4, 2/10)

∣∣N2
41 = 10


(lt0, 0/15), (lt1, 0/15),
(lt2, 4/15), (lt3, 8/15),
(lt4, 3/15)

∣∣N2
42 = 15


(lt0, 0/15), (lt1, 0/15),
(lt2, 6/15), (lt3, 7/15),
(lt4, 2/15)

∣∣N2
43 = 15


(lt0, 0/15), (lt1, 0/15),
(lt2, 2/15), (lt3, 8/15),
(lt4, 5/15)

∣∣N2
44 = 15


 (lt0, 0/15), (lt1, 0/15),
(lt2, 3/15), (lt3, 10/15),
(lt4, 2/15)

∣∣N2
45 = 15


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Table 3. LDAs decision matrix of d3.

c1 (0.2) c2 (0.2) c3 (0.2) c4 (0.2) c5 (0.2)

A1

 (lt0, 0/25), (lt1, 0/25),
(lt2, 5/25), (lt3, 13/25),
(lt4, 7/25)

∣∣N3
11 = 25


(lt0, 0/30), (lt1, 0/30),
(lt2, 4/30), (lt3, 6/30),
(lt4, 20/30)

∣∣N3
12 = 30


 (lt0, 0/28), (lt1, 0/28),
(lt2, 8/28), (lt3, 10/28),
(lt4, 10/28)

∣∣N3
13 = 28


(lt0, 0/30), (lt1, 0/30),
(lt2, 5/30), (lt3, 5/30),
(lt4, 20/30)

∣∣N3
14 = 30


(lt0, 0/30), (lt1, 0/30),
(lt2, 3/30), (lt3, 5/30),
(lt4, 22/30)

∣∣N3
15 = 30


A2

 (lt0, 0/25), (lt1, 0/25),
(lt2, 3/25), (lt3, 14/25),
(lt4, 8/25)

∣∣N3
21 = 25


(lt0, 0/30), (lt1, 0/30),
(lt2, 6/30), (lt3, 8/30),
(lt4, 16/30)

∣∣N3
22 = 30


(lt0, 0/28), (lt1, 0/28),
(lt2, 7/28), (lt3, 3/28),
(lt4, 18/28)

∣∣N3
23 = 28


 (lt0, 0/30), (lt1, 0/30),
(lt2, 6/30), (lt3, 18/30),
(lt4, 6/30)

∣∣N3
24 = 30


 (lt0, 0/30), (lt1, 0/30),
(lt2, 8/30), (lt3, 12/30),
(lt4, 10/30)

∣∣N3
25 = 30


A3

(lt0, 0/25), (lt1, 0/25),
(lt2, 0/25), (lt3, 7/25),
(lt4, 18/25)

∣∣N3
21 = 25


(lt0, 0/30), (lt1, 0/30),
(lt2, 0/30), (lt3, 8/30),
(lt4, 22/30)

∣∣N3
32 = 30


 (lt0, 0/28), (lt1, 0/28),
(lt2, 12/28), (lt3, 8/28),
(lt4, 8/28)

∣∣N3
33 = 28


 (lt0, 0/30), (lt1, 0/30),
(lt2, 3/30), (lt3, 12/30),
(lt4, 15/30)

∣∣N3
34 = 30


 (lt0, 0/30), (lt1, 0/30),
(lt2, 5/30), (lt3, 10/30),
(lt4, 15/30)

∣∣N3
35 = 30


A4

 (lt0, 0/25), (lt1, 0/25),
(lt2, 9/25), (lt3, 10/25),
(lt4, 6/25)

∣∣N3
41 = 25


 (lt0, 0/30), (lt1, 0/30),
(lt2, 10/30), (lt3, 14/30),
(lt4, 6/30)

∣∣N3
42 = 30


 (lt0, 0/28), (lt1, 0/28),
(lt2, 10/28), (lt3, 8/28),
(lt4, 10/28)

∣∣N3
43 = 28


 (lt0, 0/30), (lt1, 0/30),
(lt2, 6/30), (lt3, 20/30),
(lt4, 4/30)

∣∣N3
44 = 30


 (lt0, 0/30), (lt1, 0/30),
(lt2, 8/30), (lt3, 16/30),
(lt4, 6/30)

∣∣N3
45 = 30


5.1. The Evaluation Steps

The overall decision-making procedure includes five steps.
Step 1: Form LDAs matrix by Linguistic Evaluations.
The analyst collects the evaluation information given by LTs, summarizes them into

LDAs, and then forms three decision matrices. The corresponding LDAs decision matrices
of the three subgroups are given in Tables 1–3.

Step 2: Form opinion of each subgroup based on LDAs–VIKOR.
First, according to the Equation (1), we can identify the best T∗kj and the worst T−k

j of

subgroup dk. Second, calculate the overall utility LDASk
i and individual regret LDARk

i of
dk by Equations (16) and (17). Third, turn them into conditional probabilities (P( LDASi|dk),
P( LDARi|dk)) (see Tables 4 and 5) to represent subgroup’s opinion.

Table 4. The value of conditional probabilities of overall utility of dk.

P(LDASi|dk) d1 d2 d3

A1 0.133 0.069 0.173
A2 0.402 0.236 0.250
A3 0.034 0.185 0.158
A4 0.430 0.510 0.419

Table 5. The value of conditional probabilities of individual regret of dk.

P(LDARi|dk) d1 d2 d3

A1 0.060 0.110 0.245
A2 0.485 0.177 0.230
A3 0.066 0.305 0.262
A4 0.388 0.408 0.262

Step 3: Aggregate all subgroups’ opinions in a quantum decision framework.
Aggregate each subgroup’s result of LDASk

i and LDARk
i . The weighting vector

λ = {0.4, 0.3, 0.3} of d1, d2, d3 can be written as P(d1) = 0.4, P(d2) = P(d3) = 0.3.
According to (19) and (20), we can calculate the value of LDAS′i and LDAR′i. Let LDAS′′ik =√

P(dk)
√

P(LDASi|dk) and LDAR′′ik =
√

P(dk)
√

P(LDARi|dk), the value of LDAS′′ik and√
P(dk)

√
P(LDARi|dk) are show in Tables 6 and 7.
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Table 6. The value of LDAS′′ik.

LDAS”
i d1 d2 d3

A1 0.231 0.144 0.228
A2 0.401 0.266 0.274
A3 0.117 0.235 0.218
A4 0.415 0.391 0.355

Table 7. The value of LDAR′′ik.

LDAR”
i d1 d2 d3

A1 0.155 0.182 0.271
A2 0.441 0.230 0.262
A3 0.163 0.302 0.281
A4 0.394 0.350 0.281

To determine the value of interference terms, we need to calculate the value D′ iq to

substitute the cosine value. First, the connection vectors
⇀
ξ of LDAS′i are as follows:

⇀
ξ

LDAS′i
1 =

[
0.231 0.231 0.144
0.144 0.228 0.228

]
,
⇀
ξ

LDAS′i
2 =

[
0.401 0.401 0.266
0.266 0.274 0.274

]
,

⇀
ξ

LDAS′i
3 =

[
0.117 0.117 0.235
0.235 0.235 0.218

]
,
⇀
ξ

LDAS′i
4 =

[
0.415 0.415 0.391
0.391 0.355 0.355

]
.

and the connection vectors
⇀
ξ of LDAR′i are as follows:

⇀
ξ

LDAR′i
1 =

[
0.155 0.155 0.182
0.182 0.271 0.271

]
,
⇀
ξ

LDAR′i
2 =

[
0.441 0.441 0.230
0.230 0.262 0.262

]
,

⇀
ξ

LDAR′i
3 =

[
0.163 0.163 0.302
0.302 0.281 0.281

]
,
⇀
ξ

LDAR′i
4 =

[
0.394 0.394 0.350
0.350 0.281 0.281

]
.

Set δ = 1/3, and then compute the Diq consequently (see Tables 8 and 9).

Table 8. The value of Diq with respect to LDASi.

Diq d12 d13 d23

A1 −0.381 −0.226 −0.417
A2 −0.061 −0.161 −0.800
A3 −1.573 −0.319 −0.527
A4 −0.495 −0.530 −0.197

Table 9. The value of Diq with respect to LDARi.

Diq d12 d13 d23

A1 −0.482 −1.404 −1.295
A2 −1.522 −1.552 −0.807
A3 −0.773 −1.231 −0.856
A4 −0.423 −1.409 −1.293

Then, combined with Equation (31), we get maxDb = 0, minDb = −3.5. For the
interference terms of each alternative over each couple of subgroups, see Tables 10 and 11.
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Table 10. The value of interference terms of LDASi.

Interference Terms d12 d13 d23

A1 0.782 0.871 0.762
A2 0.965 0.908 0.543
A3 0.101 0.818 0.699
A4 0.717 0.697 0.887

Table 11. The value of interference terms of LDARi.

Interference Terms d12 d13 d23

A1 0.725 0.198 0.260
A2 0.130 0.113 0.539
A3 0.558 0.297 0.511
A4 0.758 0.195 0.261

Finally, the value of LDASi, and LDARi can be calculated by Equations (27) and (28):

LDAS1 = 0.13, LDAS2 = 0.32, LDAS3 = 0.09, LDAS4 = 0.46;
LDAR1 = 0.13,LDAR2 = 0.26,LDAR3 = 0.22,LDAR4 = 0.39.

Step 4: calculate the value of LDAQi.
Combine the above results and set γ = 0.5, the value of LDAQi can be computed by

Equation (14): LDAQ1 = 0.05, LDAQ2 = 0.56, LDAQ3 = 0.17, LDAQ4 = 1.
Step 5: Rank the alternatives based on VIKOR ranking rules.
According to LDASi, the ranking is A3 � A1 � A2 � A4.
According to LDARi, the ranking is A1 � A3 � A2 � A4.
According to LDAQi, the ranking is A1 � A3 � A2 � A4.
We can see that the ranking results of LDARi and LDAQi are the same and meet

the condition Con1 (acceptable advantage), and LDAQ(A3)− LDAQ(A1) = 0.12 < 1/3,
LDAQ(A2)− LDAQ(A1) = 0.51 > 1/3. According to the ranking rules of VIKOR, we can
conclude that the orders of the alternatives are A1 � A3 � A2 � A4, and the compromise
solutions are A1 and A3.

5.2. Sensitivity Analysis

We can find that the different values of γ may lead to different ranks and compromise
solutions (see Table 12).

Table 12. Ranks and compromise solution with different v.

γ A1 A2 A3 A4 Ranks of Alternatives Compromise
Solution

0 0.00 0.49 0.34 1.00 A1 � A3 � A2 � A4 A1
0.1 0.01 0.51 0.31 1.00 A1 � A3 � A2 � A4 A1, A3
0.2 0.02 0.52 0.27 1.00 A1 � A3 � A2 � A4 A1, A3
0.3 0.03 0.53 0.24 1.00 A1 � A3 � A2 � A4 A1, A3
0.4 0.04 0.54 0.20 1.00 A1 � A3 � A2 � A4 A1, A3
0.5 0.05 0.56 0.17 1.00 A1 � A3 � A2 � A4 A1, A3
0.6 0.06 0.57 0.14 1.00 A1 � A3 � A2 � A4 A1, A3
0.7 0.07 0.58 0.10 1.00 A1 � A3 � A2 � A4 A1, A3
0.8 0.08 0.59 0.07 1.00 A3 � A1 � A2 � A4 A1, A3
0.9 0.08 0.61 0.03 1.00 A3 � A1 � A2 � A4 A1, A3
1 0.09 0.62 0.00 1.00 A3 � A1 � A2 � A4 A1, A3

1. When γ = 0, the rank list is A1 � A3 � A2 � A4, the alternative A1 is the best; when
0 < γ ≤ 0.7, the rank list is still A1 � A3 � A2 � A4, but the compromise solutions
are A1 and A3, indicating that A1 and A3 are the best candidates;
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2. When 0.7 < γ ≤ 1, the rank list is still A3 � A1 � A2 � A4, and the compromise
solutions are A1 and A3. It can be found from the above analysis that in most cases,
the rank list of alternatives is A1 � A3 � A2 � A4, and the compromise solutions are
A1 and A3.

5.3. Discussion

To verify the validity of our model, we conducted a comparative analysis with some
existing LDAs decision models and quantum decision models. Yu et al. [14] applied LDAs
combine with VIKOR method to rank hotels on a travel website. They defined a distance
measure and comparison method for LDAs. Huang et al. [58] adopt LDAs to express risk
evaluation information, and determine the failure modes’ risk priority using an extended
TODIM. Table 13 shows the final calculation results and rank lists derived from comparison
with the three methods. In the process of method comparison, we use the same evaluation
problem to calculate. The main difference between our method and theirs lies in the
following aspects:

1. Yu et al. [14] proposed LDAs for group evaluation first, but they ignored the sample
capacity information; the proposed LDAs distance measure using max or min operator
would result in loss of information. Our paper proposes a new LDAs distance measure
based on [57] that can effectively avoid this problem.

2. In the process of information fusion, Yu et al. [14] and Huang et al. [58] assumed
that decision-makers are independent. The proposed model explores the dependence
of subgroups (corresponding to the concept of decision-makers) in the quantum
decision-making framework to reflect the opinion interference and superposition
effects.

3. Wu et al. [57] also integrated the opinions of subgroups in the quantum decision
framework, but they assumed that the interference effects are symmetric, and the
value of interference term is unsolved. In this paper, the interference effects are
divided into symmetric interference and asymmetric interference ones. The belief
entropy method is used to determine the value of the interference terms to obtain
the alternatives’ ranking results. In addition, the LDAs–VIKOR method combined
with quantum probability may provide compromise solutions for alternatives with
conflicting attributes.

Table 13. The comparation with other methods.

Methods Ranking Value Ranking Order

LD-VIKOR method [14] LDQ1 = 0.22, LDQ2 = 0.54,
LDQ3 = 0.14, LDQ4 = 0.6. A3 � A1 � A2 �A4

LD-TODIM method [58] LDT1 = 0.87, LDT2 = 0.46,
LDT3 = 1, LDT4 = 0. A3 � A1 � A2 �A4

Quantum-based LDAs
method [57]

LDAP1 = 0.28, LDAP2 = 0.23,
LDAP3 = 0.29, LDAP4 = 0.2. A3 � A1 � A2 �A4

The proposed method LDAQ1 = 0.05, LDAQ2 = 0.56,
LDAQ3 = 0.17, LDAQ4 = 1. A1 � A3 � A2 �A4

Therefore, the proposed model is more rational and realistic than the aggregation
model, which considers only the symmetric interference effects or assumes complete
independence. Using LDAs with sample capacity information makes our model more
robust and flexible when dealing with linguistic information probability distributions.
Moreover, in previous MAGDM models, the director’s subjectivity is mainly reflected
in the revision of the subgroups’ weights. In our paper, the exploitation of the QPT can
simulate the superposition effects of the subjective cognization of the director.
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6. Conclusions

The interference effects among decision-makers are interesting social phenomena
and are attracting more and more attention. Hence, it is worthful to find a scientific
method to solve MAGDM problems. Quantum probability model has greater flexibility
and randomness. It also has the advantage of describing people’s uncertain belief states,
which is more conducive to explaining people’s judgment and decision-making. Our
paper proposes an LDAs–VIKOR method in a quantum decision framework that can
comprehensively and effectively handle decision-maker’s compromise preference. The
advantages of the proposed model are as follows:

1. LADs with sample capacity information are used to deal with the linguistic terms
of group linguistic evaluations statistically, which is more reasonable in a MAGDM
problem. Meanwhile, we proposed a new distance measurement method that can
effectively avoid information loss and make the results more accurate.

2. Quantum probability theory can well model interference effects and superposition
effects of decision-makers in MAGDM. When modeling interference effects in the
quantum decision-making framework, an LDAs–VIKOR method is used to obtain a
compromise solution, which makes the results more realistic.

3. The main novelty of this paper is to divide interference effects into symmetric and
asymmetric ones when solving MAGDM problems. The existence of asymmetric
interference is also proved by formula derivation theoretically. In addition, we adopt
the belief entropy method to quantify the interference terms.

The method proposed in this paper can provide decision support for electronic plat-
forms and other related application fields. However, it also has the following limitations:

1. The weights of attributes and subgroups in this paper are set subjectively. Different
weight-setting methods may lead to different decision results. How to determine a
more objective weight requires further research.

2. As the number of decision-makers and alternatives increases, the quantum decision
model considering asymmetric interference effects is more complex than the general
quantum decision model, and the number of interference terms increases rapidly. It
may cause some difficulties in practice.

3. We start by deriving the interference term for two decision-makers for simplicity,
and generalize interference effects for N decision-makers by deriving one of the two
decision-makers. However, this simplification may lead to distortion of information.
After all, people’s psychological behavior is very complex. At present, there are no
experimental results to prove that the interaction of more than three people will not
have new effects.

Thus, significant opportunities exist for future research. First, the decision-maker’s
personality parameter can be an important factor that will influence the interference effects
between decision-makers. Therefore, a scientific method for determining the personality
parameters of experts is needed. In addition, determining the most suitable interference
value for different decision-making environments requires further discussion. Scholars
can also determine the potential applications of QPT method for other GDM processes.
Furthermore, if the case of attribute dependence is considered, the Choquet integral also
can be used to deal with the interaction among attributes.
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