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Abstract: Human interlocutors may use emotions as an important signaling device for coordinating
an interaction. In this context, predicting a significant change in a speaker’s emotion may be important
for regulating the interaction. Given the nonlinear and noisy nature of human conversations and
relatively short time series they produce, such a predictive model is an open challenge, both for
modeling human behavior and in engineering artificial intelligence systems for predicting change.
In this paper, we present simple and theoretically grounded models for predicting the direction of
change in emotion during conversation. We tested our approach on textual data from several massive
conversations corpora and two different cultures: Chinese (Mandarin) and American (English). The
results converge in suggesting that change in emotion may be successfully predicted, even with
regard to very short, nonlinear, and noisy interactions.
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1. Introduction: Emotion and Emotion Dynamics

Human social relations are formed through interactions that are mostly grounded in
natural language [1–3]. Researchers focusing on language use [1,4] have repeatedly pointed
to the way interlocutors in a conversation invest effort in coordinating their use of language,
a process discussed under various names, from “resonance” [5,6] to “synchronization” [7].

As human interactions require an ongoing process of coordination, it is not surprising
that emotions play an important role in coordinating an interaction. From a functional
perspective, emotions have an important role, allowing interlocutors to signal to each other, in
order to ease communication in a quick and unconscious form [8], thus supporting and aiding
language use in complex social situations. While language use may be supported by emotions,
this process is bidirectional, as the processing of emotion is achieved through the mediation
of language. Indeed, language has been shown to mediate emotion understanding [9] to the
extent that it is argued that “emotion is represented in the brain as a set of semantic features
in a distributed sensory, motor, language and affective network” [10] (p. 813).

The bidirectional relation between language use and emotion is explained by the fact
that, while emotion signaling and recognition have an innate and universal dimension
(e.g., through the processing of facial expressions), the complexity of processing emotions
may result from the activity of a complementary process where the emotion is decoded
and interpreted according to cultural norms [11], mainly through language. Therefore,
emotions support language use in interaction, but they are also expressed through language,
a situation that creates a high level of processing demands and complexity.
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1.1. Language Use, Emotions, and Feedback Loops

A second source of complexity in processing emotions is the social relational aspect of
emotions. As argued by Parkinson, “Emotions serve to calibrate . . . individuals’ respective
orientations to what is happening” [12] (p. 78, our emphasis). This “relation-alignment
perspective” (p. 78) suggests that “talking emotionally involves aligning people’s relations
towards what is happening and not simply trying to pin down the semantic features of a
prior private experience” (p. 80). In other words, emotions do not trivially mirror internal
mental states but are functionally and dynamically used to signal to others and move them
to action. Emotions are, therefore, (1) dynamically processed through (2) the exchange of
signals between interlocutors.

If linguistic emotional signals are dynamically fed back and forth between interlocu-
tors, then they may be modeled in terms of feedback loops. The theoretical justification
for focusing on feedback loops in attempting to understand emotion dynamics follows the
idea that “emotions serve to align people’s orientations to one another and to objects and
events in their shared environment” and “mutual dynamic adjustments” are made through
the interaction [12] (p. 85, our emphasis).

Two major, and generally acknowledged, processes that may underlie changes in
emotion and “dynamic adjustments” [12] (p. 85) are, therefore, positive and negative
feedback loops. As explained by Brown, “Feedback loops are typically used to accomplish
regulation and control. A feedback loop is like an input, but its origin is from within the
system itself, not from outside the system” [13] (p. 15). In the case of valence, the most
basic dimension of emotion, positive feedback amplifies the system’s output, resulting in
the growth or decline of the valence. In contrast, negative feedback moderates the valence
and stabilizes it around an equilibrium point. For example, in a triadic sequence of turns
produced by two speakers—A1-B-A2—A may significantly change the sentiment from A1
to A2, as a response to B’s response to the utterance A originally produced (we use the
terms ‘valence’ and ‘sentiment’ interchangeably). If the sentiment (i.e., valence) presented
by B as a response to A’s turn is much higher than the one originally signaled by A, A may
interpret this signal in a way that invites the relative increase of A’s sentiment, not only
in comparison to A’s original sentiment but also in comparison to B’s sentiment. Such a
sequence, where sentiment is measured on a 0 to 1 scale, may be represented as 0.2, 0.4, or
0.6; it may also be described as a monotonic increasing sequence (see Appendix A for a list of
all key notations used in the text).

A complementary process occurs where there is a negative feedback loop that has a
moderating effect on the generated emotion. For instance, if B responded with a lower level
of valence, A might respond by decreasing the emotional valence to meet a certain cultural
ideal of emotional equilibrium. These different patterns of emotional–relational positioning
may be represented by a few simple ordinal patterns and their transition probabilities.
In this paper, we describe how we modeled the different emotional–relational patterns
by using ordinal patterns and used them to form and test a simple model for predicting
change in emotion during conversations. We automatically tested and validated our model
on massive corpora of Chinese Mandarin and American English.

1.2. Emotion Dynamics and the Prediction of Change

As previously proposed, emotion dynamics [14], or the way emotions unfold during an
interaction, may be modeled through a series of feedback loops, where linguistic signaling
of emotion by the interlocutors is fed back into the system (i.e., the interacting dyad) to
support the coordination of the composing units (i.e., the interacting individuals). This
proposed modeling approach relies on a vast literature pointing to the role of feedback in
emotion and emotion regulation [14–19]. In this context of emotion dynamics, anticipating
a change in the interlocutors’ emotion is important in calibrating interactions, specifically
in cultures such as China, where “the expression of emotion is carefully regulated out of
concern for its capacity to disrupt group harmony and status hierarchies” [20] (p. 245) and
emotions play a crucial role in face-work and trust building [21].
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At the most basic level, anticipating a change in valence [22], which is the most fun-
damental dimension of emotion and relates to the pleasantness or unpleasantness of a
signal, may be highly important for relational alignment in an interaction. Valence is “one
of the most important scientific concepts at the heart of emotion experience” [23] (p. 83)
and captures the essential aspect of affect [24], which may be highly important to use and
anticipate during a conversation.

While change point detection has been studied in the context of interpersonal rela-
tionships [25], such studies do not usually focus on the prediction of change from a social
relational perspective but on the identification of change or change point detection. In
this paper, we develop a simple computational model for predicting change in valence
during a conversation. More specifically, we focus on predicting the direction of change and
whether a valence will increase or decrease. This model is grounded in the psychological–
social–relational approach to language and emotion. Therefore, and given our theoretical
framework, to predict a change in emotion (i.e., an increase or decrease in valence), we must
model a nonlinear system where information, in the form of verbal signaling of valence,
is fed back and forth between the interlocutors and constitutes a series of feedback loops
regulating the emotion dynamics in a way that may be used to predict change. To address
this modeling and prediction challenge, we first use the idea of ordinal patterns and explain
how they can be used to model feedback loops and predict changes in emotion.

2. Ordinal Patterns

The proposed model is grounded in the representation of a time series through ordinal
patterns [26–32]. As proposed in the seminal paper of Bandt and Pompe [26], a time
series may be converted into a set of ordinal permutation patterns that may be highly
informative about the dynamic of the system. Ordinal patterns have become a useful tool
for analyzing time series in various domains and across numerous applications, given their
ability to handle noise and extract important information with minimal assumptions. We
first introduce and explain the idea of ordinal patterns and then point to their importance
for short-term prediction as detailed by Neuman, Cohen, and Tamir [30].

2.1. Representing a Time Series through Ordinal Patterns

Our presentation draws on that of Neuman, Cohen, and Tamir [30]. Given a one-
dimensional time series, S(t) of length, such as a time series of valence expressed by the
sequence of turns produced by two interlocutors, we partition the series into overlapping
blocks of length D (the embedding dimension) using a time delay τ. Consider the following
time series, which uses D = 3 and τ = 1:

S(t) = {34, 3, 5, 23, 247, 234, 12, 1, 2, 3}

This can be broken down into a sequence of overlapping blocks:
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The elements in each block or vector are then sorted in ascending order, and the vector
is mapped into one of D! permutations (i.e., πi), each representing the ordinal pattern of
the elements. For D = 3, there are six possible permutations:

π1 = {0,1,2}

π2 = {0,2,1}

π3 = {1,0,2}

π4 = {1,2,0}

π5 = {2,0,1}

π6 = {2,1,0}

The first partition in the above time series—{34, 3, 5}—is mapped into the permutation
pattern π5 = {2,0,1}; the second partition—{3, 5, 23}—is mapped into π1 = {0,1,2}; and so on.
This results in a symbolic sequence of permutations: {πs} s = 1 . . . n. The mapping of the above
time series, therefore, produces a time series of permutations:

{34, 3, 5, 23, 247, 234, 12, 1, 2, 3}→ {2,0,1},{0,1,2},{0,1,2},{0,2,1},{2,1,0},{2,1,0},{2,0,1},{0,1,2}

2.2. Ordinal Patterns and Short-Term Prediction

The idea of mapping (i.e., representing) a time series of values into a time series of
permutations may be highly relevant to short-term prediction in natural environments [30],
specifically through the constraints imposed on the transition from permutation πN to the
next overlapping permutation: πN+1. For example, in the above time series of permutations,
the first transition is from permutation {2,0,1} to permutation {0,1,2}. While one might
naively assume that a transition from each of the six above-mentioned permutation types
to any of the six permutation types is possible, this belief is wrong. Each of the six above-
mentioned permutation types may move to one of only three permutation types. This
inherent constraint substantially reduces the potential number of transitions from one
permutation type to the next, hence potentially improving the prediction of the πN+1
permutation in a symbolic sequence of permutations: {πN}N = 1, . . . , n.

For the case of D = 3 and τ = 1, which is the focus of our paper, there are only
three legitimate transitions for each permutation. For example, the second partition that
we previously identified—{3, 5, 23}—is mapped into π1 = {0,1,2}, where the order of the
elements in the permutation is such that e1 < e2 < e3. The following partition/permutation



Mathematics 2022, 10, 2253 5 of 18

(πN+1) overlaps with the previous two elements of permutation πN; therefore, its first two
elements must be ordered such that e1 < e2 and the only degree of freedom is left to the
third element. Among the six possible permutation types of D = 3 and τ = 1, there are
only three permutation types that are consistent with this constraint: {0,1,2}, {0,2,1}, and
{1,2,0}. What it is important to realize is that the constraints imposed on the transition from
one permutation to the next significantly reduce the uncertainty associated with the next
permutation. The list of legitimate transitions (D = 3, τ = 1) from each permutation type to
the next is presented in Table 1.

Table 1. A list of legitimate transitions from a given permutation type (D = 3, τ = 1).

Permutation Legitimate Transition to

{0,1,2} {0,1,2} {0,2,1} {1,2,0}
{0,2,1} {1,0,2} {2,0,1} {2,1,0}
{1,0,2} {0,1,2} {0,2,1} {1,2,0}
{1,2,0} {1,0,2} {2,0,1} {2,1,0}
{2,0,1} {0,1,2} {0,2,1} {1,2,0}
{2,1,0} {1,0,2} {2,0,1} {2,1,0}

The constrained transitions may be important for predicting a change in emotion. Let
us explain and illustrate this point using a specific example. Imagine a triadic sequence of
sentiment measurements in a conversation:

B1-A1-B2

where A and B are two distinct individuals and each letter, with its accompanied number,
represents a measure of valence/sentiment extracted from the text produced by each
interlocutor in turn. For example, if we measure sentiment on a scale ranging from 0
(i.e., negative) to 1 (i.e., positive), then the series might look as follows: 0.4, 0.1, 0.2. The
sequence may be represented as the ordinal pattern (i.e., permutation) π5 = {2,0,1}. The
three legitimate transitions from this pattern are to:

{0,1,2} {0,2,1} {1,2,0}

It, therefore, follows that, in two out of the three legitimate transitions (66%), the
transitions are such that we should expect to see an increase in sentiment from A1 to A2.
Given our full ignorance, we can bet that, in 66% of the cases, A’s sentiment will increase
from A1 to A2. In practice, the transition probabilities may be different, given the actual
transition probabilities that appear in the sequence. For instance, in analyzing the multi-
party dialogue dataset (MPDD) [33], we found that the probability of transition from π5
to π1 or to π2 is p = 0.86. This transition probability is higher than expected under the
assumption of full ignorance, and it significantly improves our ability to predict an increase
in sentiment from A1 to A2, given that the preceding overlapping permutation (B1-A1-B2)
is π5. As it has been shown that the human brain is sensitive to probabilities and transition
probabilities [34,35], the constraints described above may be important in modeling the
direction in which emotion changes and may also inspire the design of simple and robust
automatic systems for detecting change during a conversation.

In sum, given a triadic sequence of turns, represented as the ordinal pattern permutation
πN = B1-A1-B2, and transition to the next overlapping triadic sequence πN+1 = A1-B2-A2, the
constraints imposed by πN may be used to predict whether the change from A1 to A2 is an
increase or decrease. This logic of ordinal patterns, and their actual transition probability, may
have a highly important function in short-term prediction, as argued and illustrated by Neuman,
Cohen, and Tamir [30], as well as Neuman and Cohen [36], in the context of financial data
analysis. Therefore, the novelty and main contribution of this paper is to identify a simple
predictive model of change in emotion in a nonlinear, short (Nturns < 100), and interactive time
series of turns that is grounded in (1) ordinal pattern representation, (2) scientific understanding
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of the processing of emotions and sequences, and (3) our ability to automatically identify
simple explanatory rules through the symbolic regression approach.

3. General Outline of the Paper

We first present the pre-processing of the data and validate the performance of the
Chinese sentiment analysis tool (SnowNLP) that we used. Next, and for our first dataset, we:

1. Present the probative evidence in support of the predictive value of πN;
2. Present the predictive value of πN and its components by fitting a binary logistic regres-

sion model and using three decision-based machine learning (ML) models;
3. Extract a simple predictive mathematical model from the data using a symbolic classifi-

cation analysis and testing the predictive value of the model on two other datasets.

Finally, we use the symbolic regression approach, build a predictive symbolic expres-
sion for a dataset, and use the expression for a ML model tested on the other datasets. We
repeat this process for the two other datasets used in this study.

4. Methodology
4.1. Pre-Processing and the Generation of Ordinal Patterns

Our first step was to represent each conversation as (1) a time series of emotional
valence. Our next was to convert the time series into (2) a time series of ordinal patterns
(D = 3, τ = 1). We used the MPDD for our first main experiment.

Each conversation was converted into a series of turns, and each turn was scored by
SnowNLP. In this way, each conversation was represented as a time series of emotional
valence. The length of the conversations ranged from 4 to 20 turns, with an average of 11 and
SD of 4.5. Given the inherent constraints of ordinal pattern analysis, for all datasets we
analyzed conversations of length ≥ 6 turns.

Our analysis proceeded as follows. We first automatically measured the valence of
each turn and, for each conversation, produced a time series of the interlocutors’ sentiment.
Next, we identified triadic sequences of turns involving two interlocutors: A and B. Each
triadic sequence of valence measurements was represented as A1-B-A2, where, sequentially,
A is the speaker and B is the listener, B is the speaker and A is the listener, and A is the
speaker and B is the listener. See, for example, the following triadic sequence:

A1:
正鵬,昨天晚上你姨媽已經去世了。明天下午我們一起去致哀啊！
Translation: Zhengpeng, your aunt passed away last night. Let’s go pay our last respects
and offer our condolences together tomorrow afternoon!
B:
哎喲！姨媽太可憐了。但是，得了絕症這是誰也沒辦法的事，媽，你心裏也別難過。明天

你們先去，我放學後再來。

Translation: Oh dear, my poor aunt! However, there’s nothing one can do about being
terminally ill. Mom, don’t be too sad. You guys go ahead [to visit her] tomorrow, and I’ll
come later myself when I’m done with school.
A2:
正鵬，這件事你一定要跟你麗華商量，可你一定要去啊。姨媽死只有這一次。你就是再忙

也要擠時間去呀！

Translation: Zhengpeng, you have to discuss this with Lihua. However, you have to go [to
the funeral/memorial]. [Your] aunt dies only this once. No matter how busy you are, you
have to make time for it!

We can see that speaker A informs speaker B that his aunt has passed away and
proposes that they should go to mourn with the family. B seems to try to avoid his
obligation to behave in a socially accepted manner and A responds with anger. In this case,
A increases the negative valence, relative to what she said in A1. Her relatively high level
of negative valance is a response to B’s attempt to avoid his social–moral obligations; as
such, A’s change in valance signals to B that his response and behavior are inappropriate.
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Following the literature pointing to a recognition threshold for emotion [37], we
analyzed cases in which the difference in sentiment from A1 to A2 was ≥20% out of
the range of valence (0–1). This heuristic decision was taken to avoid analyzing cases
where the change did not cross a recognition threshold. Next, we used the time series
representation of a series of ordinal patterns, identified the triadic sequence A1-B-A2, and
used the permutation that precedes it (i.e., πN) to predict the direction of change in emotion
from A1 to A2.

4.2. Validation Phase

We first tested our model on two datasets of Chinese conversations. To automati-
cally analyze the sentiment, we used the SnowNLP Python library (https://github.com/
isnowfy/snownlp, accessed on 1 May 2022). Given the challenges of automatically mea-
suring sentiment in Chinese [38], we decided to test the performance of SnowNLP on two
datasets: the languages in the Universal Joy dataset [39] and MPDD [33]. Given that the
datasets have slightly different emotion tags, and given the way we grouped them into
categories (i.e., positive vs. negative, as explained below), the absolute valence scores
should not be considered, instead only their relative differences across the valence tags
should be considered.

4.2.1. Validation Test 1: The Languages in Universal Joy Dataset

We used the languages in the Universal Joy dataset [39] and analyzed Chinese Facebook
posts tagged according to five emotions: anger, anticipation, fear, joy, and sadness. Anger,
fear, and sadness were grouped and tagged as “Negative”, joy was tagged as “Positive”,
and anticipation was removed from the analysis. Overall, we used SnowNLP to identify
the valence of 2290 posts. If SnowNLP validly measures the sentiment of the posts, then
a significant difference should have been observed in the SnowNLP scores of positive vs.
negative posts. As can be seen in Table 2, positive posts scored higher than negative posts.

Table 2. Mean sentiment scores produced by SnowNLP for negative (NEG) vs. positive (POS)
posts (N = 2290).

95% CI

Group N Mean SD SE Lower Upper

Sentiment NEG 690 0.47 0.41 0.02 0.44 0.50
POS 1600 0.60 0.40 0.01 0.58 0.62

Given the violation of the normality assumption, we used the Bayesian Mann–Whitney
U Test, with 1000 samples, in order to compare the sentiment scores of the two samples,
i.e., positive (N = 1600) and negative (N = 690) posts. The difference between the sentiment
scores of positive vs. negative posts was found to be statistically significant (p < 0.001), with
no overlap between the lower and upper bounds of the CI. The effect size, as measured
using the rank-biserial correlation, was −0.19, meaning that positively tagged posts “outper-
formed” negatively tagged posts, in terms of their sentiment score, in ~60% of the cases. This
significant difference supports the validity of SnowNLP for Chinese sentiment analysis.

4.2.2. Validation Test 2: The MPDD

The MPDD is composed of TV series conversions and includes emotion tags that
are associated with each produced utterance in each conversation. This dataset contains
25,548 utterances from 4142 dialogues, and we used it as a second validation set for
SnowNLP. We measured the average sentiments associated with the different emotion tags
and grouped the tags into three valence categories: neutral, negative, and positive.

The average score of the positive utterances (mean = 0.46, SD = 0.33, N = 4942)
was higher than that of the neutral (mean = 0.40, SD = 0.40, N = 13,629) and negative

https://github.com/isnowfy/snownlp
https://github.com/isnowfy/snownlp
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(mean = 0.33, SD = 0.31, N = 6977) utterances. Table 3 presents the mean SnowNLP scores
for the tree samples with 95% CI.

Table 3. Mean of sentiment scores produced by SnowNLP for negative, neutral, and positive
utterances (N = 25,548).

95% CI

Tag Mean SD N Lower Upper

NEG 0.33 0.31 6977 0.32 0.34
NEU 0.40 0.31 13,629 0.39 0.40
POS 0.46 0.33 4942 0.45 0.47

As the equality of variance assumption was violated, we compared the sentiment
means across the three groups of sentiment (i.e., negative, neutral, and positive) using
the Kruskal–Wallis H Test. The test was found to be statistically significant (H = 484.68,
p < 0.001), with Dunn’s post hoc comparison and the Bonferroni correction showing
statistically significant differences between all conditions (e.g., neutral–negative). These
results, produced for two datasets in Chinese, suggest that SnowNLP can validly be used
to differentiate valence categories; therefore, we applied it to the analysis of our first
test corpus, which was the MPDD. Note, that, given the different clustering of different
emotions in the above datasets, it is irrelevant to consider the average valences of the
categories (e.g., positive) in absolute terms; instead, it is necessary to examine the relative
differences only, as we have done.

5. Measuring the Probative Value of πN

Given the above theorization, we hypothesized that permutation πN (i.e., B1-A1-B2)
is informative for predicting the direction of change in valence from A1 to A2. To test our
hypothesis, we measured the probative value of πN by determining its likelihood ratio
(LR), as explained below.

Following Fenton and Neil [40], we first applied a Bayesian approach to the data,
asking what was the probative value of the evidence that a certain permutation would
appear before our target permutation, for predicting a decrease or increase of A’s sentiment
at A2. Our hypothesis was that the triadic ordinal pattern (i.e., permutation πN) preceding
and overlapping with the ordinal pattern constituting our target triadic sequence (i.e.,
A1-B2-A2) would have a probative value, as evidence for predicting a change in valence
from A1 to A2. For example, consider the following sequence:

B1-A1-B2-A2

This is composed of the two overlapping triadic sequences:

B1-A1-B2 and A1-B2-A2

As explained before, the transition from one ordinal pattern to the next involves
constraints that limit the number of permutations observed after a given pattern. These
constraints may be highly important for short-term prediction [30]. For example, the
monotonic decreasing sequence {2,1,0} may represent the sequence A1-B2-A2, where a
decrease in A’s valence is observed. This permutation may follow only one of the three
following permutations: {0,2,1}, {1,2,0}, and {2,1,0}. If there is a differential predictive
value to each permutation, then their appearance may signal the direction of change in
A’s valence.

To test our hypothesis, we first measured the association between πN (1–6) and the
direction of change (UP vs. DOWN). As the percentage of cases where no change existed
was less than 1%, these cases were removed from the analysis in all datasets used in this
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study. The association between πN (1–6) and the direction of change (UP vs. DOWN) was
found to be statistically significant (χ2 (5, N = 4581) = 1391, p < 0.001).

Figure 1 presents the conditional probability of observing an increase (UP) or decrease
(DOWN) in sentiment from A1 to A2, given one of three permutations that has been found
to be the most predictive. Permutation 6 has been assigned to the UP direction because
we hypothesized that a monotonic increasing sequence may lead to an upward change.
Interestingly, it can be observed that the probability of an increase is higher when the triadic
sequence (A1-B-A2) is preceded by permutations 3 (i.e., {1,0,2}) or 5 (i.e., {2,0,1}), and the
probability of observing a decrease in sentiment is higher when the triadic sequence is
preceded by permutations 2 (i.e., {0,2,1}) or 4 (i.e., {1,2,0}). These findings may be highly
important for understanding emotion dynamics and could not have been ascertained without
the use of ordinal patterns.
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given πN.

The scientific meaning of this finding can be clarified when we realize that the common
denominator of the permutations significantly preceding an increase may be understood if
we denote the tetradic sequence forming the triadic sequence and its overlapping previous
triadic sequence as:

B1-A1-B2-A2

For the permutations preceding the increase (i.e., πN), we can see that:

B1 > A1 and B2 > A1

For the permutations preceding the decrease, we can see that:

A1 > B1 and A1 > B2

In terms of a feedback loop, we can see that permutations 2 and 4 (see Figure 2)
involve a negative feedback loop, calibrating A to a lower level of emotion. In contrast,
permutations 3 and 5 are “lifters” that calibrate A to a higher level of emotion. In both
cases, we have negative feedback loops that direct A to some kind of equilibrium.
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Based on this finding and its speculated underlying logic, and to further measure
the predictive value of πN, we defined a new feature, SIGNAL, that scores DOWN when
πN = 2 or 4 and UP when πN = 3 or 5. The association between SIGNAL and the direction
of change was found to be statistically significant (χ2 (2, N = 4581) = 1382, p < 0.001).

What is the probative value of the evidence that is provided by πN? In the dataset, the
probability of a decrease or increase in valance from A1 to A2 is ~0.5, and, therefore, the
odds for anticipating a decrease or increase, are:

P(HIncrease)

P(HDecrease)
=

P(HDecrease)

P(HIncrease)
= 1 (1)

These odds roughly characterize all datasets used in this study. We calculated the
LR, which is considered to be both important and meaningful for measuring the probative
value of evidence [40]:

P(E|Hp)
P(E|Hd)

(2)

In our case, where the evidence (E) is SIGNAL, this can be depicted as:

P(SIGNAL ↑|H_Increase)
P(SIGNAL ↑|H_Decrease)

(3)

or
P(SIGNAL ↓|H_Decrease)
P(SIGNAL ↓|H_Increase)

(4)

The LR for increase, which is the positive LR, was found to be 5.5, and the LR for
decrease was found to be 3.9. As explained by Fenton and Neil, “If the LR > 1 then the
evidence E results in an increased posterior probability of Hp” [40] (p. 4). As in our case
LR > 1, we may calculate the odds version of Bayes:

Posterior odds of Hp = (Prior odds of Hp) × Likelihood ratio (5)

which, in our case, and given the odds of 1, are the same as the LR ratio. This means that if
we start with odds of 1 in favor of an increase or decrease in emotion, then by knowing πN,
we can improve our odds (i.e., prediction) of anticipating an increase by a factor of 5.5 and
by a factor of 4 for a decrease in emotion. These results show that the pattern of the emotion
dynamics preceding A2’s utterance has a clear probative value for predicting the direction
in which A’s emotion will change, as expected by the feedback loop hypothesis.

6. Using the Binary Logistic and ML Models

Given the probative value of πN, we may use it and its components (i.e., B1, A1, and
B2) to build and test various predictive models. We first used a backward binary logistic
regression model with EmotionChange (UP/DOWN) as the dependent variable. For all
of the statistical analysis and ML models reported in this section, we used JASP 0.16.2
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(https://jasp-stats.org, accessed on 1 May 2022). The model was found to be statistically
significant (p < 0.001), with 85% accuracy and precision and 86% recall. The only significant
predictors were πN and A1. We tested the predictive power of these two features using
three ML models. A boosting classification model with tenfold cross-validation gained
88% accuracy, precision, and recall. A decision tree model with 80% of the data used for
training gained 85% accuracy, 86% precision, and 85% recall. A random forest model with
80% of the dataset used for validation gained 85% accuracy, precision, and recall.

7. The Symbolic Classification Analysis

Given the successful venture in science to automatically identify simple rules (i.e.,
equations) governing the behavior of systems [41–43] and the idea of “distilling free-form
natural laws from experimental data” (the title of [42]), we can ask whether we can test
our theorization and further simplify our model by using a symbolic classification analysis.
We used HeuristicLab’s (https://dev.heuristiclab.com, accessed on 1 May 2022) Optimizer
3.3.16 [44] to perform a symbolic classification analysis with a maximum symbolic expres-
sion length of 5 and maximum symbolic tree depth of 5. By system default, 66% of the
dataset was used to train the model and the rest for the test. The model ran for 1000 genera-
tions; through examining 99,100 solutions, it found that the best model of classification was
a symbolic discriminant function classification solution with 84% accuracy, 81% precision,
and 83% recall. The relative variable frequencies across generations appear in Figure 3.
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The symbolic expression produced by this analysis is:

EmotionChange = (c0 + c1 ∗ A1) (6)

where
c0 = 0.95649

c1 = 1.06270

Its classification threshold is shown in Figure 4.

https://jasp-stats.org
https://dev.heuristiclab.com
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As the choice of D = 3 was guided by previous work on short-term prediction [30], it
was worth examining whether increasing the embedding dimension to 4 would change
our results. We, therefore, reanalyzed the MPDD, this time examining the predictive value
of permutation length 4 (i.e., D4) preceding A2. In this case, we analyzed dialogues where
the triadic sequence A1-B2-A2 was preceded by B1 and A−1. Therefore, the D4 permutation
preceding A2 was composed of the sequence A−1-B1-A1-B2, and it was assigned one of the
24 numbers indicating the potential permutations of D4.

A statistically significant association was found between the direction of change
(UP/DOWN) and D4 permutation preceding A2 (χ2 (23, N = 3913) = 1428.46, p < 0.001).
Using the D4 permutation, with its 24 possible values, in a boosting classification model
that included the D3 permutation preceding A2 and valence of A−1-B1-A1-B2, we were
able to successfully predict change with averages of 86% accuracy, precision, and recall.
A decision tree model gained an average of 84% for the performance measures, and a
random forest model gained an average of 82% for the performance measures. In all of
these models, the most important feature was the valence of A1, followed by permutation
D4. Using a symbolic classification analysis, we gained 84% accuracy, with D4 showing
lower variable relevance than D3 (0.021 vs. 0.119, respectively). It must be noted, however,
that in analyzing permutation D4, our dataset shrank by 668 cases, which was 15% of the
original dataset. Therefore, although permutation D4 may be of predictive value for a
change in emotion, it may be less relevant to very short conversations, such as those we
analyzed for the MPDD with an average length of 6. In addition, in this paper, we do
not focus on performance measures, per se, but seek to identify a simple and explainable
model. While the contribution of permutation D3 can be explained through a simple and
theoretically grounded model of feedback loops, permutation D4 (with its 24 potential
patterns) might be more difficult to incorporate into a simple and explainable model.

The next section tests the validity of the model formed for permutations of length 3 using
two additional datasets.

8. Testing the Simple Model
8.1. Analysis 1: The NaturalConv Dataset

To validate our model, we used the NaturalConv dataset [45]. The corpus contains
19,900 conversations in Chinese, covering six topical domains from sport to health and
education. The corpus contains 400,000 utterances, with an average turn number of 20.1.
For the analysis, we applied the same procedure as presented before. First, we tested the
predictive value of πN for this dataset. Figure 5 presents the conditional probability of a
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change, given πN. In this case, too, a significant association was found between πN and the
direction of change in emotion (χ2 (5, N = 182,764) = 58,468, p < 0.001).
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given πN for the NaturalConv dataset (N = 182,764).

The baseline prediction for the model was DOWN = 47% and UP = 53%. Using
a backward binary logistic analysis, the model was found to be statistically significant
(p < 0.001) with 87% accuracy, 89% recall, and 87% precision. All components of πN were
found to be significant predictors. The three ML models (boosting classification, decision
tree, and random forest) applied with these features, respectively, gained an average of
88% accuracy, precision, and recall. All these ML classifiers identified A1 and πN as the
two most significant features in the model.

Next, we used the mathematical model formed through the symbolic classification
analysis of the MPDD, as well as the equation/symbolic expression identified by the
regression classification, to compute a new target variable: EmotionChange. Using the
score generated through the equation as the only feature in a classification and regression
tree (CRT) model with tenfold cross-validation gained 88% accuracy, 83% precision, and
96% recall for predicting a change UP, with 95% precision and 78% recall for predicting
a change DOWN (we used IBM’s SPSS for the CRT). This finding indicates that the very
simple symbolic expression formed for the MPDD may validly be used to predict change
in emotion for the NaturalConv dataset.

8.2. Analysis 2: The EmotionLines Dataset

For the English dataset, we chose EmotionLines [46]. This dataset is composed
of 1000 dialogues taken from the successful TV series Friends and 1000 dialogues from
EmotionPush chat logs. For the analysis of sentiment, we used FlairNLP [47] (https:
//pypi.org/project/flair, accessed on 1 May 2022). As Flair basically provides a binary
classification (0 or 1), we used a heuristic to make these scores continuous by multiplying
each class by its corresponding confidence score and multiplying the result by the corre-
sponding sign. For instance, an utterance tagged as 0 with a confidence score of 0.70 was
transformed to become −0.70. This heuristic was expected to amplify the score.

We first examined the conditional probability of a change, given the preceding permu-
tation, as shown in Figure 6. Again, the association between the direction of change and
πN was found to be statistically significant (χ2 (6, N = 3509) = 1160, p < 0.001).

https://pypi.org/project/flair
https://pypi.org/project/flair
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given πN for the EmotionLines dataset (N = 3509).

The baseline prediction for the model was DOWN = 53% and UP = 47%. Using
a backward binary logistic analysis, the model was found to be statistically significant
(p < 0.001) with 97% accuracy, 96% recall, and 98% precision. All components of πN were
found to be significant predictors. The three ML models (boosting classification, decision
tree, and random forest) applied with these features, respectively, gained an average of
96% accuracy, precision, and recall. All these ML classifiers identified A1 and πN as the
two most significant features in the model.

Applying the same mathematical equation produced for the MPDD and same pro-
cedure as applied to NaturalConv, through the CRT model, we gained 97% accuracy,
98% precision, and 96% recall for an UP change, with 96% precision and 98% recall for a
DOWN change.

8.3. Analysis 3: Concluding Analysis

Table 4 shows a summary of our analysis. For each dataset, we have built a mathe-
matical model using the symbolic classification analysis and tested the model on the two
other datasets by using the score generated through the equation produced for the source
dataset (see the first leftmost column in the table), as a single feature in a CRT ML model
with a tenfold cross-validation procedure. In other words, we measured the validity of our
original model by testing it on the two other datasets.

Table 4. Concluding table showing the model performances. The baseline for increase (“UP”) in sentiment
from A1 to A2 is 50%, 53%, and 47% (for the MPDD, NaturalConv, and EmotionLines, respectively).

Dataset Expression Test Dataset and Accuracy

NaturalConv EmotionLines MPDD
MPDD (c0 + c1 ∗ A1) 88% 97% -

NaturalConv if((c0 ∗ A1 < c1), c2, c3 - 97% 73%
EmotionLines (c0− c1 ∗ A1) 88% - 86%

For the NaturalConv dataset, the simplest model with tree depth/length set to 8 was:

EmotionChange = i f ((c0 ∗ A1 < c1), c2, c3 (7)

where:
c0 = 0.38971

c1 = 0.27942

c2 = 0.99427

c3 = 0.10011
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In other words:

IF (c0 ∗ A1) is LessThan c1 Then c2 Otherwise c3

with a linear discriminant analysis solution as the best model, with 88% accuracy, 93% precision,
and 79% recall for DOWN and 84% precision and 95% recall for UP.

For the EmotionLines dataset, and with a maximum tree depth/length of 5, the
equation was:

EmotionChange = (c0− c1 ∗ A1) (8)

where:
c0 = 1.0623

c1 = 1.1201

with a symbolic discrimination function classification as the best model, with 97% accuracy,
96% precision, and 78% recall for DOWN and 98% precision and 96% recall for UP. By
validating each model through the other datasets, as explained above, we gained the
performance shown in Table 4. This shows 88% average accuracy across all measurements,
where accuracy is simply measured as (TP + TN)/(TP + TN + FP + FN), as is common in a
ML/NLP research.

9. Conclusions

We first open our conclusion section by summarizing our (1) research novelty,
(2) contribution, (3) analysis, and (4) results. The novelty of the paper is in introducing a
new approach for identifying a change in emotion during a conversation. The novelties
of the approach are in modelling change using ordinal patterns and their components,
the automatic discovery of simple mathematical “rules” explaining the change in emo-
tion, and the use of these rules, discovered through the symbolic regression approach, for
producing a single feature/variable to be used in a simple ML model (i.e., the CRT). We
contribute to the literature by showing how simple “rules of emotion” can be automati-
cally identified and used for producing predictive features in ML models. Moreover, our
analysis involves the use of three different datasets. For each dataset, we automatically
discover the “rule” and use it for producing predictive features for the two other datasets.
The success of the predictive features is tested using a simple CRT ML model, and our
results show that the rules discovered for one dataset and tested on the other two gain an
average of 88% accuracy, which is far above the baseline for prediction. To the best of our
knowledge, such an approach, which is supported by a strong validation methodology
and results, has not been presented in the scientific literature dealing with the detection
of change in emotion during a conversation. Given this summarization, we now turn to
a high-level discussion of our work.

In this paper, we show that the direction of change in emotion may be predicted,
even for very short conversations. The proposed approach is novel, as it uses ordinal
patterns to model feedback loops and permutations of emotions and their limited number
of components to build predictive models. Therefore, our approach is not only grounded in
domain expertise relating to the subject matter (i.e., emotion dynamics) but also in building
theoretically grounded and simple predictive models, based on automatic rule discovery through
the symbolic regression approach, as well as the validation and testing of the models through
a simple ML model (i.e., the CRT). Indeed, using the symbolic regression approach, we
were able to identify simple symbolic mathematical expressions that can be used to generate
a single predictive feature in a CRT ML model. Through automatic discovery of such an
expression in one dataset and use of the expression to compute and test a single predictive
feature in the two other datasets, it is possible to gain powerful support for the validity
and usefulness of the symbolic expression. The 88% average accuracy in prediction across
the six validating measurements (see Table 4) supports the thesis that a change in emotion
can be predicted with simple and theoretically grounded models. Therefore, the predictive
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power of the simple models identified in this study is further evidence of the potential of
simple predictive models [36,48] and how the development of such models can be applied
with the purpose of “living in a world of low levels of predictability” [49] (p. 15).

Modern information technologies have changed our lives in areas from medical
diagnosis [50] to blockchain-based systems [51], ways to identify cracks in dams [52],
fetal ultrasound standard plane recognition [53], and Big Data architectures providing
a platform for such capabilities [54]. In this context, simple models for detecting the
direction of change in emotion may be applied in various contexts. For instance, mobile
crowdsensing [55] could use our simple approach to monitor the emerging emotional
change in a crowd or identify emerging frustrations of users, applying a context model for
intelligent campus navigation [56]. The same approach could be used to monitor emotion
during crowd evacuation [57] and for many other purposes.

It is important to note that we tested our models against baselines of increases or
decreases in emotion. Other models for identifying change in emotion exist. For example,
Yu and Zheng [58] developed a deep multimodal network (ECPNet) for predicting change
in emotion. However, we cannot compare our results to those gained by these researchers
because they used visual and acoustic signals of emotions, while our study focuses on
changes in valence expressed in textual data. The same holds for a potential comparison
with the work of Huang and Epps [59], who developed a system for detecting change in
emotion using speech signals. Our study is, therefore, limited to the identification of the
direction in the change of valance by relying on textual data and focusing on the attempt
to generate simple and theoretically grounded predictive models, rather than the best
predictive models. We plan to compare our approach to those in the above-mentioned
studies by extending our analysis to multimodal datasets.
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Appendix A

Table A1. Notation table.

Symbol Meaning

S(t) A one-dimensional time series
D The embedding dimension/permutation length
τ The time delay
πi Permutation i
A1 The valence of the first turn produced by speaker A
B1 The valence of the first turn produced by speaker B
B2 The valence of the second turn produced by speaker B

A1-B2-A2 A triadic sequence of valence measurements for A1, B1, and A2
πN/D3 The permutation representing the sequence B1-A1-B2

D4 The permutation representing sequence -A1-B1-A1-B2
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