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Abstract: Let G be a graph with vertex set V(G) and f : V(G)→ {∅, {1}, {2}, {1, 2}} be a function.
We say that f is an outer-independent 2-rainbow dominating function on G if the following two con-
ditions hold: (i) V∅ = {x ∈ V(G) : f (x) = ∅} is an independent set of G. (ii) ∪u∈N(v) f (u) = {1, 2}
for every vertex v ∈ V∅. The outer-independent 2-rainbow domination number of G, denoted by
γoi

r2(G), is the minimum weight ω( f ) = ∑x∈V(G) | f (x)| among all outer-independent 2-rainbow dom-
inating functions f on G. In this note, we obtain new results on the previous domination parameter.
Some of our results are tight bounds which improve the well-known bounds β(G) ≤ γoi

r2(G) ≤ 2β(G),
where β(G) denotes the vertex cover number of G. Finally, we study the outer-independent 2-rainbow
domination number of the join, lexicographic, and corona product graphs. In particular, we show that,
for these three product graphs, the parameter achieves equality in the lower bound of the previous
inequality chain.
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1. Introduction

Over the last decade, many variants associated with classical domination parameters
in graphs have been defined and studied. In particular, variants related to domination and
independence in graphs have attracted the attention of many researchers.

One of the most analysed ideas, and from which many parameters have been defined,
is considering dominating sets whose complements form independent sets. Some recent
references about some of these remarkable variants can be observed in [1,2] for total outer-
independent domination, in [3,4] for outer-independent double Roman domination, in [5–8]
for outer-independent (total) Roman domination, and in [9–12] for outer-independent (total)
2-rainbow domination.

This note mainly deals with providing new results about one of the aforementioned
parameters: the outer-independent 2-rainbow domination number (OI2RD number) of
a graph. Given a graph G, we say that a function f : V(G) → {∅, {1}, {2}, {1, 2}} is an
outer-independent 2-rainbow dominating function (OI2RD function) on G if the following
two conditions hold.

(i) V∅ = {x ∈ V(G) : f (x) = ∅} is an independent set of G.
(ii) ∪u∈N(v) f (u) = {1, 2} for every vertex v ∈ V∅.

Let VX = {v ∈ V(G) : f (v) = X} for X ∈ {∅, {1}, {2}, {1, 2}}. We will identify an
OI2RD function f with the subsets V∅, V{1}, V{2}, and V{1,2} of V(G) associated with it,
and so we will use the unified notation f (V∅, V{1}, V{2}, V{1,2}) for the function and these
associated subsets. The OI2RD number of G, denoted by γoi

r2(G), is the minimum weight
ω( f ) = ∑x∈V(G) | f (x)| among all OI2RD functions f on G. A γoi

r2(G)-function is an OI2RD
function with weight γoi

r2(G).
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As previously mentioned, this parameter has been studied by different researchers.
For instance, in [9,10] interesting tight bounds were obtained for general graphs and for
the particular case of trees. Moreover, in [9] graphs with small and large OI2RD numbers
were characterized. Finally, in [11] the authors studied the OI2RD number for the Cartesian
products of paths and cycles.

The note is organised as follows. In Section 2, we provide new tight bounds which
improve the well-known bounds β(G) ≤ γoi

r2(G) ≤ 2β(G) given in [9], where β(G) denotes
the vertex cover number of G. Finally, in Section 3 we provide closed formulas for this
parameter in the join, lexicographic, and corona product graphs.

Additional Definitions and Tools

In this note, we consider that all graphs are simple and undirected, meaning that
they have only undirected edges with no loops and no multiple edges between two fixed
vertices. Given a graph G(V(G), E(G)) of order n(G) = |V(G)| and a vertex v ∈ V(G),
the open neighbourhood of v is defined to be N(v) = {u ∈ V(G) : uv ∈ E(G)}. Now, we
consider the following sets of vertices: L(G) = {v ∈ V(G) : |N(v)| = 1}, S(G) = {v ∈
V(G) : N(v) ∩ L(G) 6= ∅}, and Ss(G) = {v ∈ S(G) : |N(v) ∩ L(G)| ≥ 2}.

A set D ⊆ V(G) is a dominating set of G if N(v) ∩ D 6= ∅ for every v ∈ V(G) \ D.
The domination number of G, denoted by γ(G), is the minimum cardinality among all
dominating sets of G. A dominating set D with |D| = γ(G) is defined as a γ(G)-set. This
classical parameter has been extensively studied. From now on, for a parameter ρ(G) of a
graph G, by ρ(G)-set we mean a set of cardinality ρ(G).

Two of the best-known variants of dominating sets, which they are also related to each
other, are the independent sets and the vertex cover sets. A set I ⊆ V(G) is an independent set
of G if N(v) ∩ I = ∅ for every v ∈ I. The maximum cardinality among all independent
sets of G, denoted by α(G), is the independence number of G. Moreover, a set D ⊆ V(G) is
a vertex cover set of G if V(G) \ D is an independent set of G. The minimum cardinality
among all vertex cover sets of G, denoted by β(G), is the vertex cover number of G. In 1959,
Gallai established the following well-known relationship.

Theorem 1 ([13]). If G is a nontrivial graph, then

β(G) + α(G) = n(G).

Finally, we state the following useful tool. For the remainder of the paper, definitions
will be introduced whenever a concept is needed.

Proposition 1. Let G be a graph with no isolated vertex. Then, there exists a γoi
r2(G)-function

f (V∅, V{1}, V{2}, V{1,2}) such that Ss(G) ⊆ V{1,2}.

Proof. Let f (V∅, V{1}, V{2}, V{1,2}) be a γoi
r2(G)-function such that |V∅| is maximum among

all γoi
r2(G)-functions. Suppose that there exists a vertex v ∈ Ss(G) \ V{1,2}. This implies

that N(v) ∩ L(G) ⊆ V{1} ∪V{2}. Notice that the function f ′(V′∅, V′{1}, V′{2}, V′{1,2}), defined
by f ′(v) = {1, 2}, f ′(h) = ∅ for every h ∈ N(v) ∩ L(G) and f ′(x) = f (x) otherwise, is
a γoi

r2(G)-function with |V′∅| > |V∅|, which is a contradiction. Therefore, Ss(G) ⊆ V{1,2},
which completes the proof.

2. New Bounds on the Outer-Independent 2-Rainbow Domination Number

Kang et al. [9] showed that, for any graph G with no isolated vertex,

β(G) ≤ γoi
r2(G) ≤ 2β(G). (1)

The following theorem shows that the bounds given in (1) have room for improvement,
since |Ss(G)| ≥ 0 and γ(G) ≤ β(G).
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Theorem 2. For any graph G with no isolated vertex,

β(G) + |Ss(G)| ≤ γoi
r2(G) ≤ β(G) + γ(G).

Proof. We first prove the lower bound. Let f (V∅, V{1}, V{2}, V{1,2}) be a γoi
r2(G)-function

which satisfies Proposition 1. Hence, V(G) \V∅ is a vertex cover and Ss(G) ⊆ V{1,2}, which
implies that

γoi
r2(G) = |V{1}|+ |V{2}|+ 2|V{1,2}| = |V(G) \V∅|+ |V{1,2}| ≥ β(G) + |Ss(G)|.

Now, we proceed to prove the upper bound. Let D be a γ(G)-set and S a β(G)-set. Let
g(W∅, W{1}, W{2}, W{1,2}) be a function defined as follows.

W∅ = V(G) \ (D ∪ S), W{1} = D \ S, W{2} = S \ D and W{1,2} = D ∩ S.

We claim that g is an OI2RD function on G. If W∅ = ∅, then we are done. Hence,
we assume that W∅ 6= ∅. Notice that W∅ is an independent set of G because S is a vertex
cover set of G. We only need to prove that g(N(x)) = ∪u∈N(x)g(u) = {1, 2} for every
x ∈W∅. Let v ∈W∅. Since S and D are both dominating sets of G, we deduce that either
N(v) ∩ D ∩ S 6= ∅ or N(v) ∩ D 6= ∅ and N(v) ∩ S 6= ∅. In both cases, and by definition of
g, we obtain that g(N(v)) = {1, 2}. Thus, g is an OI2RD function on G, as required.

Therefore, γoi
r2(G) ≤ ω(g) = |S \ D| + |D \ S| + 2|D ∩ S| = β(G) + γ(G), which

completes the proof.

The following result, which is a direct consequence of Theorem 2, the upper bound
given in (1), and the fact that γ(G) ≤ β(G), provides a necessary condition for the graphs
that satisfy the equality γoi

r2(G) = 2β(G).

Proposition 2. Let G be a graph with no isolated vertex. If γoi
r2(G) = 2β(G), then β(G) = γ(G).

The converse of proposition above does not hold. For instance, the graph G given in
Figure 1 satisfies β(G) = γ(G) and γoi

r2(G) < 2β(G).

{1}

{2}

Figure 1. A graph G with γoi
r2(G) = β(G) = γ(G) = 2.

As a second consequence of Theorem 2 we can derive the next proposition.

Proposition 3. Let G be a graph with no isolated vertex. If Ss(G) is a dominating set of G, then

γoi
r2(G) = β(G) + |Ss(G)| = β(G) + γ(G).

Proof. If Ss(G) is a dominating set of G, then γ(G) ≤ |Ss(G)|. Therefore, Theorem 2 leads
to the equality, which completes the proof.

The next theorem improves the upper bound given in Theorem 2 for the case where G
is a tree.

Theorem 3. For any nontrivial tree T,

γoi
r2(T) ≤ β(T) + |S(T)|.
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Proof. Let S be a β(T)-set such that S(T) ⊆ S. Now, we construct a partition {I, D} of S
as follows. Let u ∈ S(T) and Su

i = {w ∈ S : d(w, u) = i}, where d(w, u) represents the
distance between w and u. Now, we need to introduce some necessary definitions. Let ε(u)
be the eccentricity of u, and, for any vertex x 6= u, the Parent[x] is the vertex adjacent to x
on the unique x− u path.

Let I = ∪ε(u)
i=0 Ii and D = ∪ε(u)

i=0 Di, where I0 = {u} and D0 = ∅ and for i ≥ 1 we define
Ii and Di as follows. For every v ∈ Su

i , define the class v̇ ⊆ Su
i such that v, v′ ∈ v̇ if and only

if Parent[v]=Parent[v′]. From i = 1 to eccentricity ε(u), we consider the next cases for every
v̇ ⊆ Su

i , where we fix v ∈ v̇.

(i) Parent[v] ∈ S. In this case, we set v̇ ⊆ Ii.
(ii) Parent[v] /∈ S (notice that i ≥ 2 and Parent[Parent[v]] ∈ S). If Parent[Parent[v]] ∈ Ii−2,

then we set v̇ ⊆ Di, otherwise we set v̇ ⊆ Ii.

It is clear that {I, D} is a partition of S. By condition (ii) in the construction above,
it follows that N(x) ∩ I 6= ∅ and N(x) ∩ D 6= ∅ for every vertex x ∈ V(T) \ (S ∪ L(T)).
With this property in mind and the fact that V(T) \ S is an independent set, it is easy to
deduce that the function f , defined below, is an OI2RD function on T.

f (x) =


∅; if x ∈ V(T) \ S,

{1, 2}; if x ∈ S(T),
{1}; if x ∈ I \ S(T),
{2}; if x ∈ D \ S(T).

Therefore, γoi
r2(T) ≤ ω( f ) = |I| + |D| + |S(T)| = |S| + |S(T)| = β(T) + |S(T)|,

which completes the proof.

From Theorems 2 and 3, we obtain that for any nontrivial tree T,

β(T) + |Ss(T)| ≤ γoi
r2(T) ≤ β(T) + |S(T)|. (2)

The following result is a direct consequence of the previous inequality chain.

Proposition 4. If T is a tree such that S(T) = Ss(T), then

γoi
r2(T) = β(T) + |S(T)|.

3. The Cases of the Join, Lexicographic, and Corona Product Graphs

In this section, we consider the OI2RD number of three well-known product graphs
(join − +, lexicographic − ◦, and corona − �). If G1 and G2 are any two graphs with no
isolated vertex, then

• The join graph G1 + G2 is the graph with vertex set V(G1 + G2) = V(G1) ∪V(G2) and
edge set E(G1 + G2) = E(G1) ∪ E(G2) ∪ {xy : x ∈ V(G1), y ∈ V(G2)}. For instance,
the graph G given in Figure 1 is isomorphic to the join graph N2 + N5, where Nr is the
empty graph of r vertices.

• The lexicographic product graph G1 ◦ G2 is the graph with vertex set V(G1 ◦ G2) =
V(G1)×V(G2), and two vertices (u, v), (x, y) ∈ V(G1 ◦ G2) are adjacent if and only if
ux ∈ E(G1) or u = x and vy ∈ E(G2). Figure 2 shows the graph P4 ◦ P3.

• The corona product graph G1 � G2 is the graph obtained from G1 and G2, by taking
one copy of G1 and n(G1) copies of G2 and joining by an edge every vertex from the
ith-copy of G2 with the ith-vertex of G1. Figure 2 shows the graph P4 � P3.
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{2}

{2}

{2}

{1}

{2}

{2}

{1}

{2}

P4 ◦ P3

{2}

{1}

{2}

{1}

P4� P3

{2}

{1}

{2}

{1}

Figure 2. The labels of black-coloured vertices describe the (non-empty) weights of a γoi
r2(P4 ◦ P3)-

function and γoi
r2(P4 � P3)-function, respectively.

The following equalities are part of folklore, and these can be found for instance
in [14–16], respectively.

Theorem 4. If G1 and G2 are two nontrivial graphs, then

(i) [14] α(G1 + G2) = max{α(G1), α(G2)}.
(ii) [15] α(G1 ◦ G2) = α(G1)α(G2).
(iii) [16] α(G1 � G2) = n(G1)α(G2).

The following results show that the join, lexicographic, and corona product graphs
reach the equality in the lower bound given in Theorem 2.

Theorem 5. If G1 and G2 are two nontrivial graphs, then the following equalities hold.

(i) γoi
r2(G1 + G2) = β(G1 + G2) = n(G1) + n(G2)−max{α(G1), α(G2)}.

(ii) γoi
r2(G1 ◦ G2) = β(G1 ◦ G2) = n(G1)n(G2)− α(G1)α(G2).

Proof. We first proceed to prove (i). By Theorem 2, it follows that β(G1 + G2) ≤ γoi
r2(G1 +

G2) and Theorems 1 and 4-(i) lead to β(G1 + G2) = n(G1) + n(G2)−max{α(G1), α(G2)}.
We only need to prove that γoi

r2(G1 + G2) ≤ β(G1 + G2). Let D be a β(G1 + G2)-set. By defi-
nition, V(G1) ⊆ D or V(G2) ⊆ D. Without loss of generality, we consider that V(G1) ⊆ D.
Let g(W∅, W{1}, W{2}, W{1,2}) be a function defined as follows:

• W{1,2} = ∅, W{1} ∪W{2} = D and W∅ = V(G1 + G2) \ D.
• W{1} ∩V(G1) 6= ∅ and W{2} ∩V(G1) 6= ∅.

Notice that g is an OI2RD function on G1 + G2. Thus, γoi
r2(G1 + G2) = ω(g) = |D| =

β(G1 + G2), as required, which completes the proof of (i).

Finally, we proceed to prove (ii). Theorem 2 leads to β(G1 ◦ G2) ≤ γoi
r2(G1 ◦ G2),

and, by Theorems 1 and 4-(ii), it follows that β(G1 ◦ G2) = n(G1)n(G2)− α(G1)α(G2). In
order to conclude the proof, we only need to prove that γoi

r2(G1 ◦ G2) ≤ β(G1 ◦ G2). For
any x ∈ V(G1), Gx

2
∼= G2 will denote the copy of G2 in G1 ◦ G2 containing x. Let S be a

β(G1 ◦ G2)-set and S∗ = {x ∈ V(G1) : V(Gx
2 ) ⊆ S}. By definition, it follows that S∗ is a

β(G1)-set. Now, let us define a function f (V∅, V{1}, V{2}, V{1,2}) on G1 ◦ G2 as follows.

• V{1,2} = ∅, V{1} ∪V{2} = S and V∅ = V(G1 ◦ G2) \ S.
• V{1} ∩V(Gx

2 ) 6= ∅ and V{2} ∩V(Gx
2 ) 6= ∅ for every vertex x ∈ S∗.

Notice that f is an OI2RD function on G1 ◦ G2, which implies that γoi
r2(G1 ◦ G2) =

ω( f ) = |S| = β(G1 ◦ G2), as required. Therefore, the proof is complete.

Theorem 6. If G1 and G2 are two graphs with no isolated vertex, then

γoi
r2(G1 � G2) = β(G1 � G2) = n(G1)(n(G2) + 1)− n(G1)α(G2).

Proof. By Theorem 2 it follows that β(G1 � G2) ≤ γoi
r2(G1 � G2), and Theorems 1 and 4-

(iii) lead to β(G1 � G2) = n(G1)(n(G2) + 1) − n(G1)α(G2). We only need to prove that
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γoi
r2(G1 � G2) ≤ β(G1 � G2). For any x ∈ V(G1), Gx

2
∼= G2 will denote the copy of G2 in

G1 � G2 associated to x. Let Dx be a β(Gx
2 )-set for every x ∈ V(G1). Now, we consider the

function f (V∅, V{1}, V{2}, V{1,2}) on G1 � G2 as follows.

V{1} =
⋃

x∈V(G1)

Dx, V{2} = V(G1) and V{1,2} = ∅.

Notice that f is an OI2RD function on G1 � G2, which implies that γoi
r2(G1 � G2) =

ω( f ) = n(G1)(n(G2) − α(G2) + 1) = β(G1 � G2), as required. Therefore, the proof is
complete.

4. Conclusions and Open Problems

New results concerning the OI2RD number of a graph have been presented in this
note. Among the main results, we emphasize the following.

• We have provided new bounds on the OI2RD number of a graph, which improve
other well-known bounds.

• We obtained closed formulas for the OI2RD number of the join, lexicographic, and
corona product graphs in terms of the independence number of the factor graphs
involved in these products.

Finally, and based on the inequality chain β(T) + |Ss(T)| ≤ γoi
r2(T) ≤ β(T) + |S(T)|

given in Equation (2), we propose the problem of characterizing the trees T that satisfy the
equality γoi

r2(T) = β(T) + k, where k ∈ {|Ss(T)|, . . . , |S(T)|}.
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