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Abstract: In this work, the network simulation method is presented as a tool for the numerical
resolution of the electroosmotic and pressure-driven flow problem in microchannels with rectangular
and cylindrical geometries. Based on the Brinkman equation for steady flow and constant porosity,
the network model is designed using spatial discretization. An equivalent electrical circuit is obtained
by establishing an analogy between the physical variable fluid velocity and electric potential. The
network model is solved quickly and easily employing an electrical circuit resolution code, providing
solutions for the velocity profile in the channel cross-section and the total circulating flow. After
simulating two practical cases, the suitability of the grid is discussed, relating the relative errors made
in the variables of interest with the number of cells used. Finally, two other applications, one for
rectangular geometries and the other for cylindrical channels, show the effects the main parameters
controlling the flow in these types of channels have on velocities and total flow: the zeta potential of
the soil pores, applied potential and pressure gradients, and the boundary condition modified by the
zeta potential in the walls of the channel.

Keywords: electroosmotic flow; network simulation method; zeta potential; parallel plate channel;
porous cylinder

MSC: 00A72; 35C99; 74S20

1. Introduction

Electroosmosis is an electrokinetic phenomenon that stimulates the flow of pore fluid
through a porous medium when electrodes apply a direct current (DC) electrical field [1].
Under the influence of an applied electrical field, positively charged ions are electrically
attracted toward the negative electrode [2]. The motion of these ions is explained by the
double-layer charge, which is the surface charge on the particle and the corresponding
counter-ion charge in the pore fluid [3]. The motion of the cations drags the pore fluid within
the porous medium. As the particles move, momentum is transferred to the surrounding
fluid molecules, generating an electroosmotic flow between the electrodes, generally from
anode to cathode [4].

The electroosmotic flow caused by an electric field is much greater than that generated by
a hydraulic field. Therefore, electroosmotic dewatering offers advantages over conventional
treatments due to its accelerated dewatering processes [5,6]. Electroosmotic dewatering is
preferable to traditional dewatering techniques when dealing with low-permeability materials,
such as fine soils, sediments, and sludge [7]. The pioneering work conducted by Casagrande
to accelerate dewatering in consolidated clay soils with low hydraulic conductivity [8] is
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a technique that has been successfully applied to industrial applications, including soil
consolidation [9,10], remediation of contaminated soils [11–13], food engineering [14], the
dewatering of sludge [15], residues from metallurgical processes [16–19], and the nuclear
industry [20], among other applications.

Dewatered flow is generated by two gradients: (i) the hydraulic gradient explained by
Darcy′s law and (ii) the electrical gradient generated by the application of the DC electrical
field. An electrical gradient is more effective than a hydraulic gradient for low-permeability
soils. Thus, electroosmosis is effective for fine-particle soils [21].

The dewatered rate is a function of the double-layer charge, the porous medium, the
pore fluid, and the electrical field [1]. Generally, electroosmotic flow is expressed through
the electroosmotic permeability of the medium, which can be defined as the fluid flux
per area of porous medium and the unit of electrical gradient. This coefficient depends
on the zeta potential, fluid viscosity, soil porosity, and the electrical permeability of the
soil [22,23]. According to the Smoluchowski theory, the zeta potential is the most important
variable affecting electroosmotic flow. The zeta potential is a complex function of the
interfacial chemistry between fluid and solid particles. When a solid particle moves in a
fluid because of electroosmosis, a shear plane surrounding the solid particle is formed. The
difference between the electrical potentials of the formed plane and the fluid is the zeta
potential [24,25].

In this research, the network simulation method [26,27] is proposed as a numerical
tool for solving these types of problems. The model analyzed is that of the flow induced in
porous microchannels by applying both an electric field and a hydraulic potential gradient.
It is defined by a type of Brinkman equation [28,29], in which steady flow and constant
porosity are assumed. The network model and the process to be modeled are equivalent
in that both are governed by the same equations, with a correspondence between the
dependent variables in the mathematical model and the electrical variables in the equivalent
circuit [30]. Once the network model design is completed, the equivalent circuit can be
solved simply using an electrical circuit simulation code, such as NgSpice or PSpice [31–34].
Finally, after verifying the precision and reliability of our method with existing analytical
solutions [35], two applications are presented (one for rectangular domains and the other
for cylindrical ones). In these applications, the influence of the main physical parameters
governing the problem on the variable fluid velocity and total circulating flow is analyzed.

The network simulation method has been successfully employed in numerous fields
of applied engineering, such as ceramic coatings [36], dispersion of atmospheric pollu-
tants [37], reinforced concrete corrosion [38], soil consolidation [39,40], seepage [41], heat
transport [42–44], and many physical problems in engineering [30]. This technique makes
use of the powerful algorithms of the circuit resolution codes [32,33] that are able to suc-
cessfully cope with coupled and strong non-linear mathematical models, including Gear´s
fixed time methods [45], trapezoidal integration [31], and iterative methods, such as Runge–
Kutta. Thanks to these algorithms, stability in the convergence of the numerical solution is
considerably improved, and a significant reduction in the local truncation error is achieved,
providing high efficiency and accuracy to the network simulation method. In transient prob-
lems, time discretization is ultimately implemented automatically by the circuit resolution
code [33]. In other words, the user can set a value for the time step, but the code will make
the divisions necessary to reach convergence. Therefore, this feature can be considered both
an advantage (the stability and convergence of the transient calculation is guaranteed) and
a disadvantage (we do not have absolute control over the time step). Finally, the network
simulation method requires in-depth knowledge of the problem, including the governing
equations and the boundary conditions, when designing and choosing the mesh. Too-fine
meshes can hinder stability and convergence in the calculations or lead to excessively long
computation times, while too-coarse meshes can lead to large errors in the solution or even
make convergence unattainable.

In this paper, a new numerical tool for solving problems of electroosmotic and pressure-
driven flow in microporous channels is presented, based on the analogy with electrical
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circuits. The relative simplicity of programming this powerful and accurate tool (which
requires knowledge of a few rules in electrical circuit implementation) has allowed its
application to microfluidic channels with rectangular and cylindrical geometries formed
by materials with different properties. This has simplified the way to identify and analyze
the effects that the different variables of interest have on water flow through porous fine-
particle soils. These variables are: the zeta potential of the pores, applied potential gradient,
applied pressure gradient, and modified zeta potential in the channel walls.

2. Mathematical Models

The physical–mathematical model addressed here is that of electroosmotic and pressure-
driven flow in porous material microchannels. The model is defined by a type of Brinkman
equation [28,29], in which the flow is assumed to be stationary, and the soil has constant
porosity, Equation (1). This expression, which governs the average volume flow (with
units of velocity, m/s) through a porous medium, derives directly from the Navier–Stokes
equations. It includes viscous forces, which allow the effects of the porosity of the soil
and variations in the zeta potential near the channel walls to be considered. The last
variable, which describes the intensity of the double-layer static electrical field in the limit
between the soil grains and the fluid, is defined by the linearized Poisson–Boltzmann [46],
Equation (7). This governs the potential distribution in the porous medium due to a zeta
potential in the channel walls.

The equations presented below have been explained in detail in the work of Scales
and Tait [35], but, as they form the base of our network models design, the equations are
summarized here for the convenience of the reader.

2.1. Governing Equation for a Two-Parallel-Plate Channel

For this first case, which approximates the flow in channels of rectangular geometry,
the Brinkman equation for volume-averaged velocity (u) due to potential (∇φz) and
pressure (∇Pz) gradients is expressed by:

∂2u
∂y2 − λ

2u =
n
µ
(∇Pz + (ρeff + ρk)∇φz), (1)

where u (or also uz) represents the velocity profile with which the fluid passes through
the porous medium and which is a function of position y within the channel (distance
perpendicular to the walls). This is: u = uz(y).

In Equation (1), coefficient λ, known as inverse Brinkman screening length (represent-
ing a kind of double-layer thickness measure), is defined as:

λ =

√
n
√
τ

K
ηe
η

(2)

where τ is the tortuosity (a pore sinuosity factor), defined as:

τ =

(
l
L

)2
(3)

K is the intrinsic permeability of the medium, which has the expression:

K =
nm2

ko
√
τ

(4)

where m, the average hydraulic radius of the pores in the case of tortuous cylinders, is
expressed as:

m =
ap

2
(5)
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Continuing with the coefficients of Equation (1), ρeff is the effective charge density for
the electroosmotic flow due to the zeta potential of the porous material and, in the case of
cylindrical pores, takes the following expression:

ρeff =
8εwψo

ap2

(
2κap − 1(
κap
)2 − 1

)
(6)

Finally, ρk is the charge density in the porous medium for the electroosmotic flow
due to the zeta potential of the walls. Its value is obtained after solving the linearized
Poisson–Boltzmann Equation (7), which governs the potential distribution in the channel,
ψ, due to the modified zeta potential of channel walls ψw.

∂2ψ

∂y2 = τk2ψ (7)

With
ρk = −εwκ

2ψ (8)

where ρk is a function of the position y within the channel (since ψ is as well), ρk(y) =
−εwκ

2ψ(y). The parameter κ is the inverse Debye screening length [47], very similar to
that of the inverse Brinkman screening length (λ).

Boundary Conditions

In general, we will assume the non-slip condition for the channel walls, which results
in zero velocities for these contours.

uw1 = uw2 = 0 (9)

Regarding the modified zeta potential in the channel walls, the values of ψw1 and ψw2
will always take a constant value, which will be zero in the cases of uncharged walls.

Furthermore, in cases that consist of two different porous materials, continuity will be
assumed for velocity at the interface that separates the two regions, that is:

uint1 = uint2 (10)

In addition, the viscous shear along this interface must also be constant, with:

ηe1
∂uint1

∂y
= ηe2

∂uint2

∂y
(11)

2.2. Porous Cylinder-Governing Equation and Boundary Conditions

For the case of radial geometries, the Brinkman Equation [28,29] for flow in a porous
cylinder has the following expression:

∂2u
∂r2 +

1
r

∂u
∂r
− λ2u =

n
µ
(∇Pz + (ρeff + ρk)∇φz) (12)

where u (or also uz) represents the velocity profile with which the fluid passes through the
porous medium and which is a function of position r within the channel (radial distance to
cylinder axis). This is: u = uz(r).

The definition of the parameters and coefficients in Equation (12) is the same as for
those in Equation (1). However, to obtain parameter ρk, Equation (8), it is necessary to
solve the equation for the potential distribution in the channel (ψ) due to the modified zeta
potential of channel walls ψw in radial coordinates. This is:

∂2ψ

∂r2 +
1
r

∂ψ

∂r
= τk2ψ (13)
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Regarding the boundary conditions, symmetry in the cylinder axis (r = 0) will be
assumed. In the outer wall, we will consider the non-slip condition (uwRa = 0) for velocity,
while the modified zeta potential will take any constant value (for cases with an uncharged
wall, we will have ψwRa = 0).

3. Network Models

The network simulation method [26,27] is a numerical technique to study and simulate
physical processes that can be defined using a mathematical model or a complete set of
equations. Based on this model, the procedure consists of two well-defined stages: firstly,
developing a network model (or electrical circuit) equivalent to the process (by spatial
discretization of the governing equations) and, secondly, simulating this model using a
program for solving electrical circuits, such as NgSpice or PSpice [31–34]. The network
model and the physical process are formally equivalent in that both are governed by
the same differential equations in finite spatial differences in terms of the elementary
volume (or cell) and boundary conditions. Thanks to this equivalence and the reliability
of existing circuit resolution programs (capable of obtaining their exact solution), errors
in the simulation will only be associated with the choice of mesh size [48] (division of the
spatial domain of the problem in n cells), as we will see in the Verification and Applications
section. To achieve stability and solution convergence, circuit resolution codes, such as
NgSpice [33,49], use the Newton–Raphson method to solve the non-linear equations that
describe the circuit. This is an interactive algorithm that terminates once the following two
conditions are met between the last iteration (k) and the current one (k + 1): (i) the currents
in the non-linear branches converge to within a tolerance of 0.1% or 10−12 A, and (ii) the
node voltages converge to within a tolerance of 0.1% or 10−6 V.

To design the network models, we established an analogy between fluid velocity (the
physical variable of the problem) and electric potential. The different electrical devices,
which represent the governing equation terms (or addends), are placed between the differ-
ent nodes of the elementary cell, which consists of a central node (position i) and two ends
(positions i + ∆ and i − ∆) in 1D domains, as can be seen in Figure 1.
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Figure 1. Nomenclature and network model of the volume element for variable u. Rectangular
domains.

It is important to note that the network simulation method would also be suitable
to simply deal with the non-stationary state (if necessary) since there is a direct analogy
between the addends of the governing equations with time derivatives (typical of the non-
steady state) and the capacitors of an electrical circuit. Capacitors are devices that allow
storage (charge or discharge) and perfectly reproduce transient phenomena. Circuit resolu-
tion codes [32,33] also incorporate different analysis modes, such as the transient mode, that
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is implemented using the TRAN sentence [49]. Recently, the network simulation method
has been successfully used in non-stationary problems, including soil consolidation [39,40],
ceramic coatings [36], and catalytic oxidation processes [50].

3.1. Discretization of the Governing Equation and Implementation of the Electric Circuit in
Rectangular Domains

For rectangular domains, Equation (1), expressed in spatial finite differences according
to the nomenclature in Figure 1, is as follows:ui+∆ − ui

(∆y)2

2

− ui − ui−∆
(∆y)2

2

− λ2ui =
n
µ
(∇Pz + (ρeff + ρk)∇φz) (14)

It is important take into account that in the network simulation method, ∂2u
∂y2 = ∂

∂y

(
∂u
∂y

)
is approximated in first derivative between the ends of the cell (∂y ∼= ∆y), while the second
derivative is approximated between the central node and each one of the end nodes, with
two addends with half lengths (∂y ∼= ∆y

2 ).
According to the network simulation method, each of the addends in Equation (14)

can be considered electric currents

JR+∆ =
ui+∆ − ui

(∆y)2

2

, JR−∆ =
ui − ui−∆

(∆y)2

2

, JG,λ = λ2ui, JG,∇ =
n
µ
(∇Pz + (ρeff + ρk)∇φz) (15)

which are balanced at the central node of the elementary cell, so that:

JR+∆ − JR−∆ − JG,λ = JG,∇ (16)

The terms JR+∆ and JR−∆ are linear and can, therefore, be implemented using indi-
vidual resistors. Since I = V/R, according to Ohm’s law, the values of these devices are
defined as:

Ri+∆ =
(∆y)2

2
, Ri−∆ =

(∆y)2

2
(17)

These devices are placed between the nodes where the potential drop occurs (in the
physical analogy, velocity), as reflected in Figure 1.

The terms JG,λ and JG,∇ are non-linear, so they must be implemented in the circuit
as voltage-controlled current sources. In these elements, the current is specified directly
through the following expressions:

Gλ = λ2ui, G∇ =
n
µ
(∇Pz + (ρeff + ρk)∇φz) (18)

where ui is directly read in the central node of corresponding cell i. These devices must be
implemented between the central node of the cell and the common ground node.

According to Equation (8), parameter ρk is a variable that depends on the potential
distribution in the channel, ψ, with which it will be necessary to solve this variable in
an additional circuit (we will call it secondary), independent of the circuit that simulates
the evolution of velocity u (we will call it main). In other words: since variable ψ is
independent of velocity u, the secondary circuit can be solved separately in every cell,
while the main circuit has to read variable ψ in the secondary circuit. In this way, the
expression of generator G∇ would be:

G∇ =
n
µ

(
∇Pz +

(
ρeff − εwκ

2ψi

)
∇φz

)
(19)

The value of ψi will, therefore, be obtained from the reading of this variable at node
i (corresponding to the same cell) of the secondary circuit, which is defined from the
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expression in spatial finite differences in Equations (7) and (20). Figure 2 shows the
nomenclature and the network model for this variable.ψi+∆ −ψi

(∆y)2

2

− ψi −ψi−∆
(∆y)2

2

 = τk2ψi (20)
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As before, the addends in Equation (20) can be assumed to be different electric currents
that balance at the central node of the volume element, so that:

JR+∆,ψ =
ψi+∆ −ψi

(∆y)2

2

, JR−∆,ψ =
ψi −ψi−∆

(∆y)2

2

, JG,k = τk2ψi (21)

JR+∆,ψ − JR−∆,ψ = JG,k (22)

The terms JR+∆ψ and JR−∆,ψ are linear, so they are implemented as resistors, while
JG,ψ is non-linear and is made through a voltage-controlled current source.

Ri+∆,ψ =
(∆y)2

2
, Ri−∆,ψ =

(∆y)2

2
, Gk = τk2ψi (23)

where ψi is directly read in the central node of corresponding cell i.

Boundary Conditions

As mentioned in Section 2.1, the values of the velocity and the modified zeta potential
in the channel walls (uw1, uw2, ψw1, and ψw2) are always constant. This means that these
boundary conditions can be implemented in electrical circuits through voltage sources,
which are connected between the boundary node and the common ground node. In this
way, the following elements are defined for the main circuit:

Vuw1 = uw1 = 0 Between the lower boundary node and the ground node, (24)

Vuw2 = uw2 = 0 Between the upper boundary node and the ground node. (25)

For the secondary circuit, the specifications of elements Vψw1 and Vψw2 will be,
respectively, values ψw1 and ψw2.

The schematic for these boundary conditions is shown in Figure 3.
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3.2. Network Model Design in Radial Domains

Given the similarities between Equations (1) and (12), the network model for radial
domains is similar to that of rectangular geometry, with the addition of one more term,
Figure 4. Thus, the expression in spatial finite differences of governing Equation (12)
remains:ui+∆ − ui

(∆r)2

2

− ui − ui−∆
(∆r)2

2

+
ui+∆ − ui−∆

ri∆r
− λ2ui =

n
µ
(∇Pz + (ρeff + ρk)∇φz) (26)

Each of the addends of Equation (26) can be considered an electric current, which
balances with the others at the central node of the elementary cell (Equation (28)).

JR+∆ =
ui+∆ − ui

(∆r)2

2

, JR−∆ =
ui − ui−∆

(∆r)2

2

, JG,ur =
ui+∆ − ui−∆

ri∆r

JG,λ = λ2ui, JG,∇ =
n
µ
(∇Pz + (ρeff + ρk)∇φz) (27)

JR+∆ − JR−∆ + JG,ur − JG,λ = JG,∇ (28)

The new term that appears with respect to the rectangular domains (Jr) is non-linear, so
it is implemented using a voltage-controlled current source. Thus, the elements that make
up the elementary cell network model for a radial domain (Figure 4) have the following
specifications:

Ri+∆ = Ri−∆ =
(∆r)2

2
, Gur =

ui+∆ − ui−∆

ri∆r
, Gλ = λ2ui, G∇ =

n
µ
(∇Pz + (ρeff + ρk)∇φz) (29)

where ui is directly read in the central node of the corresponding cell i.
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Again, the ρk parameter depends on the potential distribution in the channel, ψ,
Equation (8), which makes it necessary to solve this variable in a secondary circuit so that
the main circuit of u obtains the value of ρk from readings of variable ψ in this additional
circuit. Being radial coordinates, we express Equation (13) in spatial finite differences as
follows: ψi+∆ −ψi

(∆r)2

2

− ψi −ψi−∆
(∆r)2

2

+
ψi+∆ −ψi−∆

ri∆r
= τk2ψi (30)

Figure 5 shows the nomenclature and the network model for this variable.
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The electric currents that form Equation (30) are expressed as

JR+∆,ψ =
ψi+∆ −ψi

(∆r)2

2

, JR−∆,ψ =
ψi −ψi−∆

(∆r)2

2

, JG,ψr =
ψi+∆ −ψi−∆

ri∆r
, JG,k = τk2ψi (31)

and they are balanced at the central node of the elementary cell as follows:

JR+∆,ψ − JR−∆,ψ + JG,ψr = JG,k (32)
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The terms JR+∆ψ and JR−∆,ψ are linear, so they are implemented as resistors, while
JG,ψr and JG,ψ are non-linear and are made by both voltage-controlled current sources.

Ri+∆,ψ = Ri−∆,ψ =
(∆r)2

2
, Gψr =

ψi+∆ −ψi−∆
ri∆r

, Gk = τk2ψi (33)

where ψi is directly read in the central node of the corresponding cell i.

Boundary Conditions

According to what was expressed in Section 2.2, the values of the velocity and the
modified zeta potential in the outer wall of the channel (uwRa,ψwRa) are always constant, so
these boundary conditions are implemented through voltage sources, which are connected
between the boundary node and the common ground node.

However, for the cylinder axis (r = 0), symmetry is assumed for variable u and variable
ψ. This condition can be implemented in the network simulation method by placing an
infinite value resistor to prevent the flow of electrical current (adiabatic condition).

In this way, the following elements are defined for the main circuit:

VuwRa = uwRa = 0 Between the outer boundary node and the ground node (34)

Ruax = ∞ Between the axial node and the ground node. (35)

For the secondary circuit, the specifications of elements VψwRa and Rψax will be,
respectively, the values ψwRa and ∞.

The schematic for these boundary conditions is shown in Figure 6.

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 20 
 

 

J9<∆,P − J9>∆,P + JH,PS = JH,� (32)

The terms J9<∆P and J9>∆,P are linear, so they are implemented as resistors, while JH,PS and JH,P are non-linear and are made by both voltage-controlled current sources. 

R5<∆,P = R5>∆,P = �∆S��
� , GPS = PDE∆>PDG∆SD∆S , G� = τk�ψ5 (33)

where ψ5 is directly read in the central node of the corresponding cell i. 

Boundary Conditions 

According to what was expressed in Section 2.2, the values of the velocity and the 

modified zeta potential in the outer wall of the channel (u,9:, ψ,9:) are always constant, 

so these boundary conditions are implemented through voltage sources, which are con-

nected between the boundary node and the common ground node. 

However, for the cylinder axis (r = 0), symmetry is assumed for variable u and var-

iable ψ. This condition can be implemented in the network simulation method by placing 

an infinite value resistor to prevent the flow of electrical current (adiabatic condition). 

In this way, the following elements are defined for the main circuit: 

V�,9: = u,9: = 0 Between the outer boundary node and the ground node (34)

R�:T = ∞ Between the axial node and the ground node. (35)

For the secondary circuit, the specifications of elements VP,9: and RP:T will be, re-

spectively, the values ψ,9: and ∞. 

The schematic for these boundary conditions is shown in Figure 6. 

 

Figure 6. Elements associated with the boundary conditions in radial domains. 

4. Verification and Applications 

In this section, we will begin by verifying the solutions obtained using our numerical 

tool with the analytical solutions proposed by Scales and Tait [35] for rectangular geome-

tries. Subsequently, and once the precision of the network simulation method has been 

tested, two applications will be presented (one for a rectangular channel and the other for 

V = uwRa = 0

main u circuit

Cell
wall

secondary ψ circuit

Cell
wall

Cell

axis

Cell

axis

Ruax = h

V = ψwRa

Rψ   = hax

Figure 6. Elements associated with the boundary conditions in radial domains.

4. Verification and Applications

In this section, we will begin by verifying the solutions obtained using our numerical
tool with the analytical solutions proposed by Scales and Tait [35] for rectangular geometries.
Subsequently, and once the precision of the network simulation method has been tested,
two applications will be presented (one for a rectangular channel and the other for a porous
cylinder) for heterogeneous media composed of two materials with different properties.

The Network Simulation method has also been verified with other numerical tech-
niques, such as the Finite Element Method [30], demonstrating that their numerical solu-
tions have the same precision.
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4.1. Verification of the Numerical Solution for the Network Simulation Method

The purpose of this verification is to quantify the deviations between our numerical
solution and the analytical theoretical one and to determine how much we have to refine
our grid (using parameter nc, which is the number of cells into which we divide the width
(c) of our domain) to correctly reproduce the effects of having the medium and the walls of
the channel alternately charged or uncharged.

4.1.1. Charged Medium Case with Uncharged Walls

For the case of a parallel plate channel with a single charged medium (ψo 6= 0 V) and
uncharged walls (ψw = 0 V), we consider a soil that has the following characteristics:

n = 0.7, τ = 1.4, ap = 8× 10−7 m, ko = 2, ηe = η = 10−6 m2/s, µ = 10−3 N·s/m2,
∇Pz = 2× 104 N/m3, εw = 4.51× 10−10 F/m, ψo = 0.02 V, κ = 108 m−1, ψw1 = ψw2 = 0 V,
∇φz = −4.92× 104 V/m, c = 10−5 m, nc = [10, 100].

Figure 7a,b show the results for 10, 15, 25, and 100 cells, together with the analytical
solution (black line). As can be seen, the network simulation method obtains satisfactory
solutions with a very low number of cells. With 100 cells, the maximum relative error made
in estimating velocity u does not exceed 0.37% (Table 1). For the quantification of the flow
per unit section U (obtained for this geometry as the mean of velocity u), the relative error
falls to 0.24%. For this mesh, the computation time was about only 5 s on an Intel Core
i7-6700 CPU 4.00 GHz computer, which demonstrates the suitability and strengths of the
network simulation method for these types of problems.
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Table 1. Fluid velocity and flow per unit section relative errors as a function of the number of cells.
Parallel plate channel. Single material. Charged medium with uncharged walls.

Number of Cells >100 25 15 10

Max. fluid velocity (u) error (%) 0.37 13.62 24.50 41.50
Flow per unit section (U) error (%) 0.24 5.95 9.56 13.95

4.1.2. Uncharged Medium Case with Charged Walls

For a parallel plate channel with a single uncharged medium (ψo = 0 V,∇Pz = 0 N/m3)
and charged walls (ψw1 6= 0 V, ψw2 6= 0 V), we consider a soil that has the following char-
acteristics:

n = 0.7, τ = 1.4, ap = 1.6× 10−6 m, ko = 2, ηe = η = 10−6 m2/s, µ = 10−3 N·s/m2,
∇Pz = 0 N/m3, εw = 4.51× 10−10 F/m,ψo = 0 V, κ = 107 m−1,ψw1 = 0.03 V,ψw2 = 0.01 V,
∇φz = −4.92× 104 V/m, c = 10−5 m, nc = [10, 500].

Figure 8a–c show the results for 10, 15, 25, 100, and 500 cells, together with the analyti-
cal solution (black line). In this case, the network simulation method obtains satisfactory
solutions with meshes greater than 25 cells. With 500 cells, the maximum relative error
made in estimating velocity u does not exceed 0.16% (Table 2). For the quantification of
flow per unit section U (obtained as the mean of velocity u), the relative error falls to 0.11%.
In this case, the computation time was approximately 15 s, longer than the simulated cases
with 100 cells but still considered very short for these types of problems.
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Figure 8. (a) Dimensionless velocity in a parallel plate channel. Single material. Uncharged medium
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Detail in the vicinity of the charged wall (ψw2 = 0.01 V).

Table 2. Fluid velocity and flow per unit section relative errors as a function of the number of cells.
Parallel plate channel. Single material. Uncharged medium with charged walls.

Number of Cells 500 100 25 15 10

Max. fluid velocity (u) error (%) 0.16 2.03 31.20 64.80 90.40
Flow per unit section (U) error (%) 0.11 0.50 3.81 16.59 32.91

4.2. Applications
4.2.1. Two-Parallel-Plate Channel Composed of Two Porous Materials

In this subsection, eight different cases will be presented corresponding to a rectan-
gular channel composed of two soils with different properties. The geometry, problem
parameters, and characteristics of the materials that form the channel in the first case, of
uncharged walls and that will serve as a reference, are the following:

n1 = 0.8, τ1 = 1.4, ap1 = 10−6 m, n2 = 0.4, τ2 = 1.8, ap2 = 4× 10−7 m, ko = 2,
ηe1 = ηe2 = η = 10−6 m2/s, µ = 10−3 N·s/m2, ∇Pz = 104 N/m3, εw = 4.43× 10−10 F/m,
ψo = 0.03 V, κ1 = κ2 = 108 m−1, ψw1 = ψw2 = 0 V, ∇φz = −2× 104 V/m, c = 10−5 m,
c1/c = 0.4, c2/c = 0.6, nc = 500.

Successive cases 2 to 8 have the same geometry and material characteristics making up
the channel. While certain parameters of the problem vary from the reference case (Table 3),
the rest remain the same.

Table 3. Parameters that are different from the reference case. Two-parallel-plate channel composed
of two porous materials.

Case Parameters

2 ψo = 0.06 V
3 ∇φz = −6× 104 V/m
4 ψw1 = ψw2 = 0.03 V
5 ψw1 = ψw2 = 0.05 V
6 ψw1 = ψw2 = 0.07 V
7 ∇Pz = 3× 105 N/m3

8 ∇Pz = 106 N/m3
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Figure 9 shows the results for the eight cases addressed, which were solved using a
grid of 500 cells. As can be seen, both in case 2 (where ψo has doubled) and case 3 (where
∇φz has tripled), the increase in velocity profiles u and flow per unit section U (Table 4) is
proportional to these changes (same dimensionless velocity profile u/[ψoεw∇φz/µ]). We
can see how the effect of the charged walls (cases 4 to 6) considerably increases the velocity
u of the fluid in the vicinity of these contours. However, the effect is not as considerable
for the flow total U that circulates throughout the total section. Finally, the increase in the
applied pressure gradient ∇Pz (cases 7 and 8) has the same qualitative effect as increasing
ψo or ∇φz, although for quantitative purposes, its effect is much smaller, since to increase
the total flow U 31.7%, it was necessary to raise ∇Pz 100 times.
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Figure 9. Dimensionless velocity in a parallel-plate channel. Double material.

Table 4. Flow per unit section in a double-material parallel-plate channel.

Case 1 (Ref) 2 3 4 5 6 7 8

Flow per unit section U
(m/s) × 10−5 8.62 17.24 25.86 9.13 9.46 9.80 9.43 11.36

% related to reference case 1 100.0 200.0 300.0 105.9 109.7 113.6 109.3 131.7

4.2.2. Porous Cylindrical Channel Composed of Two Different Materials

As in the previous subsection, eight different cases will be presented corresponding to
a porous cylinder composed of two soils with different properties. The geometry, problem
parameters, and characteristics of the materials that form the channel in the first case, which
will serve as a reference, are the following:

n1 = 0.5, τ1 = 1.8, ap1 = 3× 10−7 m, n2 = 0.8, τ2 = 1.5, ap2 = 6·10−7 m, ko = 2,
ηe1 = ηe2 = 5× 10−7 m2/s, η = 10−6 m2/s, µ = 10−3 N·s/m2, ∇Pz = −2× 104 N/m3,
εw = 4.51× 10−10 F/m, ψo = −0.02 V, κ1 = κ2 = 108 m−1, ψwRa = −0.02 V, ∇φz =
−3× 104 V/m, Ra = 10−5 m, Ra1/Ra = 0.8, Ra2/Ra = 0.2, nc = 500.

Successive cases 2 to 8 have the same geometry and material characteristics making up
the cylinder. While certain parameters of the problem vary from the reference case (Table 5),
the rest remain the same.
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Table 5. Parameters that are different from the reference case. Porous cylindrical channel composed
of two different materials.

Case Parameter

2 ψo = −0.04 V
3 ∇φz = −1× 104 V/m
4 ψwRa = −0.04 V
5 ψwRa = −0.08 V
6 ψwRa = −0.12 V
7 ∇Pz = −6× 105 N/m3

8 ∇Pz = −2× 106 N/m3

The results for the eight cases (using a 1000-cell grid) are shown in Figure 10. Analo-
gously to rectangular domains, the variations in ψo and ∇φz (cases 2 and 3, respectively)
result in increases of equal magnitude in the velocity profiles and total circulating flow
(Table 6). Regarding the effect of the wall potential ψwRa (cases 4 to 6), the total circulating
flow is not significantly affected either, despite the fact that in the vicinity of this contour,
fluid velocity does increase considerably. Finally, the increase in the applied pressure
gradient ∇Pz (cases 7 and 8) has an impact similar to that observed in rectangular cases,
both qualitatively and quantitatively.
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Table 6. Flow per unit section in a double-material porous cylindrical channel.

Case 1 (Ref) 2 3 4 5 6 7 8

Total volume flow Q
(m3/s) × 10−14 5.69 11.37 1.90 5.91 6.33 6.76 6.02 6.82

% related to reference case 1 100.0 200.0 33.3 103.8 111.2 118.7 105.8 119.7

5. Discussion and Conclusions

In this work, the network simulation method proved to be an effective tool for the
numerical resolution of the physical–mathematical model of both electroosmotic and
pressure-driven flow in porous microchannels. The technique, based on the analogy
between the physical variables of the problem and electrical potential and intensity, allows
us to solve an equivalent electrical circuit quickly (calculation times between 5 and 15 s)
simply and effectively, obtaining solutions for the velocity profile and circulating flow for
rectangular and radial geometries.
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The method proved to be highly accurate with undemanding grids. Thus, with meshes
of 100 cells, the relative errors are less than 0.4% in channels with a charged medium,
although for scenarios with charged walls, the effect of the contours requires a somewhat
finer crosslinking, registering relative errors of less than 0.2% with meshes of 500 cells.

In view of the applications presented, it is observed that both the increase in the zeta
potential of the pores and the applied potential gradient have a similar effect, regardless
of the geometry of the channel, varying, in the same proportion, the velocity profile of
the fluid and, therefore, the total flow. When the applied pressure gradient is increased,
the variations in velocities and circulating flow are much smaller, making it clear that the
electroosmotic flow component can be much more important in porous fine-particle soils
than the pressure-driven flow component.

We also found how the variation in the modified zeta potential in the channel walls
has a limited effect on the velocity profiles, increasing them ostensibly in the contours but
remaining without effect inside the channel. This means that the increase in total flow
due to this boundary condition is much less than that achieved when we increase the zeta
potential of the pores and applied potential gradient variables.
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Nomenclature

ap average pore size (m)
c width of the porous channel (m)
Gi electric current provided by source i (A)
I electric current (A)
JE electric current flowing through device E (A)
K intrinsic permeability of the medium (m2)
ko pore shape factor (dimensionless)
l length of the hollow tortuous capillary (m)
L length of the porous medium (m)
m average hydraulic radius of the pores (m)
n soil porosity (dimensionless)
nc number of cells (dimensionless)
Q total volume flow (m3/s)
r radial spatial coordinate transverse to the water flow direction (m)
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R electric resistor (Ω or kg·m2/s3·A2)
Ra porous cylinder radius (m)
ri radius value in element i (m)
Ri nominal value of resistor i (Ω or kg·m2/s3·A2)
U flow per unit section (m/s)
u, uz fluid velocity through a cross section of the porous material (m/s)
ui fluid velocity at node i (m/s)
uint1 lower-region fluid velocity at the boundary of separation with the upper region (m/s)
uint2 upper-region fluid velocity at the boundary of separation with the lower region (m/s)
uw1 fluid velocity in the lower-boundary wall (m/s)
uw2 fluid velocity in the upper-boundary wall (m/s)
uwRa fluid velocity in the outer-boundary wall (m/s)
V electric potential difference, voltage (V or kg·m2/s3·A)
Vi voltage source in boundary condition i (V or kg·m2/s3·A)
y cartesian spatial coordinate transverse to the water flow direction (m)
z spatial coordinate in the fluid advance direction (m)
∇Pz applied pressure gradient in the fluid advance direction (N/m3)
∇φz applied potential gradient in the direction of the fluid advance (V/m or kg·m/s3·A)
εo vacuum electrical permittivity (F/m or A2·s4/kg·m3)
εw fluid electrical permittivity (F/m or A2·s4/kg·m3)
ψ potential distribution in the channel due to walls zeta potential (V or kg·m2/s3·A)
ψi potential at node i (V or kg·m2/s3·A)
ψo pores zeta potential (V or kg·m2/s3·A)
ψw modified wall zeta potential (V or kg·m2/s3·A)
ψw1 modified zeta potential of the lower wall (V or kg·m2/s3·A)
ψw2 modified zeta potential of the upper wall (V or kg·m2/s3·A)
ψwRa modified zeta potential of the outer wall (V or kg·m2/s3·A)
κ inverse Debye screening length; inverse of double layer thickness (m−1)
λ inverse Brinkman screening length (m−1)
η water kinematic viscosity (m2/s)
ηe effective viscosity of the fluid in the porous medium (m2/s)
ηe1 effective viscosity of the fluid in the lower porous medium (m2/s)
ηe2 effective viscosity of the fluid in the upper porous medium (m2/s)
ρeff effective charge density due to zeta potential of the porous material (s·A/m3)
ρk charge density in the porous medium due to the wall zeta potential (s·A/m3)
µ water viscosity coefficient; water dynamic viscosity (N·s/m2)
τ pore sinuosity factor: tortuosity (dimensionless)
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