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Abstract: Recently, motor imagery EEG signals have been widely applied in Brain–Computer
Interfaces (BCI). These signals are typically observed in the first motor cortex of the brain, resulting
from the imagination of body limb movements. For non-invasive BCI systems, it is not apparent how
to locate the electrodes, optimizing the accuracy for a given task. This study proposes a comparative
analysis of channel signals exploiting the Deep Learning (DL) technique and a public dataset to
locate the most discriminant channels. EEG channels are usually selected based on the function
and nomenclature of electrode location from international standards. Instead, the most suitable
configuration for a given paradigm must be determined by analyzing the proper selection of the
channels. Therefore, an EEGNet network was implemented to classify signals from different channel
location using the accuracy metric. Achieved results were then contrasted with results from the
state-of-the-art. As a result, the proposed method improved BCI classification accuracy.

Keywords: motor imagery; EEG signals; deep learning; EEGNet; 10–20 international system

MSC: 68T07

1. Introduction

Brain–computer interfaces (BCI) based on EEG signals have flooded scientific research
and applications in recent years [1]. These BCI systems typically allow direct communication
between a subject and a surrounding environment without muscle synergy movement
and provide specific applications in various research fields. For example, BCIs have been
used to diagnose cerebral diseases [2] and to propose patient treatment [3]. In addition,
BCIs promise to improve the quality of life for many people [4]. Among BCI paradigms
based on EEG signals, Motor Imagery (MI) signals take advantage of having direct social
and medical impacts [5] by improving conditions of people who have lost motor skills,
facilitating their independent communications with their surrounding environment [6].
Brain activity depends on the specific stimulus to which the subject under test is exposed.
In particular, Electroencephalography records, invasively or non-invasively, the brain’s
electromagnetic activity, i.e., neurons’ activity belonging to a specific area. Moreover, for
visual stimulation, Bihan et al. [7] concluded that the visual cortex is activated in the same
way as the mental representation of the same stimulus.

Innovative approaches have been proposed to solve the spatial resolution problem
from non-invasive electroencephalography, increasing the number of active electrodes.
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These approaches intend to cover a larger cortical area obtaining relevant brain activity
information [8]. However, for non-invasive BCI applications based on EEG signals, selecting
appropriate electrodes for the targeted brain area is laborious if the equipment does not
have built-in options to discriminate channels. For this reason, public EEG databases are
developed considering all electrode channels, despite the prior knowledge of the brain
zone activated by a specific stimulus.

The following practical challenges have arisen by increasing the number of electrodes
for BCI systems:

1. Processing signals from inaccurate electrodes’ location: Basing exclusively on
the electrode functions in the 10–20 or 10–10 international system [9] and neglecting the
contribution of non-selected channels for a given task can lead to weak learning of signal
features. Thus, there are less efficient results for the application.

2. Learning with noisy samples: Signals from passive electrodes, depending on the
specific cognitive activity, are affected by noise, decreasing the performance of the suitable
electrode channels. Therefore, signal processing can be computationally expensive and less
efficient. In addition, Baig et al. [10] considered reducing the number of active electrodes
between 10 and 30 without losing overall algorithmic performance [11].

3. Interference between signals from electrodes being too close together: Despite
the precautions taken to control the electrode impedance and electromagnetic signal
shielding features [12], another source of interference appears due to uncontrolled electrode
closeness between them [13]. This challenge arises in practice with unconventional or
low-tech systems.

Considerable research on EEG signals is still based on the 10–20 system proposed by
the international federation for the electrodes placement [14], despite constructive criticism
of its applicability on atypical skulls or specific cases [15], which also led to the variant
10–10 and 10–5 systems covering all the skull convexity by the electrodes and maximizing
the cerebral activity measurements. Recently, motor imagery classification based on EEG
channel selection has been developed to deduce the most discriminant channels implied
in specific cognitive activities. Methods based on Common Spatial Pattern (CSP) and
its variants flood the literature to maximize differences in variance between data labels.
Yong et al. [16] reduced the number of electrodes by 11% on average from 118 electrodes,
using a spatial filter based on CSP.

Conversely, Das and Suresh [11] applied a CSP variant and the effect-size based CSP
(E-CSP) to eliminate channels that do not carry useful information, using Cohen’s based
effect-size calculation. Likewise, efficient methods for electrode selection were explored
using the Genetic Algorithm (GA) [17], mutual information [18], improved IterRelCen
method built on the relief algorithm [19], and the modified Sequential Floating Forward
Selection (SFFS) [20]. Additionally, one can gradually increase the number of electrodes to
improve classification accuracy [21].

In summary, two effective ways to select the most discriminant electrode channels
for a BCI system based on motor imagery EEG signals are: the measure built on electrode
information and the criterion based on the classifier [10]. The first evaluates data properties
like the distance between classes and probabilistic dependency [22]. The second type uses
accuracy metric, error rate, Chi-squared, odds proportion, or probability ratio [23].

Although Table 1 specifies the specific brain area activated by a defined stimulus
and Deecke’s and Neuper’s works locate imagined and executed limb movements on
the somatosensory cortex [24,25], various authors experimented on the parallel activation
of different brain areas caused by one or more stimuli [26,27]. Therefore, the hypothesis
that other brain regions than the somatosensory cortex could be activated by fingers’
imagined movements is established in this paper. This work uses a classifier-based
evaluation approach to select a discriminant channel subset maximizing the MI-EEG
Signals classification using the EEGNet network [28]. This channel selection strategy is
based on a software-level solution using the utility metric [29] to evaluate the influence of a
group of channels on improving classification accuracy. A similar approach was developed
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by Narayanan and Bertrand in the auditory attention detection with the wireless EEG
sensor network (WESN) [30], using the accuracy as the main outcome metric.

Table 1. Nomenclature and functions for the electrodes in the international 10–20 system,
Syakiylla et al. [31].

Brain Region Electrode Function

Frontal

Fp1 Attention
Fp2 Judgment restrains impulses
F7 Verbal expression
F3 Motor planning
F4 Motor planning of left-upper extremity
F8 Emotional expression

Temporal

T3 Verbal memory
T4 Emotional memory
T5 Verbal understanding
T6 Emotional understanding and motivation

Central
C3 Sensorimotor integration (right)
Cz Sensorimotor integration (midline)
C4 Sensorimotor integration (left)

Parietal
P3 Cognitive processing special temporal
Pz Cognitive processing
P4 “Math word problems”, “Non-verbal reasoning”

Occipital
O1 Visual processing
Oz Incontinence
O2 Visual processing

The public dataset proposed in [32], related to five-fingers MI-EEG signals, was used
to analyze the channel contribution before building discriminant channel subsets. Secondly,
the channel subset maximizing the classification accuracy using the EEGNet network is
compared with channels suggested in the state-of-the-art. The main contributions of this
study are summarized as follows:

1. A subset of discriminant electrode channels is more suitable for individual subject
five-finger motor imagery classification.

2. A practical method to evaluate discriminant channel subsets for BCI systems
is provided.

3. A cyclical learning rate is used in the EEGNet network to process the signal features
efficiently and swiftly [33].

4. In addition, the classification accuracy achieved by a compact DL technique is used as
the BCI channel selection criterion.

This paper is organized as follows: Section 2 presents the methods used in this
work, including the EEG electrodes placement systems, the referred dataset, the proposed
algorithm, and the neural network architecture. Then, in Section 3, the achieved results are
discussed and evaluated, and, finally, the conclusions are given in Section 4.

2. Methods

The proposed approach aims to locate discriminant electrode channels for a given task
using a public database and a compact convolutional neural network. Single signal and
electrode combination accuracies are evaluated using the same parameters of the EEGNet
network to deduce the discriminant electrode channels.
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2.1. Standardized Systems of EEG Electrodes Placement

While numerous EEG capture equipment, standardized according to the international
system 10–20 [9], use the craniocerebral topography illustrated in Figure 1a for electrodes
placement, others benefit from the 10–10 norm presented in Figure 1b.
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Figure 1. The spatial location of electrodes according to standard systems. Each electrode is located
by a letter and a number. The letter expresses the brain cortex for the electrode location: frontal (F),
central (C), parietal (P), Occipital (O), temporal (T), and frontoparietal (FP). Even numbers are used
for the brain’s right hemisphere, while odd numbers are for the brain’s left hemisphere. (a) the 10–20
International system; (b) the 10–10 International System.

The international 10–20 system provides 21 electrodes distributed proportionally on the
scalp. The distance between two adjacent electrodes is 10 to 20% of the skull extremities’ total
distance. The 10–10 standard [34] was developed with more electrodes (74). Table 1 explains
the electrode function for each brain area. This work aims to determine the most discriminant
electrode channels in terms of the accuracy metric.

2.2. Referred Dataset

The proposed method was evaluated on the public EEG dataset built
by Kaya et al. [32], constituting five paradigms related to motor imagery. However,
the present work uses paradigm #3 (5F) related to the right-hand fingers’ imagined
movements (up or down flexion). Eight subjects (six men and two women) were trained
to produce 36,800 independent samples of MI-EEG signals. EEG signals were captured
with the Nihon Kohden-Japan EEG-1200 JE-921A medical equipment. The equipment
consists of 19 electrodes organized according to the 10–20 International system and uses
Neurofax recording software for playback and quantitative analysis of EEG data. In
addition, experiment graphical user interfaces (eGUI) were designed in Matlab, helping
test subjects to perform mental tasks. The experiment is summarized as follows: an
experimental Graphical User Interface (eGUI) displays the right-hand fingers. When
a number appears just above the finger, understood as the task start, the test subject
imagines the flexion and extension movement of the corresponding finger for one
second. The dataset holds thirteen files recorded at 1000 Hz (HFREQ) and six at 200 Hz
(BFREQ). The recorded EEG signals are filtered internally at the hardware level by
band-pass filters of 0.53–70 Hz for signals with a sampling frequency of 200 Hz and
0.53–100 Hz for those with a sampling frequency of 1000 Hz. In addition, the equipment
integrates a notch filter at the hardware level, suitable at 50 Hz or 60 HZ depending on
geographical areas of use, to reduce interference from the electrical grid.
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Technically limited by computational resources available for the algorithm test, this work
presents only the results for signals at 200 Hz. Particularly, Kaya et al. [32] recommended the
choice of the C3 channel for signal processing.

2.3. Proposed Method

The proposed method discriminates the active from the inactive electrode channels by
classifying MI-EEG signals. Figure 2 presents the flowchart of the proposed method, which
considers the public database, channel signal combinations, and the EEGNet network
structure to deduce the best channel grouping based on classification accuracy. Therefore,
the rating accuracy of classifying signals from channel combinations using the EEGNet
network is considered to detect the stimulus-activated area. In this sense, Algorithm 1 seeks
to find the subset of the most significant electrode channels maximizing the classification
accuracy based on a given task. The first step consists of processing channel signals
independently of those others. An electrode channel subset is constituted by selecting n
channels with the best accuracies. Next, considering the number of electrodes maximizing
the accuracy as a reference, combinations are made, progressively adding channels to the
subset to obtain an accuracy equal to or greater than the reference accuracy. This latest
varies according to the two, three, four, five, or six channels plus combinations. That is, the
best classification accuracy of the 2-channel combination is taken as a reference to meet
corresponding electrodes. In addition, this process is repeated for the 3-channel, 4-channel,
and ith-channel combinations.

Algorithm 1: Proposed algorithm for discriminant channel selection.
Input : N = Number of channels; S = Number of subjects.
Output : Nr = number of recommended channels

1 for i=1:S do
2 Acc← accuracies empty list of size N
3 for j=1:N do
4 Acci,j ← find(Acc(i, j)) Finding the Acci,j accuracy of each channel

per subject
5 Acc← add(Acc, Acci,j) Adding the Acci,j accuracy in the Acc list
6 end for
7 Ci ← sortdsc(Acc) Sorting accuracies in descending order
8 Di ← Select_best_acc(Ci)
9 Best_acci ←max(Di)

10 Nr ← find_chan(Best_acci)
11 Mi = Index_chan(Di)
12 while k ≤ size(Mi) do
13 Hk ← Combination(Nr, Mi)
14 BestAccuracyi ←max( f ind_acc(Hk))
15 if BestAccuracy ≥ Best_acci then
16 Best_acci ← BestAccuracyi
17 end if
18 Nr ← find_chan(Best_acci)
19 end while
20 end for

Finally, the most superior classification accuracy found with the ith-channel combination
defines the nomenclature and, consequently, the spatial location of each electrode in the
combination. The Gauss curve of accuracy depending on channel combination is expected
with a maximum determining the number and nomenclature of discriminant channels. Let
a = 2 ≤ i ≤ n, the number of channel combinations, and Xi the accuracy corresponding to
the ith-channel combination, that is,

Xi = f (a), (1)
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and:

Nr = max(X2, · · · , Xn), (2)

where Nr represents the number of recommended channels. In this work, only the
increasing part of the accuracy curves will be reported to focus on the paper contribution.

Public dataset

Fp1

Fp2

O2

...

EEGNet  
network 

Multi-class
classification

Max Accuracy
criterion

Electrode
Selection

Electrode signals

combination 
of electrode

signals 

Figure 2. Overview of the proposed method. Each channel Data-stream (FP1, FP2, . . . , O2) and their
combinations are processed using the EEGNet network to classify five fingers’ imagined movements.
Next, the best test accuracies found from signals classification are used to locate the respective channels.

2.4. The EEGNet Model

The EEGNet [28] is a CNN network whose robustness is proven by the number of
related publications in BCI applications [35,36]. Such a network disposes of two convolution
blocks: the first block comprises deep convolutions and the second block of separable
convolutions. EEGNet uses temporal and spatial filters convolution to learn and produce
separable features for the classifier, as illustrated in Figure 3.

Input Conv2D Dephtwise Conv2D Separable Conv2D Classification

...

Kernel

Kernel

Kernel

Output

Output

Output

EEG Raw Data
(Channels, Samples) ...

Kernel

Kernel

Kernel

...

Output

Output

Output

...
...

Output

Output

Output

Classification

...

Figure 3. The EEGNet network structure. As a typical CNN, the EEGNet structure additionally
disposes of depth-wise and separable convolution layers, allowing features separation for the signal
classification stage.

Whereas the matrix of the data read from the database is presented as:

EEGraw = (num_samples, sample_length, Channel), (3)

for the EEGNet input, that matrix is rearranged as (4),

EEGraw = (num_samples, Channel, sample_length, 1), (4)

where num_samples is the number of samples and sample_length is the sequence length
of the raw EEG signals. The depthwise convolution layer predicts an in-depth model
based on the number of parameters, notably using a temporal and spatial filter bank. The
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separable conv2D layer temporally separates individual feature maps and optimizes the
output before the classification step, where the Softmax activation function is applied.

This work sets temporal and spatial filters at 8, kernel length at 3, and regularization
dropout rate at 0.2. The built model was fitted with 2000 epochs, using the
Nesterov-accelerated Adaptive Moment Estimation (NADAM) optimizer and a batch size
of 330. This network parameters configuration is typically based on settings adjusted in [37],
where another channel selection criterion was used. This is to evaluate the contribution
of this paper making comparison. The cyclical learning rate [33] was implemented in this
project to accelerate features learning, and the EEGNet network benefits from separating
features with few training data. A triangular window was adopted, varying the learning
rate between 10−5 and 5× 10−3, with a gamma value of 0.998. The model was built in
Keras and Tensorflow with parameters illustrated in Table 2 and executed on a 64-bit
Alienware14 laptop computer with dual GeForce GTX 765M GPUs under Linux. The
200-fold cross-validation method was used to support the results. Finally, Table 3 summarizes
the hyper-parameters values set for the data training with the EEGNet model.

Table 2. Number of parameters for the implemented EEGNet receiving k channels.

Layer (Type) Output Shape Parameters

InputLayer (None, k, 170, 1) 0
Conv2D (None, k, 170, 8) 64
Batch_normalization_1 (None, k, 170, 8) 32
Depthwise_conv2D (None, 1, 170, 64) 64 × k
Batch_normalization_2 (None, 1, 170, 64) 256
Activation_1 (None, 1, 170, 64) 0
Average_pooling2D_1 (None, 1, 42, 64) 0
Dropout_1 (None, 1, 42, 64) 0
Separable_conv2D (None, 1, 42, 64) 5120
Batch_normalization_3 (None, 1, 42, 64) 256
Activation_2 (None, 1, 42, 64) 0
Average_pooling2D_2 (None, 1, 5, 64) 0
Dropout_2 (None, 1, 5, 64) 0
Flatten (None, 320) 0
Dense (None, 5) 1605
Softmax (None, 5) 0

Table 3. The summary of configured hyper-parameters for the EEGNet’ model training.

Hyper-Parameter Values Set

Epochs number 2000
Optimizer Nadam (0.001)
Loss function Categorical cross-entropy
Metric Accuracy
Batch size 330

3. Results and Discussion

The first stage of the proposed algorithm consists of processing each electrode channel
independently of the others, to group as many electrodes as possible and, therefore, to
maximize the accuracy. Table 4 presents the results achieved by processing the 19 electrode
channels. The top-6 accuracies achieved for each individual subject are indicated in boldface,
where the best accuracy is highlighted in blue.

Next, six channels corresponding to the top-6 accuracies were selected to constitute the
electrode channel subset for the next algorithm stage. This number of electrodes was chosen
accordingly after extensive testing with all channels’ combination, beginning from channels
offering two best accuracies per subject and increasing this grouping for three, four, five,
and for all best accuracies per subject. Thereby, accuracy curves remained to ascend while
more channels were added until the six-channel combination before decreasing.
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Table 4. Classification accuracies achieved for each electrode channel.

Electrode
Accuracies (%)

Subject A Subject B Subject C Subject F

Fp1 83.5 72.3 72.2 62.3
Fp2 84.5 72.4 73.3 62.2
F7 86.6 69.0 75.1 60.4
F3 80.6 69.1 68.7 62.9
Fz 65.7 67.8 68.5 60.3
F4 78.8 70.8 70.9 64.4
F8 83.8 74.4 78.2 63.1
T3 68.2 68.8 73.5 64.9
C3 72.4 71.6 74.5 66.8
Cz 69.5 75.2 74.0 60.8
C4 71.8 74.6 81.4 64.1
T4 75.5 72.3 73.4 62.1
T5 84.5 74.7 75.8 68.1
P3 70.3 75.2 79.0 67.0
Pz 70.9 71.0 71.8 65.8
P4 72.6 77.6 71.8 68.0
T6 72.7 78.9 75.3 63.6
O1 68.4 75.0 75.6 70.2
O2 72.4 74.0 73.8 66.2

For subject A, the highest accuracy was 86.6%, using the F7 channel corresponding to
the frontal brain region, curiously dedicated to verbal expression. Therefore, channels Fp1,
Fp2, F3, F8, and T5, corresponding to the following top-5 accuracies, are selected to form
2-channel combinations with the F7 channel for the following step. The same procedure
was carried out for individual subjects B, C and F. For instance, the top-6 accuracies for
subject B correspond to T6, P4, P3, Cz, O1, and T5 channels. Therefore, channels P4, P3,
Cz, O1, and T5 are selected to form 2-channel combinations with the T6 channel for the
following step. Table 5 shows the results for the different 2-channel combinations for each
subject. It can be observed that the highest classification accuracies are now 90.5%, 81.5%,
82.9%, and 76.6% for subjects A, B, C, and F, respectively.

For subject A, the best results are obtained using channels {F7, Fp2} which correspond
to the frontal region. Likewise, for subject F, the best results are obtained using channels
{O1, O2} corresponding to the occipital brain region, precisely related to visual processing.
Contrariwise, for subjects B and C, the best results were obtained for {T6, O1} and {C4, P3},
respectively, corresponding to different brain regions, temporal-occipital for subject B and
central-parietal for subject C.

Hence, {F7, Fp2}, {T6, O1}, {C4, P3}, and {O1, O2} combinations are used to form
3-channel combinations with the remaining channels ({Fp1, F8, F3, T5}, {T5, Cz, P3, P4},
{F8, T5, O1, T6} and {T5, P3, C3, P4}), for the next step. Table 6 presents classification
accuracies achieved for each 3-channel combination and subject. subject A achieved the
highest accuracy of 90.8% with {F7, Fp2, T5} channel combination signals, subject B an
accuracy of 83.8% with signals from {T6, O1, Cz} channels combination. With {C4, P3, T6}
channel combination signals, subject C achieved an accuracy of 85.6%, while an accuracy
of 79.3% was found with {O1, O2, P3} channel combination signals of subject F.

Therefore, those electrode channel combinations are used to form 4-channel combinations
for the next step.

Table 7 presents the results for each 4-channel combination and subject. The highest
accuracies are now 91.7%, 85.1%, 88.5%, and 80.1% for subjects A, B, C, and F, respectively.

Table 8 shows the results for each 5-channel combination and subject. The highest
accuracies change now to 92.8%, 86.3%, 88.6%, and 80.8% for subjects A, B, C and F, respectively.

Table 9 presents the results for 6-channel combinations. The best accuracies are 93.1%,
87.2%, 90.3%, and 81.0% for subjects A, B, C, and F, respectively.
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Table 5. Classification accuracies achieved for each 2-channel combination.

Subject Combination Acc. (%)

F7 - Fp1 87.0
F7 - Fp2 90.5

A F7 - F3 84.1
F7 - F8 86.5
F7 - T5 86.4

T6 - P4 76.7
T6 - P3 79.6

B T6 - Cz 76.3
T6 - O1 81.5
T6 - T5 80.0

C4 - F8 81.5
C4 - P3 82.9

C C4 - T5 81.3
C4 - O1 81.8
C4 - T6 82.7

O1 - O2 76.6
O1 - T5 73.2

F O1 - P3 71.1
O1 - C3 70.7
O1 - P4 72.4

Table 6. Classification accuracies achieved for each 3-channel combination.

Subject Combination Acc. (%)

F7 - Fp2 - Fp1 88.4
A F7 - Fp2 - F8 89.5

F7 - Fp2 - F3 89.4
F7 - Fp2 - T5 90.8

T6 - O1 -T5 83.0
B T6 - O1 - Cz 83.8

T6 - O1 - P3 82.2
T6 - O1 - P4 82.6

C4 - P3 - F8 84.8
C C4 - P3 - T5 83.9

C4 - P3 - O1 83.7
C4 - P3 - T6 85.6

O1 - O2 - T5 77.5
F O1 - O2 - P3 79.3

O1 - O2 - C3 77.1
O1 - O2 - P4 78.2

Table 7. Classification accuracies achieved for each 4-channel combination.

Subject Combination Acc. (%)

F7 - Fp2 - T5 - Fp1 90.6
A F7 - Fp2 - T5 - F8 91.0

F7 - Fp2 - T5 - F3 91.7

T6 - O1 - Cz - T5 84.7
B T6 - O1 - Cz - P3 84.3

T6 - O1 - Cz - P4 85.1
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Table 7. Cont.

Subject Combination Acc. (%)

C4 - P3 - T6 - O1 86.4
C C4 - P3 - T6 - T5 88.5

C4 - P3 - T6 - F8 87.5

O1 - O2 - P3 - T5 78.6
F O1 - O2 - P3 - C3 80.1

O1 - O2 - P3 - P4 79.0

Table 8. Classification accuracies achieved for each 5-channel combination.

Subject Combination Acc. (%)

A F7 - Fp2 - T5 - F3 - F8 92.8
F7 - Fp2 - T5 - F3 - Fp1 92.2

B T6 - O1 - Cz - P4 - T5 85.2
T6 - O1 - Cz - P4 - P3 86.3

C C4 - P3 - T6 - T5 - O1 88.6
C4 - P3 - T6 - T5 - F8 88.1

F O1 - O2 - P3 - C3 - T5 80.8
O1 - O2 - P3 - C3 - P4 79.4

Table 9. Classification accuracies achieved for each 6-channel combination.

Subject Channels Combination Acc. (%)

A F7 - Fp2 - T5 - F3 - F8 - Fp1 93.1
B T6 - O1 - Cz - P4 - P3 - T5 87.2
C C4 - P3 - T6 - T5 - O1 - F8 90.3
F O1 - O2 - P3 - C3 - T5 - P4 81.0

Figure 4 shows the classification accuracies as a function of the number of channels.
Beyond six channels, the curves begin to decrease.
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Figure 4. Accuracy as a function of the number of channels per subject.
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Table 10 presents the gain in classification accuracy by adding selective channels
according to Algorithm 1. For subjects B and F, the best accuracy was obtained for channels
{T6, O1, Cz, P4, P3, T5} and {O1, O2, P3, C3, T5, P4}.

Table 10. Classification accuracy gain achieved after adding channels for each subject.

Subject
Headway of Adding Channels

Gain
1→ 2 2→ 3 3→ 4 4→ 5 5→ 6

A 3.9 0.3 0.9 1.1 0.3 1.3
B 2.6 2.3 1.3 1.2 0.9 1.6
C 1.5 2.7 2.9 0.1 1.7 1.7
F 6.4 2.7 0.8 0.7 0.2 2.1

Rel. Gain 3.6 2.0 1.4 0.7 0.7 1.6

For subject C, the best accuracy was achieved using channels {C4, P3, T6, T5, O1, F8}.
By methodically adding channels according to Algorithm 1, the evolution of the

classification accuracy reaches a maximum that defines the optimal number of channels.
Figure 5 illustrates the discriminant channel subsets obtained by using the proposed

algorithm. As established in the hypothesis, the parietal, temporal, visual, and motor
cerebral cortices are stimulated by imaginary finger movements depending on the test
subject. Subject A performs a classification accuracy with the frontal and parietal cortices
activated. For subjects B and F, the parietal, motor, and temporal cerebral cortices are
activated against the stimulation of all cortices for subject C. Each increase in the number
of channels generates an accuracy gain, see Table 10.
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Figure 5. Spatial maps of discriminant channel subsets for individual subjectsA, B, C, and F.
(a) subject A; (b) subject B; (c) subject C; (d) subject F.

Table 11 summarizes the optimal channel combinations depending on the desired
number of channels.

Table 11. Summary of the optimal channel combinations.

Subject
Number of Channels

1 2 3 4 5 6

A {F7} {F7,Fp2} {F7,Fp2,T5} {F7,Fp2,T5,F3} {F7,Fp2,T5,F3,F8} {F7,Fp2,T5,F3,F8,Fp1}
B {T6} {T6,O1} {T6,O1,Cz} {T6,O1,Cz,P4} {T6,O1,Cz,P4,P3} {T6,O1,Cz,P4,P3,T5}
C {C4} {C4,P3} {C4,P3,T6} {C4,P3,T6,T5} {C4,P3,T6,T5,O1} {C4,P3,T6,T5,O1,F8}
F {O1} {O1,O2} {O1,O2,P3} {O1,O2,P3,C3} {O1,O2,P3,C3,T5} {O1,O2,P3,C3,T5,P4}

Table 12 compares the results achieved using the proposed algorithm and other
state-of-the-art approaches [37,38], where signals from the {C3, Cz, P3, Pz} channel subset
or all channels were selected to be processed. In such studies, raw EEG signals were
preprocessed using the Empirical Mode Decomposition (EMD) and Common Spatial
Pattern (CSP) methods. In [39], Alomari et al. selected {C3, C4, Cz} EEG channel subset
to discriminate right-left imagined and executed fists movements based on Deecke’s and
Neuper’s works [24,25]. Similarly, O1 and O2 electrodes were evaluated as discriminant by
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Zhou et al. [40], in the implementation of a driving car brain–computer interfaces, using
EEG signals of visual-motor imagery preprocessed by the Hilbert–Huang Transform. The
results obtained in this work satisfactorily prove a classification accuracy improvement
compared to the state-of-the-art, which uses wrong or all electrodes, as shown in Table 12.

Table 12. Comparison with the state-of-the-art based on other channel selection approaches.

Subject Items
Methods

EMD+EEGNet [37] ADL Network [38] Proposed Method

A

Channels {C3,Cz,P3,Pz} All {F7,Fp2,T5,F3}
No. of channels 4 19 4
No. of samples 4974 4974 4974

Accuracy 81.8% 77.4% 91.7%

B

Channels {C3,Cz,P3,Pz} All {T6,O1,Cz,P4}
No. of channels 4 19 4
No. of samples 4959 4959 4959

Accuracy 75.2% 77.8% 85.1%

C

Channels {C3,Cz,P3,Pz} All {C4,P3,T6,T5}
No. of channels 4 19 4
No. of samples 5941 5941 5941

Accuracy 82.2% 81.6% 88.5%

F

Channels {C3,Cz,P3,Pz} All {O1,O2,P3,C3}
No. of channels 4 19 4
No. of samples 4947 4947 4947

Accuracy 79.7% 78.1% 80.1%

4. Conclusions

The present work aimed to find discriminant channels using a DL approach. To
accurately perform the imagined flexion-extension task of the right-hand fingers, whose
EEG data are provided by a public dataset, the compact convolutional neural network
for EEG-based brain–computer interfaces (EEGNet) was implemented. The search for
discriminating channels was based on the inverse problem by determining the combination
of electrodes that maximizes the classification accuracy. The results encountered explain
the activation of various cerebral cortices depending on the test subject, despite the
standard conditions defined in the paradigm (mental task, signal length, capture conditions).
Subject A (93.1%) achieved the highest classification rates, followed by subject C (90.3%).
The lowest classification accuracy was obtained for subject F, delivering 81.0%. Such an
approach provides an average classification accuracy gain of 8.6% by increasing the number
of channels from one to six. Therefore, whatever the standard used for capturing EEG
signals, selecting channels for a BCI system whose EEG data are provided from more
than one subject must consider the discriminating electrodes, the nomenclature of which
may differ from one test subject to another. The outstanding contribution of this work
proposes a practical channel selection method based on deep learning for EEG-BCI systems
and provides better classification accuracy with the tested dataset. As future work, an
embedded EEG-BCI based on fingers’ motor imagery signals is projected. The finger
movements of a hand prosthesis will be controlled in real-time by an EMOTIV EPOC
headset and a Jetson Nano development board. Hence, the results achieved in this work
will serve as a comparison for the further step.
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