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Abstract: Particle swarm optimization (PSO) is an attractive, easily implemented method which is
successfully used across a wide range of applications. In this paper, utilizing the core ideology of
genetic algorithm and dynamic parameters, an improved particle swarm optimization algorithm
is proposed. Then, based on the improved algorithm, combining the PSO algorithm with decision
making, nested PSO algorithms with two useful decision making criteria (optimistic coefficient
criterion and minimax regret criterion) are proposed . The improved PSO algorithm is implemented
on two unimodal functions and two multimodal functions, and the results are much better than that
of the traditional PSO algorithm. The nested algorithms are applied on the Michaelis-Menten model
and two parameter logistic regression model as examples. For the Michaelis-Menten model, the
particles converge to the best solution after 50 iterations. For the two parameter logistic regression
model, the optimality of algorithms are verified by the equivalence theorem. More results for other
models applying our algorithms are available upon request.

Keywords: improved particle swarm optimization algorithm; nested PSO algorithm; optimal
experimental design; decision making criteria

MSC: 62-08

1. Introduction
1.1. Overview of PSO Algorithm

Particle swarm optimization (PSO) is a meta-heuristic, population-based swarm in-
telligence algorithm first proposed by [1]. Recently, the PSO algorithm has attracted a
great deal of researchers for its powerful ability to solve a wide range of complicated
optimization problems without requiring any assumption on the objective function. The
applications of the PSO algorithm are summarized by [2,3], which divide the applications
into 26 different categories, including but not limited to: image and video analysis appli-
cations, control applications, design applications, power generation and power systems,
combinatorial optimization problems, etc.

The PSO algorithm is a bionic algorithm which simulates the preying behavior of a
bird flock. In the Particle Swarm Optimization algorithm, each solution of the optimization
problem is considered to be a “bird” in the search space, and it is called a “particle”.
The whole population of the solution is termed as a “swarm”, and all of the particles
are searched by following the current best particle in the swarm. Each particle i has two
characteristics: one is position (denoted by x;), which determines the particle’s fitness value,
the other is velocity (denoted by v;), which determines the direction and distance of the
search. In iteration ¢ (t is a positive integer), to avoid confusion, the position and velocity of
particle i are usually denoted by x;(t) and v;(t). Each particle tracks two “best” positions :
the first is the best position found by the particle itself so far, which is denoted by “pjpes: (t)”;
the second is the best position found by the whole swarm so far, denoted by “gp.s;(£)”.
When the algorithm terminates, g, (t) is declared to be the solution to our problem.
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The velocity and position of each particle are updated by equations:
0i(t+1) = woi(t) + cyrandy (pipest (t) — Xi(t)) + caranda (gpest () — xi(t)) ey

xi(t+1) :xi(t)+vi(t+1) (2)

Here, v;(t) is the velocity of the particle 7, x;(t) is the position of the particle i, and w is
the inertia weight. pipes () and gpes; () are the local best position for particle i and global
best position found by all of the particles in iteration ¢, respectively. Here, rand; and rand,
are two random numbers in [0, 1], while ¢y, ¢, are “learning factors”, with c; termed the
“cognitive learning factor” , and cy the “social learning factor” [1].

From the formulas, the update of each v; is composed of three parts: the first part
is the inertia velocity before the change; the second part is the cognitive learning part,
which represents the learning process of the particle from its own experience; the third part
is the social learning part, which represents the learning process of the particle from the
experience of other particles.

1.2. Related Works and Main Improvements of This Manuscript

Recent related studies for particle swarm optimization methods include: Ref. [4]
proposed a multi hierarchical hybrid particle swarm optimization algorithm. Ref. [5]
proposed a combination of genetic algorithm and particle swarm optimization for the
global optimization. Ref. [6] proposed an improved PSO algorithm in power system
network reconfiguration. Ref. [7] introduced a multiobjective PSO algorithm based on
multistrategy. Ref. [8] proposed a vector angles-based many-objective PSO algorithm
using archive. Ref. [9] proposed a novel hybrid gravitational search particle swarm
optimization algorithm. Ref. [10] proposed the application of particle swarm optimization
to portfolio construction.

Previous works provide a significant foundation for particle swarm optimization
algorithms in optimal designs. However, there are some shortcomings in previous work:

(i) Inorder to facilitate the operation, previous works use the same dynamic parameters
for the whole particle swarm in each iteration. However, in some situations, different
kinds of particles may have different dynamic parameters.

(ii) Previous works mainly focus on pessimistic criterion. The combination of the PSO al-
gorithm and other useful decision making criteria, including the optimistic coefficient
criterion and minimax regret criterion, are seldom considered in previous research.

To solve these problems, in this paper, utilizing the core ideology of the genetic
algorithm and dynamic parameters, an improved particle swarm optimization algorithm
is proposed in Section 3. Then, based on the improved algorithm, combining the PSO
algorithm with decision making, nested PSO algorithms are proposed in Section 4. The
main improvements of this manuscript include: in the improved PSO algorithm in Section 3,
top 10 percent particles are chosen as “superior particles”. Then, different cognitive learning
factors and social learning factors are used for superior particles and normal particles. In
each iteration, the superior particles will split, and the inferior particles will be eliminated.
In the nested PSO algorithms in Section 4, two useful decision making criteria, optimistic
coefficient criterion and minimax regret criterion, are combined with the PSO algorithm.
These research studies have not been conducted yet by other researchers. The details of the
improvements are in Sections 3 and 4.

The proposed algorithms are implemented on various mathematical functions, which
are shown in Section 5.

2. Background
2.1. Experimental Design and the Fisher Information Matrix

An experimental design ¢ which has n support points can be written in the form:
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Here, x;,i = 1...n are the values of the support points within the allowed design
region, and ¢; are the weights, which sum to 1, and represent the relative frequency of
observations at the corresponding design point.

For several nonlinear models, the design criterion to be optimized contains unknown
parameters. The general form of the regression model can be written as y = f(¢,0) + €.
Here, f({,0) can be either a linear or nonlinear function, 6 is the vector of unknown
parameters, and ¢ is the vector of design (includes the information for both weight and
the value of the support point). The range of 6 is ®, and the range of ¢ is E. The value
of a design is measured by its Fisher information matrix, which is defined to be the
negative of the expectation of the matrix of second derivatives (with respect to 0) of the
log-likelihood function.

The Fisher information matrix for a given design ¢ is I(6,¢) = —E [%}. Here,
p(¢,0) is the probability function of . To estimate parameters accurately, the objective
function log|I~1(6, &)| should be minimized over all designs & on E.

For example, for the popular Michaelis-Menten model in biological sciences, which is

presented by [11]:
y= L:_ +€x>0 3)

The Fisher information matrix for a given design ¢ is defined by

1
10,0 = [ (G >2< s T )dé( ) @

b+x' \ —mm G

Chen et al. [12] proposed the equivalence theorem for experimental design with the
Fisher information matrix: for a heteroscedastic linear model with mean function g(x), A(x) is
the assumed reciprocal variance of the response at x, then the Variance of the fitted response at
the point z is proportional to v(z, &) = g7 (z)I(¢) 'g(z), where I(¢) = [ A(x) (x)&(dx).
Design ¢* is optimal if there exists a probability measure y* on A(@’*) where A(@*) ={ue
Z | v(u,&) = max,ezv(z,&)}, Z is the range of unknown parameter. For all x € X,

(x, &% u") //\ r(x,u, & )p* (du) —o(u, ") <0 (5)

with equality at the support points of &*. Here r(x,u,&*) = (g7 (x)I(¢)1g(x))?

2.2. Essential Elements of Decision Making
A decision making problem is composed of four elements [13,14]:

(i) A number of actions to be taken;

(i) A number of states which can not be controlled by the decision maker;

(iii) Objective function: payoff function or loss function which depends on both an ac-
tion and a state (our objective is to maximize the payoff function or minimize the
loss function);

(iv) Criterion: by certain criterion, the decision maker decides which action to take.

In the objective function log|I~1(6, )], 6 is in the set of states which are out of our
control and design ¢ is an action to be taken.

2.3. Optimization Criterion for Decision Making

Decision-making with loss functions is proposed in several papers, such as [15].
Clearly, our objective is to minimize the loss functions. Based on the loss function, there are
several popular criterion for decision making:
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(i) Pessimistic criterion: The pessimistic decision maker always considers the worst case,
that is, suppose 6 will maximize the loss function. The decision maker will take the
action that minimizes the loss function in the worst case. This criterion is also known
as the minimax criterion. The formula for this criterion is:

ming (maxocolog] I~ (6,)]) ®)

(ii) Optimistic coefficient criterion: usually the decision maker will trade off from optimism
and pessimism in decision making. This derives the optimistic coefficient criterion
which take the weighted average of maximum and minimum of the loss function. The
weight is called optimistic coefficient, which is between 0 and 1. It reflects the content
of optimism of the decision maker. The formula for this criterion is:

ming[(1— a)maxgeplog|I™}(9,0)| + amingeplog|I~1(0,7)]] )

Here,  is the optimistic coefficient. When a = 0, the optimistic coefficient criterion
shrinks to pessimistic criterion.

(iii) Minimax regret criterion: in this criterion, our objective is to minimize the maximum
possible regret value. The regret value is defined by the difference between the loss
under certain action and the minimum loss possible under the same state. The formula
for this criterion is:

mingmaxgeeRV (6, ) (8)
Here, RV (6,¢) = log|I=1(6,¢)| — minglog|I=1(6, )

The significance for criterion (ii) and (iii) are: usually the decision maker will trade off
from optimism and pessimism in decision making. This derives the optimistic coefficient
criterion which takes the weighted average of the maximum and minimum of the possible
loss. The weight is called the optimistic coefficient, which reflects the content of optimism
of the decision maker.

Some times after the decision maker makes a decision, he or she may regret when
certain states appear. In this case, people want to minimize the maximum regret value,
which is the distance between the loss value of the action they take and the minimum loss
value possible in the relevant state. The regret value is also called opportunity costs, which
represent regret in the sense of lost opportunities.

3. Improved Particle Swarm Optimization for Experimental Design

In this section, combining the core ideology of the genetic algorithm and dynamic
parameters, an improved PSO algorithm is proposed as the foundation of the nested
PSO algorithm.

3.1. Main Improvement of Our Algorithm

(i) The superior particles are split and the inferior particles are eliminated in each iter-
ation. That is, in each iteration, the fitness values of the particles are ranked from
high to low, and particles with top 10 percent fitness values as “superior particles” are
taken. Then, each superior particle is split into two particles with the same velocities
and positions, and particles with the bottom 10 percent fitness values are deleted
to keep the swarm in a constant size. This improvement adopts the core ideology
of the genetic algorithm: the individuals with higher fitness values will reproduce
more offsprings. The splitting procedure in optimization methods is usually called
individual cloning.

(i) Dynamic parameters c; and c; are utilized in the algorithm:

maxiter — iter

- 9
maxiter + Clow ©)

c1 = (Cupper — Clow) X
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iter

maxiter + Clow (10)

Here, the iter is the current number of iterations and maxiter is the maximum number
of iterations. ¢y pper and ¢y, are the upper and lower bounds of the learning factors,
respectively.
According to the ideology of the genetic algorithm and common sense, the superior
particles have better learning abilities, thus, the learning factors for superior particles
have higher upper and lower bounds than normal particles. After repeated attempts
and comparisons, cypper = 2.5, ¢jpy = 1.2 are taken for superior particles, and
Cupper = 2, Clow = 0.75 are taken for normal particles.
Consequently, in the running process of the algorithm, the cognitive learning factor is
linearly decreased and the social learning factor is linearly increased.

(iii) Dynamic parameter w is utilized in the algorithm:

€2 = (Cupper — Clow) X

maxiter — iter

= — X
@ = (w1 = w) maxiter

wy (11)
w1 and wj are the upper and lower bounds of w, respectively. According to common
sense, the superior particles are more active, thus, they have lower inertia. In our
algorithm, w; = 0.75, wy = 0.25 are set for superior particles, and wy = 0.9, wy = 0.4
are set for normal particles.

Improvements (ii) and (iii) are utilized in the algorithm because these approaches
are in accordance with the idea of particle swarm optimization: at the beginning, each
bird has a large cognitive learning factor and small social learning factor, and each bird
searches mainly by its own experience. After a period of time, as each bird gets more and
more knowledge from the bird population, it relies increasingly on the social knowledge
for its search. In addition, the effect of inertia velocity will decrease over time since the
particles obtain more and more information from cognitive learning and social learning in
the process of searching, so they rely increasingly on their learning instead of the inertia.

After applying these improvements, the improved PSO algorithms are as follows.
Following the common notations in related research, in each iteration, the x;(t), v;(t),
Pivest (1) and gpest (f) in Formulas (1) and (2) are written as x;, v;, Pipest and gpest, without
causing confusion.

3.2. Improved PSO Algorithm for Minimization/Maximization Problem

When a maximum number of iterations is reached or when the change of the fitness
value in successive searches is negligible, the stopping criteria is satisfied. In Algorithm 1,
we set the maximum number of iterations to 500. When the difference of the fitness values
between two adjacent iterations is less than 0.002, the change is considered as negligible.

If any value of x; or v; exceed the upper or lower bounds, then we will take the
corresponding upper bound or lower bound instead of that value.

Clearly, this improved algorithm can be used to solve either the minimization or
maximization problem. For the minimization problem, in step 1.3, the local best is the
x; with minimum f(x;). The update process of pjpes; and gpes; in 2.4 is: for each particle i,
if the updated fitness value is less than the fitness value of the current p;p.s; , then pipes:
is updated to the new solution; otherwise, pjp.s; remains unchanged. gp.s; is the particle
which takes minimum of the fitness value of pjp,s;.

For the maximization problem, in step 1.3, the local best is the x; with the maximum
fitness value. The update process of pjjpes; and gpesr in 2.4 is: for each particle 7, if the
updated fitness value is greater than the fitness value of the current pjs,s; , then pjpes; is
updated to the new solution; otherwise, p;p.s; keeps unchanged. gy, is the particle which
takes the maximum of the fitness value of pj,.s; (See Figure A1 Flowchart of Algorithm 1 in
Appendix A).
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Algorithm 1: Improved PSO algorithm.

Initialization process

1.1 For each of the n particles, initialize particle position x; and velocity v; with
random values in corresponding search space.

1.2 Evaluate the fitness value of each particle f(x;) according to the
objective function.

1.3 Determine local best and global best positions pijes; and gpest-

Update process:

2.1 Rank the fitness values of the particles from high to low, and take particles with
top 10 percent fitness values as “superior particles”. Then split each superior
particle into two particles with the same velocities and positions, and update the
velocity of particles with Formula (1).

2.2 Based on the velocity, update the position of particles with Formula (2).

2.3 Update the fitness value f(x;).

2.4 Update the local and global best positions piy.s; and gpes;- Then update the
fitness values of pip.s; and gpes;-

2.5 Eliminate the particles with bottom 10 percent fitness values.

If the stopping criteria is satisfied, output the gp,.; and fitness value (denoted by
f(gpest)- If not, update ¢y, ¢; and w by Formulas (9)—-(11), and repeat the
update process.

4. Nested Particle Swarm Optimization for Experimental Design

The application of the Particle Swarm Optimization algorithm to the maximization
and minimization problems and a nested PSO algorithm for the pessimistic criterion are
presented by Chen et al. [12]. Chen’s paper is a milestone in the research of applying particle
swarm optimization to experimental design. The combination of decision making and
particle swarm optimization has been studied in several previous papers, such as [16,17],
Yang et al. [18] and Yang and Shu [19].

However, the combination of the PSO algorithm and other decision making criteria,
including the optimistic coefficient criterion and minimax regret criterion, are seldom
considered in previous research. These combination problems are more interesting and
challenging, and are worthy of in-depth study.

To solve these problems, nested PSO algorithms with multiple decision making criteria
are proposed in this section. The implementations of these algorithms are proposed in
Section 5.

4.1. Introduction of Nested PSO Algorithms

For regression with the Fisher information matrix involving unknown parameters,
we need two “swarms” of particles (one is ¢, the other is 6) to solve it with a nested PSO
algorithm. These two swarms of particles are used in different layers of iterations. In each
layer, the fitness value is determined by one of the two swarms of particles. For convenience
of expression, we denote the two swarms corresponding to ¢ and 6 by swarm 1 and swarm
2, the position by x; and y;, and the velocity by xv; yv;, respectively. Each swarm consists
of 50 particles.

4.2. PSO Algorithm for Optimistic Coefficient Criterion

Define factions(er C) = (1 - “)mﬂxee(alogu_l (91 é’) | + “min9€®log| - (9, (;{) | . Our ob-
jective is to find ming fyctions (0, &)

When a maximum number of iterations is reached or when the change of the fitness
value in successive searches is negligible, the stopping criteria is satisfied. In Algorithm 2,
we set the maximum number of iterations to 100. When the difference of the fitness values
between two adjacent iterations is less than 0.2 percent of the current fitness value, the
change is considered as negligible.
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Algorithm 2: PSO algorithm for optimistic coefficient criterion.

Initialization process:

1.1 For each of the n particles in each of the two swarms ¢, and 0, initialize particle
position x;, y; and velocity xv;, yv; with random vectors in corresponding search
space.

1.2 Evaluate the fitness value maxgcglog|I=1(6,¢)| and mingeelog|I=1(8, )| by
improved PSO algorithm. Then, initialize the f,.sions (6, ¢) and local and global
best position.

1.3 Determine local best and global best positions pjpes; and gpes;-

Update process:

2.1 Rank the fitness values of the particles from high to low, and take particles with
top 10 percent fitness values as “superior particles”. Then, split each superior
particle into two particles with the same velocities and positions, and update the
velocity of particles by Formula (1).

2.2 Based on the velocity, update the position of particles by Formula (2).

2.3 Based on the new position, calculate the fitness value f,.sions (6, ) by
Algorithm 1.

2.4 Update the local and global best positions piy.s: and gpest- Then, update the
fitness values of pipes; and gpes;-

2.5 Eliminate the particles with bottom 10 percent fitness values.

If the stopping criteria is satisfied, output the gp.s; and fitness value (denoted by
£ (gpest)- If not, update cq, ¢; and w by Formula (9)-(11), and repeat the
update process.

If any value of x;, y; or xv;, yv; exceed the upper or lower bounds, then we will take
the corresponding upper bound or lower bound instead of that value.

In this algorithm, the process of evaluating f,.sions(Xx) is the inner circulation, the
process of evaluating ming facrions (6, ¢) is the outer circulation. Pessimistic criterion is the
special case for this algorithm when a = 0.

4.3. PSO Algorithm for Minimax Regret Criterion

Define RV (6,&) = log|I=(6,&)| — minzlog|I=1(6,¢)|. Then, this optimization prob-
lem is to find mingmaxgeeRV (6, ). So this is a three-fold nested algorithm.

In this algorithm, the process of evaluating f,csions (6, ¢) is the inner circulation, the
process of evaluating ming f,cions (6, ¢) is the outer circulation. When a maximum number
of iterations is reached or when the change of the fitness value in successive searches is
negligible, the stopping criteria is satisfied. In Algorithm 3, we set the maximum number of
iterations to 100. When the difference of the fitness values between two adjacent iterations
is less than 0.2 percent of the current fitness value, the change is considered as negligible.
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Algorithm 3: PSO algorithm for minimax regret criterion.

Initialization process:

1.1 For each of the n particles in each of the two swarms, ¢ and 0, initialize particle
position x;, y; and velocity xv;, yv; with random vectors.

1.2 Compute the fitness value minglog|I~1(6,¢)| by improved algorithm. Based on
that, compute RV (6, ¢).

1.3 Determine local best and global best positions pijes; and gpest-

Update process:

2.1 Rank the fitness values of the particles from high to low, and take particles with
top 10 percent fitness values as “superior particles”. Then, split each superior
particle into two particles with the same velocities and positions, and update
velocity yv; of particles in swarm 2 by Formula (1).

2.2 Based on the velocity, update the position of particles in swarm 2 by
Formula (2).

2.3 Update the fitness value maxygc@RV (6,¢)) with Algorithm 1.

2.4 Update velocity xv; of particles in swarm 1 by Formula (1).

2.5 Based on the velocity, update the position of particles by in swarm 1
Formula (2).

2.6 Update the fitness value (the loss function) mingmaxgceRV (6,) by
Algorithm 1. Then, update pjpes; and gpes;- Then, update the fitness values of
Pibest and Gpest-

2.7 Eliminate the particles with bottom 10 percent fitness values.

If the stopping criteria is satisfied, output the gp.s; and fitness value (denoted by

f(8best)-

If not, update c1, c; and w by Formulas (9)—(11), and repeat the update process.

5. Results and Comparisons

In this section, in Section 5.1 the improved PSO algorithm in Section 3 is compared
with the traditional PSO on two unimodal functions and two multimodal functions to
show the ability of the algorithm. In Section 5.2, we propose the comparisons of our
improved PSO algorithm in Section 3 with a typical algorithm on one unimodal functions
and two multimodal functions. The test functions of Sections 5.1 and 5.2 are mainly chosen
from [4]. After that, the nested PSO algorithms in Section 4 are applied on two representa-
tive models with unknown parameters as examples. The algorithms are programmed by
Matlab 2020a, and operated under Intel Core i7, Windows 7.

5.1. Comparisons of Traditional PSO Algorithm and Improved PSO Algorithm

In this subsection, the improved PSO algorithm in Section 3 is compared with tra-
ditional PSO on two unimodal functions and two multimodal functions. Table 1 is the
information of test functions. In order to facilitate the calculation, the original minimum
problems are transformed into maximum problems with maximum value = 100, that is
why the fitness values are defined as ﬁ.

Table 1. Information of test functions.

Function Expression Search Space Global Optimum Fitness Value
Quadric F= Z?:1(2§:1 x/z) (—50,50)" F=0 ==
Tablet F=10°02 + ¥, 22 (~50,50)" F=0 Frbo1
Griewank F=1+ ﬁ Y xlz = cos(%) (—500,500)" F=0 p&ml
Rastrigin F =10n + L4 [x? — 10cos(27x;)] (—5,5)" F=0 e

To eliminate the randomness, for each function, each algorithm is run 50 times inde-
pendently, and the statistical results are analyzed. In each run, when the fitness value is
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more than 99.9, the computation is considered as successful. In the table, the success rate
indicates the percentage of success (not the times of success), and average indicates the
average of the fitness values.

Table 2 is the comparisons of the performance of traditional PSO and improved PSO.

Table 2. Comparisons of the performance of traditional PSO and improved PSO.

Function Method Success Rate Average
Quadric Traditional PSO 82 85.3673
Quadric Improved PSO 98 99.6342
Tablet Traditional PSO 78 81.1744
Tablet Improved PSO 100 99.8431
Griewank Traditional PSO 74 78.0472
Griewank Improved PSO 98 99.7956
Rastrigin Traditional PSO 68 72.2582
Rastrigin Improved PSO 96 99.1391

From Table 2, the results of our improved PSO algorithm are much better than that
of traditional PSO for all of the four test functions, which confirmed the ability of the
improved PSO algorithm.

5.2. Comparisons of Our Improved PSO Algorithm with a Typical Combination of Genetic and
PSO Algorithm

Ref. [5] proposed a typical combination of the genetic and particle swarm optimization
algorithm for the global optimization, which incorporates the crossover and mutation
operations of the genetic algorithm into the PSO algorithm. This combination method is a
common PSO variant. In this subsection, we propose the comparisons of our improved
PSO algorithm with that typical combinatorial algorithm on one unimodal function and
two multimodal functions to show the ability our improved algorithm. In this subsection,
we use two new test functions on Tables 1 and 3 test function on Section 5.1.

Table 3. Information of new test functions.

Function Expression Search Space Global Optimum Fitness Value
Rosenbrock F =y 1(100(x;41 — 22)2 + (1 - x;)?) (—2,2)" F=0 e
Schaffer’s F =y (62 +x2,) P [sin(50(x2 + x2,1)%1) + 1] (—100, 100)" F=0 oot
The number of runs of each algorithm is the same as Section 5.1. In each run, when
the fitness value is more than 99.9, the computation is considered as successful. In the table,
the success rate indicates the percentage of success (not the times of success), and average
indicates the average of the fitness values.
Table 4 is the comparisons of the performance of our improved PSO algorithm with
the typical combination of genetic and PSO algorithm in [5].
Table 4. Comparisons of our improved PSO algorithm with a typical combination of genetic and
PSO algorithm.

Function Method Success Rate Average
Rosenbrock Typical combination of genetic and PSO algorithm 90 92.1891
Rosenbrock Improved PSO 98 99.4084

Schaffer’s Typical combination of genetic and PSO algorithm 84 89.2963

Schaffer’s Improved PSO 96 99.2861

Rastrigin Typical combination of genetic and PSO algorithm 82 87.4295

Rastrigin Improved PSO 96 99.1391
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From Table 4, the results of our improved PSO algorithm are much better than that
of the typical combination of genetic and PSO algorithm for all of the three test functions,
which confirmed the ability of the improved PSO algorithm.

5.3. Implementation of Nested PSO Algorithm

In this subsection, the nested PSO algorithms in Section 4 are applied on two rep-
resentative models with unknown parameters as examples. Since the most often used
parameters optimistic coefficient criterion are 0.3, 0.5 and 0.7, in Tables 5 and 6, these
parameters are mainly used in the computation. Extensions to other models are immediate,
with a simple change of the objective function. More results of other models applying our
algorithms are available upon request.

Example 1. Michaelis—Menten model. This model and its Fisher information matrix have been
introduced in Section 2. For the Michaelis—Menten model on design space X = [0, %], Ref. [11]
showed that an optimal design is supported at two support points, one of which is %. In this section,
the nested algorithms in Section 4 are applied to the Michaelis—Menten model with design space
a € [50,100],b € [100,150], [0, X] = [0, 200].

Table 5. Different criterion with Michaelis—Menten model.

Criterion £ (gbest) Support Point 1 Weight 1 Support Point 2 Weight 2
Pessimistic (« = 0) 8.9996 50.1889 0.5007 200 0.4993
Optimistic coefficient with « = 0.7 5.6371 28.9594 0.5140 200 0.4860
Optimistic coefficient with « = 0.5 6.1237 91.5995 0.2158 200 0.7842
Optimistic coefficient with « = 0.3 7.5770 118.1915 0.1648 200 0.8352
Minimax regret 7.7660 39.5151 0.5648 200 0.4352

Example 2. Two parameter logistic regression model [20]. The probability of response is assumed
to be p(x;0) = 1/(1+ exp(—b(x — a))). Here, = (a,b)" is the unknown parameter vector.
The information matrix of this model is:

b*p(x,0)(1 - p(x,9)) ~b(x—a)p(x,0)(1 - p(x,0)) 4z,
/(_b(X—”)P(W)(l—P(W)) (x —a)2p(x,0)(1 - p(x,0)) )d‘f( ) 1

The nested algorithms in Section 4 are applied on two parameter logistic regression models
with parameters a € [0,2.5],b € [1,3],x € [—1,4].

Table 6. Different criterion with two parameter logistic regression model.

Criterion 1 (8vest) Support Points Weights
Pessimistic (« = 0) 41104 03384, 1.0064, 1.6533, 2.6503 0.2324, 0.2572, 0.2358, 0.2746
Optimistic cocfficient with 3.3675 0.0227, 0.5731, 0.3514, —0.4051 0.2365, 0.2583, 0.2512, 0.2540
Optimistic cocfficient with 3.4405 —0.4583, 0.6799, 0.0676, 2.2800 0.2393, 0.2459, 0.2350, 0.2798
Optimistic cocfficient with 3.6436 25504, 1.6075, 2.2055, —0.2563 01816, 0.3006, 0.1527, 0.3651
Minimax regret 3.3282 0.6467, 1.4097, —0.2367, 0.5244 0.2376, 02328, 0.2308, 0.2988

From Tables 5 and 6 above, the f(g.s:) of the optimistic coefficient criterion is better
than that of the pessimistic criterion , and f(g.s;) is inversely proportional to a. That
is because the pessimistic criterion always considers the worst case, but the optimistic
coefficient criterion takes a trade off between the optimistic case and pessimistic case.
When « increases, the extent of optimism gets larger, so the loss function gets smaller (and
therefore better).
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Figure 1 plots the value and weight of support point 1 for Michaelis-Menten model
with 50 particles. Vertical coordinate represents the value of the support point 1, and
horizontal coordinate represents the weight of support point 1. Figure 1 shows how the
particles converges to the best solution after 50 iterations (the best solution is indicated by
red star).

Figure 2 plots the equivalence theorem with ¢(x, §, u*) versus x for two parameter
logistic regression models. The vertical coordinate represents the value of ¢(x, {, u*), and
the horizontal coordinate represents the value of x. From all of these four plots, c(x,¢, u*)
< 0 for all x € X, which confirms that all of the results obtained by our series of algorithms
are optimal.

Iter 50 Iter 50
200 T T 200 T
180 180
160 160
140 140
120 120
100 100
80 80
60 = 60
P -
40 ¥ 40
gt
20 20
0 i I I 1 1 0 I 1 i I
0 0.1 0.2 0.3 0.4 05 06 0.7 0.8 0.9 1 0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 09 1
(@) (b)
Iter 50 Iter 50
200 T T T 200 T T
180 — 180 o
160 . 160 .
140 . 140 .
120 $ . 120 .
100 ; . 100 ~ .
80 . 80t .
60 , . 60 , .
40 < - 40+ N o
20 ol 201 o
0 I i i i i i 0 i i i i
0 0.1 0.2 0.3 0.4 05 06 0.7 0.8 0.9 1 0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
(0) (d)

Figure 1. The convergence of particles in nested PSO algorithm for Michaelis-Menten model
under various decision criteria. Vertical coordinate represents the value of the support point 1,
and horizontal coordinate represents the weight of support point 1. (a) Michaelis-Menten model
with pessimistic criterion; (b) Michaelis-Menten model with optimistic coefficient criterion, a =
0.7; (c) Michaelis-Menten model with optimistic coefficient criterion, « = 0.3; (d) Michaelis-Menten
model with minimax regret criterion.
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Figure 2. The plot of c(x, {, *) versus x on nested PSO algorithm for two parameter logistic regression
model. Vertical coordinate represents the value of ¢(x, & u*), and horizontal coordinate represents
the value of x. (a) Logistic regression model with optimistic coefficient criterion, a = 0.7; (b) Logistic
regression model with optimistic coefficient criterion, &« = 0.5; (¢) Logistic regression model with
optimistic coefficient criterion, & = 0.3; (d) Logistic regression model with minimax regret criterion.

6. Conclusions and Future Works

In this paper, an improved particle swarm optimization (PSO) algorithm is proposed
and implemented on two unimodal functions and two multimodal functions. Then, com-
bining the Particle Swarm Optimization (PSO) algorithm with the theorem of decision
making under uncertainty, nested PSO algorithms with two decision making criteria are
proposed and implemented on the Michaelis-Menten model and two parameter logistic
regression models. For the Michaelis-Menten model, the particles converge to the best
solution after 50 iterations. For two parameter logistic regression models, the optimality of
algorithms are verified by the equivalence theorem. In the nested PSO algorithms, the gy
is inversely proportional to the optimistic coefficient.

The PSO algorithm is a powerful algorithm that needs only a well-defined objec-
tive function to minimize or maximize with different optimal criteria, here, the function
log|T~1(8, &)|. Thus, extensions to other models are immediate, with a simple change of the
objective function. More results for other models applying our algorithms are available
upon request. The limitation of our PSO method is: it does not work very efficiently in
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solving problems with a complicated matrix, which is more suitable to be solved with the
simulated annealing algorithm.

Future work includes, but is not limited to, the comprehensive comparison of this
series of PSO algorithms with other metaheuristic algorithms, such as the genetic algorithm
and simulated annealing algorithm. This is interesting and challenging work, which will
be researched in the near future.
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Appendix A. Flowcharts of Algorithms 1-3

Initialize position and velocity for
each particle. Evaluate the fitness
value of each particle, and initialize
local best and global best positions.

Split each superior particle to 2 particles,
and update the velocity of particles.
Update the position of particles, fitness
value, local and global best positions.

Update ppest and gpesr and elim-
inate the particles with bot-
tom 10 percent fitness values.

Update cy, ¢2 and w by formula (9), (10) and (11). ‘

[Output the best position and fitness Value.]

Figure A1. Flowchart of Algorithm 1.
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Initialize particle position x;, y; and
velocity xv;, yv; for the 2 swarms,
and evaluate the fitness values, lo-
cal best and global best positions.

Split each superior particle to 2 particles,
and update the velocities positions
of particles. Update the fitness value.

Update the local and global best po-
sitions, and eliminate the particles
with bottom 10 percent fitness values.

Is stopping criteria satisfied? Update c1, ¢z and w by Formulas (9)—(11). ‘

[Output the best position and fitness Value.j

Figure A2. Flowchart of Algorithm 2.
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Initialize particle position x;, y; and
velocity xv;, yv; for the 2 swarms, and
evaluate the fitness values, RV (6, &),
local best and global best positions.

Split each superior particle to 2
particles, and update the veloci-
ties positions of particles. Update
the fitness value maxgceRV (6,¢)).

Update velocities and positions of particles
in swarm 1. Update the he fitness value
mingmaxgeeRV (0,¢), local and global
best positions, and eliminate the particles
with bottom 10 percent fitness values.

Is stopping criteria satisfied? Update c1, ¢z and w by Formulas (9)—(11). ‘

[Output the best position and fitness Value.j

Figure A3. Flowchart of Algorithm 3.
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