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Anja Žnidaršič 1 , Alenka Brezavšček 1 , Gregor Rus 1,2 and Janja Jerebic 1,3,*

1 Faculty of Organizational Sciences, University of Maribor, SI-4000 Kranj, Slovenia;
anja.znidarsic@um.si (A.Ž.); alenka.brezavscek@um.si (A.B.); gregor.rus4@um.si (G.R.)

2 Institute of Mathematics, Physics and Mechanics, SI-1000 Ljubljana, Slovenia
3 Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
* Correspondence: janja.jerebic@um.si

Abstract: This study examines the effects of COVID-19-related measures on the mathematics achieve-
ment of university students in social sciences in Slovenia. Our particular concern was to compare
two student populations (pre-pandemic and pandemic) in terms of factors affecting student perfor-
mance in mathematics courses. Data were collected over nine consecutive academic years (from
2013–2014 to 2020–2021) and analyzed using two-stage structural equation modelling (SEM). The
analyses confirmed that the conceptual model developed before the pandemic was applicable during
the pandemic period. For both populations (pre-pandemic and pandemic), mathematics confidence,
perceived level of math anxiety, background knowledge from secondary school, and self-engagement
in mathematics courses at university were confirmed as factors influencing mathematics achievement.
Moreover, both populations perceived the effects of the factors in the same way, and the magnitude of
the effects is comparable. The rather high values of determination coefficient for mathematics achieve-
ment (greater than 0.66 for both student populations) indicate that the variables “Perceived Level
of Math Anxiety” and “Self-Engagement in Mathematics Course at University” together explain a
significant proportion of the total variance before and during the pandemic. Consequently, the results
of our case study indicated that pandemic measures did not have a significant impact on our students’
mathematics achievement. Although a more in-depth study of a broader sample of academic courses
would be needed to confirm our findings, our experience indicates that mathematics courses at the
tertiary level of education can be successfully delivered online.

Keywords: COVID-19; mathematics achievement; university students; social sciences; pre-pandemic
population; pandemic population; comparison; multi-group structural equation modeling (MG-SEM)

MSC: 97D60

1. Introduction

Since the spring of 2020, the literature addressing adjustments to and consequences of
COVID-19-related school closures at different educational levels has expanded rapidly. The
sudden transition to distance learning and the period of its implementation affected all aspects
of students’ lives. They faced social, psychological, and educational challenges [1–5].

In this paper, we will look at the impact of the COVID-19 pandemic on educational
outcomes, or, more specifically, student achievement in mathematics. A review by Hammer-
stein et al. [6] provides a selection of studies at the primary and secondary education levels
with comparative analyses of student achievement before and after COVID-19-related
school closures. Among numerous studies published up to the end of April 2021, the
authors chose only those (11 studies) that included applied statistical analyses rather than
solely reporting percentages and analyzed them in detail. Most of these studies revealed
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negative effects of COVID-19-related school closures on students’ achievement, and seven
of them reported a negative effect on mathematics achievement. Positive effects on math-
ematics achievement were less frequent and occurred only in connection with the more
intensive use of online learning software already familiar to students.

A similar systematic review of school performance among children and adolescents
during the COVID-19 pandemic was prepared by Panagouli [7], in which, in addition
to student achievement, parents’ and teachers’ observations were also analyzed. The
final selection covered 42 papers published by July 2021. Most of the students involved
in the research had a significant decrease in mathematics results compared to previous
years. Unfortunately, only a few of them maintained their mathematics performance or
improved it.

Recently, another survey on the implications of primary to upper-secondary school
closures was prepared by Svaleryd et al. [8]. They provided an overview of virus trans-
mission in schools, student learning, and mental health among students. This survey
mostly confirmed learning losses and more pronounced learning inequalities. The available
evidence identified the distance learning period as more challenging for younger students.

Since our study is oriented to university students, we focused mainly on research
dealing with parallels between populations of students pre-pandemic and during the
pandemic and their achievements at the tertiary level. After reviewing the available
literature, we found a poorer representation of publications at the tertiary level than the
primary and secondary levels. This agrees with the findings of Soesanto et al. [9]. In our
opinion, there are several reasons for this. Certainly, one reason is the specificity of the
study areas and courses, making the findings more difficult to compare and generalize.
University students are perceived as autonomous learners responsible for choosing their
own learning techniques and monitoring their learning process [10]. In addition, students
entering tertiary education are expected to have much more experience and coping skills
than students at lower education levels. Coping strategies and adaptation skills are key to
successfully adjusting to university challenges [11]. One might therefore expect that there
would be fewer effects on academic achievement at the university level compared to the
primary and secondary education levels. However, studies dealing with general COVID-19
confinement on students’ performance in higher education reported both negative [12–14]
and positive [15–17] effects.

Studies analyzing the impact of COVID-19, and consequently distance learning, on
mathematics achievement at the tertiary educational level are very rare. Perhaps surpris-
ingly, positive or no effects of distance learning on mathematics achievement at the tertiary
level have been reported to a greater extent than at lower education levels [16–18].

After reviewing the representative literature (see Section 2), we found that much of
the current comparative research on mathematics performance between pre-pandemic
and pandemic generations of tertiary education students is mainly based on the final
course grade. Hence, it is essential to examine also the extent to which the previously
identified primary factors influencing students’ mathematics performance changed during
the pandemic [17]. Our study compares the pre-pandemic and pandemic generations of
students from this perspective.

The primary goal of the present study was to investigate how COVID-19-related
measures affected the mathematical performance of university students in social sciences.
For this purpose, we performed a case study at the Faculty of Organizational Sciences,
University of Maribor, Slovenia, and compared in detail two populations of students,
pre-pandemic and during the pandemic, from the perspective of their achievement in
mathematics. Such comparison requires systematic in-depth analysis. To comprehensively
understand how student performance has changed due to COVID-19-related school clo-
sures, it is important to investigate factors that potentially contributed to the changes [17].

The results of our previous research [19] showed that the mathematics achievement
of university students in social sciences before the COVID-19 pandemic depended on
the following factors: mathematics confidence, math anxiety, background knowledge



Mathematics 2022, 10, 2314 3 of 23

from secondary school, and engagement in university mathematics courses. It is thus
necessary to determine whether these factors are also relevant to the population of students
during the pandemic. In other words, we need to verify whether our conceptual model
developed in the pre-pandemic period using structural equation modeling (SEM) [19]
is applicable to the pandemic period. Such verification requires the use of advanced
statistical methods that include verification of both the measurement and the structural
model (see Section 4.2). Only after the applicability of the model has been confirmed can the
two student populations be compared. For this purpose multi-group structural equation
modeling (MG-SEM) [20,21] is used.

The remainder of the paper is organized as follows: first, the results of a relevant
literature review are presented. Then, the methodology of our empirical study is explained,
and the results are systematically presented and discussed. Finally, the conclusions based
on research implications are presented, and the limitations of the study and future research
directions are highlighted.

2. Review of Related Literature

Findings on the academic performance of students before and after COVID-19-related
primary and secondary school closures were outlined in the Introduction. The present
study compares the academic performance of tertiary students pre-pandemic and during
the pandemic. Accordingly, a review of the representative literature on the tertiary educa-
tional level was prepared. The results of the recently published bibliometric analysis [22]
show that the number of scientific papers on online learning in higher education rises
exponentially. Qualitative methodologies, particularly case study analysis, dominate the
field. structural equation modelling (SEM) was the most used quantitative method, and
questionnaires were the most widely used instruments of data gathering [23]. Partial least
squares structural equation modelling (PLS-SEM) was used to analyze a questionnaire
related to the performance of mathematics teaching during the COVID-19 era in [24]. Ac-
cording to the topic of the present study, special attention was paid to comparative studies
(pre-pandemic vs. pandemic) of mathematical achievements.

Alangari [25] systematically reviewed the current articles of STEM (sustainable science,
technology, engineering, and mathematics) courses in higher education during COVID-19.
Results indicated that faculty members consider the transition from face-to-face to distance
learning as effective even though they faced several challenges. Further investigation
showed that the application of STEM online learning has helped to increase students’
creativity and the rate of STEM research by both students and faculty members. The
findings of [26] indicate that for many mathematics lecturers in higher education, the move
to online teaching has been a beneficial experience that will impact their future teaching.

De Paola et al. [12] applied a difference-in-differences identification strategy to com-
pare the academic performance of students in different cohorts (affected or not affected
by the health emergency) in several academic areas (science, humanities, social sciences)
offered at an Italian public university and confirmed a negative impact of online teaching,
mainly on students with a tendency to procrastinate. The negative effect was reflected
in the students’ final examination grades. The findings also showed that the effects were
particularly detrimental for first-year students, while almost no effect on master’s degree
students was found. Kofoed et al. [13] reported lower final grades in the introductory
economics course at the United States Military Academy for students in online classes
compared to those in in-person classes, especially students with lower ability. Negative
effects of online teaching on student performance were also confirmed by Orlov et al. [14]
for students enrolled in economics courses at four R1 PhD granting institutions. At the same
time, they found that student characteristics, including gender, race, and first-year status,
were not significantly associated with the decline in performance during the pandemic
semester. Gonzalez et al. [15] compared assessments of students in three subject areas at
Universidad Autónoma de Madrid (Spain) before and after COVID-19 confinement. They
found that confinement changed the students’ learning strategies to a more continuous
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habit, improving their efficiency. Therefore, the significant positive effect of COVID-19
confinement on student performance was not surprising.

Extensive research on virtual mathematics teaching during the COVID-19 pandemic
was conducted among mathematics students at California State University, Fullerton [18].
The impact of virtual instruction on student course outcomes, including completion rates,
passing rates, and course grades, was studied. A comparison of student outcomes between
fall 2019 and fall 2020 indicated that the new modality of virtual classes had no impact on
aggregated grades for students completing their courses. The course outcome data for all
students enrolled in a mathematics course showed that the overall grade point average
and success rates for both semesters were essentially the same. Pócsová et al. [16] found
that distance learning did not affect higher-achieving students and reduced the number of
students who did not pass the Mathematics 1 course at the Technical University of Košice.
Student evaluations from 2020–2021 were compared to overall assessments from the last
six academic years using descriptive statistics. The evaluations in 2020–2021 turned out
to be significantly better than those in the previous years, which can be attributed to the
ample online support for distance education. Specifically, the online study materials for the
Mathematics 1 course had been active since 2008 and were completed just before the pan-
demic outbreak. With when request came to change the teaching method from face-to-face
to distance learning, the university was well prepared for immediate transfer to the online
space. Tomal et al. [17] empirically measured the impact of online teaching on students’
academic performance in 11 science, technology, engineering, and mathematics courses
using a Bayesian linear mixed-effects model fitted to longitudinal data. They observed an
increase in overall average marks in courses requiring lower-level cognitive skills (includ-
ing first-year mathematics courses) according to Bloom’s taxonomy of knowledge [27] and
a decrease in marks in courses requiring higher-level cognitive skills (those with hands-on
lab, coding, and programming components). Rosillo et al. [28] studied the impact of a
new teaching experience called “Escape Room” on academic performance in mathematics
of pharmacy and nursing students. The escape room activity has not shown significant
differences in the results compared with the two previous years.

In addition to the already described negative influence on mathematical background
knowledge from secondary school, recent pandemic literature also reports increased levels
of math anxiety among university students [29–31] and highlights a general positive atti-
tude toward learning, with information and communications technology (ICT) as a crucial
element influencing students’ coping with learning mathematics during the pandemic [32].

3. Research Objectives

The main objective of our research was to compare populations of university social
science students pre-pandemic and during the pandemic in terms of their achievement in
mathematics and the factors influencing this achievement.

In our previous study [19], conducted before the outbreak of COVID-19, we attempted
to identify the factors that influence the mathematics achievement of social science students.
For this purpose, we developed a conceptual model with seven interdependent factors
selected according to the literature review, which are listed in Table 1.

To determine which of the seven proposed factors are influential for predicting mathe-
matics achievement in the populations of students under consideration, seven hypotheses
were formulated. Table 2 shows that five of them were supported and two were rejected.
The results indicate that the constructs Behavioral Engagement (BE), Perceived Usefulness
of Technology in Learning Mathematics (PUTLM) (and consequently Confidence with
Technology (CT)) had no significant influence on the mathematical achievement of the
student population pre-pandemic. Consequently, the constructs Mathematics Confidence
(MC), Perceived Level of Math Anxiety (PLMA), Background Knowledge from Secondary
School (BKSS), and Self-Engagement in Mathematics Course at University (SEMCU) were
found to have a significant impact and therefore should be considered when planning
improvements to educational processes.
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Table 1. Constructs of conceptual model developed in [19]: pre-pandemic approach.

Model Construct No. of Items a Rating Scale References

Mathematics Confidence (MC) 4
5-point Likert-type scale:
1 (“I do not agree at all”) to
5 (“I agree completely”)

[33–36]

Behavioral Engagement (BE) 2
5-point Likert-type scale:
1 (“I do not agree at all”) to
5 (“I agree completely”)

[37]

Perceived Level of Math
Anxiety (PLMA)

Mathematics Test Anxiety (MTA) 9 5-point Likert-type scale:
1 (“no anxiety”) to
5 (“high anxiety”)

[36,38,39]Numerical Task Anxiety (NTA) 4

Math. Course Anxiety (MCA) 4

Background Knowledge from
Secondary School (BKSS)

Grade in math in final year 1
Achieved grade from
2 (sufficient) to
5 (excellent)

[35,40–46]Grade in math at matura b 1

Final grade in high school 1

Self-Engagement in Math.
Course at Univ. (SEMCU)

e-Activities 1 % of points earned (0–100%)
[46–48]

Additional points 1 Number of points earned (0–13)

Confidence with Technology (CT) 4
5-point Likert-type scale:
1 (“I do not agree at all”) to
5 (“I agree completely”)

[37]

Perceived Usefulness of Technology in Learning Mathematics (PUTLM) 4
5-point Likert-type scale:
1 (“I do not agree at all”) to
5 (“I agree completely”)

[37,49–51]

Mathematics Achievement (MA) 1 % of points achieved on
final exam

a Five measured items (BE1, BE2, MTA8, NTA1, and MCA1) were omitted from the original questionnaire due to
factor loadings below 0.5 (see [19] for details). b Matura is the final national school-leaving exam in Slovenia.

Table 2. Summary of hypotheses testing for structural model: pre-pandemic approach [19].

Hypothesis Path Expected Sign Hypothesis Supported?

H1a MC→ PLMA − Yes

H1b BE→ PLMA − No

H2 PLMA→MA − Yes

H3 BKSS→ SEMCU + Yes

H4 SEMCU→MA + Yes

H5 CT→ PUTLM + Yes

H6 PUTLM→MA + No

The idea of the current study was to apply our pre-pandemic conceptual model to
the population of university social science students during the pandemic and try to find
parallels or identify possible divergences between the two populations, if any. In order to
pursue the research objectives, the following research questions were formulated:

RQ1: is the conceptual model of factors influencing mathematics achievement (developed in [19])
applicable to the population of university social science students during the pandemic?

Answering this question was a basic and preliminary activity of our study. Indeed,
the occurrence of the pandemic forced us to face a new reality, requiring us to conduct a
comprehensive evaluation of the existing model in terms of its applicability to the new
pandemic circumstances. Such an evaluation includes verifying that the understanding
of the model constructs remains unchanged in both populations of students. Only if we
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determine that the model is applicable to the population of students during the pandemic
can we proceed with further research questions, such as:

RQ2: which factors of mathematics achievement considered in our pre-pandemic research [19] are
important for the population of students during the pandemic, and how strong is their influence?
Are there parallels/divergences between the two populations?

In the context of this question, we wanted to examine the extent to which the factors
that were found to influence the mathematics achievement of the pre-pandemic popu-
lation of students also had an impact during the pandemic. We wanted to find out if
there were differences in terms of the significance and magnitude of factors between the
two populations of students.

4. Materials and Methods
4.1. Measurement Instrument and Data Collection

Our study was aimed at investigating the population of full-time students (bachelor’s
degree) at the Faculty of Organizational Sciences, University of Maribor. To collect data, we
used the three-part online questionnaire presented in [19].

The first part collected the students’ sociodemographic data (gender, age, year of
study, and course of study) and mathematical background knowledge from secondary
school (BKSS). The second part focused on the perceived level of math anxiety (PLMA), and
the third part was designed to measure students’ attitudes toward mathematics (MC and
BE), information technology (CT), and attitudes toward involving technology in learning
mathematics (PUTLM).

Data were collected systematically for nine consecutive academic years (from 2013–2014
to 2020–2021). The questionnaire was made available at the beginning of the mathemat-
ics course through Moodle (Modular Object-Oriented Dynamic Learning Environment).
Participation in the survey was completely voluntary, and the students did not receive
any benefits. At the end of a given academic year, the survey data were supplemented
with data on students’ self-engagement (SEMCU) and their final achievement of the course.
After combining the two data sources, the data were anonymized.

The pre-pandemic population comprised students in the first six academic years
(from 2013–2014 to 2018–2019) who took courses through traditional face-to-face sessions.
However, due to the COVID-19 pandemic outbreak in the summer of 2020, all class activities
for the last two years (2019–2020 and 2020–2021) were moved to distance learning. These
students represent the pandemic population. To capture their perceptions of the new reality,
students in the pandemic population were asked to rate a series of COVID-19-related
stressors in terms of depressive symptoms, anxiety, stress, and loneliness [52]. In order to
determine any change in the students’ mental health, they were specifically asked whether
they felt more or less stressed by particular factors since the COVID-19 crisis began.

4.2. Statistical Methods

The present study is a continuation of our research [19], in which a conceptual SEM
(structural equation modelling) model was developed to investigate the main factors in-
fluencing mathematics achievement of selected student populations. SEM is an advanced
statistical method widely used in behavioral sciences to test causal and correlational relation-
ships between observed and invisible (latent) variables simultaneously (see e.g., [20,53,54]).

As defined in Section 3, the main objective of the current research was to compare
two populations of students, pre-pandemic and during the pandemic, in terms of their
achievement in mathematics and the factors influencing this achievement. Therefore, in
order to make a comprehensive comparison, the same methodological framework should
be used. The data were again analyzed using the two-stage SEM approach. The first stage
aimed to evaluate the measurement model (in order to answer RQ1), and while the second
stage aimed to analyze the structural relationships among the model constructs (i.e., latent
variables) (in order to answer RQ2).
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4.2.1. Measurement Model Evaluation

The basis for the analyses was the conceptual model developed in [19] and described
in Table 1. In order to answer RQ1, we needed to perform the comprehensive applicability
of the research model for the purpose of the current study. This was a relatively complex
task that involved the following consecutive steps:

• Step 1: model overall fit evaluation,
• Step 2: confirmatory factor analysis,
• Step 3: multi-group confirmatory factor analysis.

The implementation of a particular step is described in the following subsections. At
each step, certain conditions must be met. Otherwise, the research cannot continue, which
means that the predefined research goal cannot be achieved.

Step 1: Model Overall Fit Evaluation

The overall fit of the measurement and structural models was assessed with a set of
widely used fit indices and compared to the proposed thresholds, as follows:

• comparative fit index (CFI), CFI > 0.9 [55];
• root mean square error of approximation (RMSEA), RMSEA < 0.08 [56];
• standardized root mean square residual (SRMR), SRMR < 0.08 [57];
• ratio of Chi-square to degrees of freedom (χ2/df), χ2/df < 3 [58].

The evaluation of the overall fit of the model was performed in three ways: first, the
entire sample was considered, and then each subsample (pre-pandemic and pandemic)
was analyzed separately. In all cases, the fit indices should be satisfied. However, Cheung
and Rensvold [59] emphasized that some fit indices may be affected by the complexity
of the model. Therefore, we can be somewhat more lenient in evaluating the model fit of
relatively complex models. The process of overall fit evaluation of the model is illustrated
in Figure 1.
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Step 2: Confirmatory Factor Analysis

Within this step, the measurement model should be validated on the entire sample
of data for convergent and discriminant validity. For this purpose, confirmatory fac-
tor analysis (CFA) can be used by checking the following indices and their threshold
requirements [55,60]:

• convergent validity:

# standardized factor loadings (SFL), SFL > 0.5 for all questionnaire items;

• discriminant validity:

# composite reliability (CR), CR > 0.7
# average variance extracted (AVE), AVE > 0.5 for all latent variables (i.e., model

constructs).

The process of performing CFA is illustrated in Figure 2.
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Step 3: Multi-Group Confirmatory Factor Analysis

While CFA examines whether the hypothesized measurement model fits the entire data
sample well, within this step, we need to precisely compare the measurement model across
both subsamples (pre-pandemic, pandemic). For this purpose, a multi-group confirmatory
factor analysis (MG-CFA) (see e.g., [20,21]) can be used. The aim of MG-CFA is to examine
whether respondents in different groups understand the conceptual model equally and
ascribe similar importance to questionnaire items [61,62].

MG-CFA requires a sequential comparison of nested models that differ in terms
of the item parameters constrained equally between groups to identify (non)invariant
parameters [63].
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In order to assess the psychometric equivalence of a construct between the groups [64],
we performed the measurement invariance (MInv) test [65]. MInv is accepted if the
difference in model parameters between groups is so small that it is attributable to chance.
If the model is statistically invariant between groups, then it can be argued that any
differences in factor scores are attributable to characteristics of the groups rather than
to any deficiencies of the statistical model or inventory [66], while non-invariance in
the measurement indicates that a construct has different structures and/or meanings for
respondents in different groups.

MInv is typically tested in the following order: configural, weak, and strong invariance,
sometimes followed by strict invariance [21].

Since χ2 tends to be oversensitive to small, unimportant deviations from a perfect
model in large samples [59,67], the results for each invariance test can be explained by the
change in several alternative fit indices (AFI). Therefore, changes in CFI (∆CFI), SRMR
(∆SRMR), and RMSEA (∆RMSEA) should be examined. In [67], the author suggested that
a criterion of −0.01 for the ∆CFI should be paired with ∆RMSEA of 0.015 and ∆SRMR of
0.03 (for metric invariance) or 0.015 (for scalar or residual invariance).

The process of MG-CFA is illustrated in Figure 3.
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4.2.2. Structural Model Analysis

In order to answer RQ2, the structural relationships among the model constructs
(i.e., latent variables) were analyzed. In applications involving more than one sample
(as is the case in the present study), it is of key importance to determine whether or
not the components of the measurement model and/or structural model are equivalent
(i.e., invariant) between particular groups of interest. For this purpose, we used multi-group
structural equation modeling (MG-SEM) [20,21]. The evaluation of the structural model
was performed by analyzing the relationships between the latent variables of the model,
reporting the path coefficients (unstandardized b, and standardized β) and corresponding
z-values. The path coefficients in both groups were examined in terms of whether they
differed or not.

5. Results

All analyses were performed using the R-package lavaan [68] and semTools [69]. The
results are presented in the following subsections.

5.1. Sample Characteristics

A total of 477 students participated in the study, 321 (67.30%) from the pre-pandemic
period and 156 (32.70%) from the pandemic period; 44.2% were men and 55.8% were
women. The average age of the participants was 20.1 years (with a standard deviation of
1.61 years), with a range of 18 to 32 years.

5.2. Descriptive Statistics

Table 3 presents descriptive statistics for all model constructs (i.e., latent variables).
Results are reported for both groups of respondents, pre-pandemic and during the pan-
demic. For better transparency, the mean values of questionnaire items that were measured
on a 5-point Likert-type scale (items within the constructs MC, BE, MTA, NTA, MCA, CT,
and PUTLM) are presented graphically in Figure 4.

5.3. Measurement Model Evaluation
5.3.1. Step 1: Model Overall Fit Evaluation

To evaluate the overall fit of the measurement model we followed the process illus-
trated in Figure 1. First, the whole sample of respondents was considered. The calculated
χ2 value was 1392.42 at 570 degrees of freedom, and the χ2/df ratio was 2.44 < 3. Both CFI
and SRMR indicate good model fit (CFI = 0.911 > 0.9; SRMR = 0.065 < 0.08). RMSEA is
0.060, and the upper bound of its 90% confidence interval (0.055, 0.065) is less than 0.08,
suggesting an appropriate model fit [56].

The same calculations were performed for both subsamples of respondents (pre-
pandemic and pandemic). It was found that only CFI for the pandemic group is slightly
below the desired threshold of 0.9 (probably due to smaller subsample size), while other
fit indices fulfill the criteria (χ2/df = 1.57 < 3; SRMR = 0.079 < 0.08; upper bound of 90%
confidence interval of RMSEA = 0.062 < 0.08). Since the recommendations for interpreting
fit indices suggest using a set of indices instead of just one value, we conclude that the
measurement model fits the overall sample as well as both subsamples. The results of the
overall fit evaluation are presented in Table 4. It can be seen that all conditions to proceed
with Step 2 are fulfilled.
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Table 3. Descriptive statistics of questionnaire items.

Model Construct Questionnaire Item
Pre-Pandemic Pandemic

M SD M SD

Mathematics Confidence (MC)

I have a mathematical mind. (MC1) 3.92 0.808 3.81 0.878
I can get good results in mathematics. (MC2) 3.71 0.908 3.58 0.983
I know I can handle difficulties in mathematics. (MC3) 3.94 0.821 3.78 0.904
I am confident with mathematics. (MC4) 3.17 1.079 3.10 1.094

Behavioral Engagement (BE) If I make mistakes, I work until I have corrected them. (BE3) 3.50 0.926 3.74 0.976
If I cannot do a problem, I keep trying different ideas. (BE4) 3.47 0.939 3.77 0.956

Mathematics Test Anxiety (MTA)

Studying for a math test. (MTA1) 3.13 1.264 3.42 1.186
Taking the math section of the college entrance exam. (MTA2) 2.70 1.114 2.87 1.131
Taking an exam (quiz) in a math course. (MTA3) 2.88 1.138 3.12 1.158
Taking an exam (final) in a math course. (MTA4) 3.36 1.146 3.57 1.192
Thinking about an upcoming math test one week before. (MTA5) 2.84 1.239 2.89 1.293
Thinking about an upcoming math test one day before. (MTA6) 3.36 1.238 3.55 1.236
Thinking about an upcoming math test one hour before. (MTA7) 3.63 1.281 3.83 1.314
Receiving your final math grade in the mail. (MTA9) 2.88 1.219 3.21 1.223
Being given a “pop” quiz in a math class. (MTA10) 3.79 1.292 3.93 1.271

Numerical Task Anxiety (NTA)

Being given a set of numerical problems involving addition to solve on paper. (NTA2) 1.56 0.907 1.46 0.740
Being given a set of s subtraction problems to solve. (NTA3) 1.56 0.882 1.46 0.740
Being given a set of multiplication problems to solve. (NTA4) 1.60 0.879 1.49 0.749
Being given a set of division problems to solve. (NTA5) 1.73 0.968 1.63 0.805

Mathematics Course Anxiety (MCA)

Watching a teacher work on an algebraic equation on the blackboard. (MCA2) 1.86 1.037 1.80 1.037
Signing up for a math course. (MCA3) 2.55 1.209 2.72 1.313
Listening to another student explain a mathematical formula. (MCA4) 2.07 1.095 2.05 1.088
Walking into a math class. (MCA5) 1.82 1.100 1.99 1.180

Confidence with Technology (CT)

I am good at using computers. (CT1) 3.92 0.967 4.02 0.898
I am good at using things like VCRs, DVDs, MP3s, and mobile phones. (CT2) 4.28 0.800 4.26 0.786
I can fix a lot of computer problems. (CT3) 3.51 1.143 3.58 0.984
I can master any computer program needed for school. (CT4) 3.57 1.004 3.85 0.928

Perceived Usefulness of Technology in Learning Mathematics (PUTLM)

I like using computers for mathematics. (PUTLM1) 3.47 1.151 3.71 1.029
Using computers in mathematics is worth the extra effort. (PUTLM2) 3.25 1.120 3.42 1.119
Mathematics is more interesting when using computers. (PUTLM3) 3.15 1.225 3.37 1.108
Computers help me learn mathematics better. (PUTLM4) 3.22 1.222 3.40 1.190

Background Knowledge from Secondary School (BKSS)
Grade in mathematics in the final year 3.11 0.882 3.28 0.935
Grade in mathematics at matura 3.20 0.934 3.25 0.988
Final grade in high school 3.36 0.749 3.66 0.741

Self-Engagement in Math. Course at Univ. (SEMCU) e-Activities 73.57 11.988 78.57 9.363
Additional points 4.28 4.184 7.55 4.010

Mathematics Achievement (MA) % of points achieved on final exam 65.93 22.801 68.62 24.385
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Figure 4. Mean values of questionnaire items measured on 5-point Likert-type scale.

Table 4. Results of overall fit of measurement model.

χ2 df χ2/df CFI SRMR RMSEA RMSEA 90% CI

Entire Sample 1392.42 570 2.44 0.911 0.064 0.058 0.054, 0.061

Subsamples
Pre-pandemic 1173.11 570 2.06 0.911 0.065 0.060 0.055, 0.065

Pandemic 893.88 570 1.57 0.886 0.079 0.062 0.053, 0.068
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5.3.2. Step 2: Confirmatory Factor Analysis

The analysis followed the process illustrated in Figure 2. As can be seen in Table A1 in
Appendix A, the standardized factor loadings (SFLs) for all items exceed the threshold of
0.5, therefore the measurement model achieved overall convergent validity.

Table 5 shows the values of composite reliability (CR), average variance extracted
(AVE), square root of AVE (on the diagonal), and correlations between model constructs.
It can be seen that the AVE value for MCA is slightly below the threshold (0.498 < 0.5),
while the value for all other constructs exceeds the threshold of 0.5. Since CR of MCA is
above 0.6 (0.798), construct validity is still adequate [60], meaning that all included items
are significantly related to the corresponding construct. When we compare the square root
of AVE for each construct with the correlations between the other constructs, we can see
that the square roots are larger than the correlation coefficients, thus also demonstrating
the discriminant validity of the entire measurement model.

Table 5. Composite reliability (CR), average variance extracted (AVE), square root of AVE (on the
diagonal), and correlations among latent variables.

Model Construct CR AVE MC BE MTA NTA MCA BKSS SEMCU CT PUTLM

MC 0.851 0.602 0.776 a

BE 0.799 0.667 0.550 0.817 a

MTA 0.912 0.538 −0.649 −0.402 0.733 a

NTA 0.949 0.822 −0.227 −0.153 0.205 0.907 a

MCA 0.798 0.498 −0.523 −0.375 0.629 0.497 0.706 a

BKSS 0.787 0.568 0.417 0.324 −0.328 −0.028 −0.248 0.646 a

SEMCU 0.658 0.560 0.527 0.375 −0.384 −0.320 −0.384 0.317 0.748 a

CT 0.864 0.622 0.247 0.197 −0.155 −0.187 −0.144 0.113 0.232 0.789 a

PUTLM 0.917 0.735 0.213 0.205 −0.073 −0.088 −0.071 0.020 0.193 0.455 0.857 a

a Square root of AVE.

All the results obtained within this step prove that we can proceed with Step 3.

5.3.3. Step 3: Multi-Group Confirmatory Factor Analysis

The analysis followed the process illustrated in Figure 3. The results of testing MInv
between groups are shown in Table 6. MInv tests were used in hierarchical order of the
nested models, with configural invariance assessed first, followed by weak, strong, and
strict invariance.

Table 6. Testing measurement invariance between groups.

Model
(Model Comparison)

χ2

(∆χ2) df CFI
(∆CFI)

SRMR
(∆SRMR)

RMSEA
(∆RMSEA)

RMSEA
90% CI

p (Chi-
Square Test)

M2 Configural invariance 1996.256 1116 0.910 0.063 0.059 0.055, 0.063 /

M3 Weak invariance (M2) 2020.728 (27.878) 1143 (27) 0.909 (−0.001) 0.064 (0.001) 0.058 (−0.001) 0.054, 0.062 0.4173

M4 Strong invariance (M3) 2080.724 (60.883) 1170 (27) 0.906 (−0.003) 0.066 (0.002) 0.059 (0.001) 0.055, 0.063 0.0002

M4a Partial strong invariance (M3) 2065.358 (44.545) 1169 (26) 0.908 (−0.001) 0.065 (0.001) 0.058 (0.000) 0.054, 0.062 0.0132

M4b Partial strong invariance (M3) 2052.452 (30.985) 1168 (25) 0.909 (0.000) 0.064 (0.000) 0.058 (0.000) 0.054, 0.062 0.1895

M5 Strict invariance (M4b) 2104.861 (56.786) 1204 (36) 0.905 (−0.004) 0.065 (0.001) 0.058 (0.000) 0.054, 0.062 0.0151

Note: In model M4a an intercept of Additional points is set as free between groups; in model M4b intercepts of
Additional points and Final grade in high school are set as free between groups.
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It can be seen from Table 6 that the first iteration (M2) indicates good model fit
(CFI = 0.910 > 0.9; SRMR = 0.063 < 0.08; RMSEA = 0.059 < 0.08), suggesting that the structure
of the constructs is the same between the two groups, thus supporting configural invariance.

In the next iteration, we performed a test for weak invariance, and the factor loadings
were constrained to be equal between the groups. Comparing models M3 and M2, we can
see that the p-value of the Chi-square test is not significant at the 5% level (p = 0.4173 > 0.05),
indicating that weak invariance is supported. In addition, the differences in alternative
fit indices (∆AFI) between the configural and weak models are small (∆CFI = −0.0031;
∆REMSA = −0.001; ∆SRMR = 0.001), supporting weak invariance.

In testing strong invariance, in addition to factor loadings, the intercepts were also
constrained to be equal between the groups. Comparing M4 and M3, we can see that the
p-value of the Chi-square test is significant at the 5% level (p = 0.0132 < 0.05), indicating
that strong invariance is not supported. Therefore, intercepts are not completely invariant
between the two considered groups.

In the next two sequential steps (models M4a and M4b), intercepts of measured items
additional points and final grade in high school were freely estimated between the groups,
and partial strong variance (M4b) was established since the p-value of the Chi-square test
between M4b and M3 is not significant at the 5% level (p = 0.1895 > 0.05).

The first variable (additional points), for which intercepts were set to be freely esti-
mated between groups, belongs to the construct self-engagement in mathematics course
at university (SEMCU), while the second one (final grade in high school) belongs to the
construct background knowledge from secondary school (BKSS). As can be seen in Table 3,
the pre-pandemic students gained on average 4.28 additional points, while the pandemic
students gained on average 7.55 additional points. Furthermore, a graphical representation
with boxplot and histogram in Figure 5 shows that the fraction of students who did not
gain any additional points was much greater pre-pandemic than during the pandemic
(29.9% vs. 5.1%). Moreover, 14.2% of the pandemic population gained the maximum num-
ber of additional points (13), while 7.2% of the pre-pandemic population did so. Based on
the results in Table 3 and Figure 6, we can also conclude that pre-pandemic students, on
average, did slightly better according to the final grade in high school. The average final
grade for pre-pandemic students was 3.35, while for pandemic students it was 3.66.
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To test strict invariance, residual (or error) variance was set as fixed in both groups.
There was a significant change (Chi-square p = 0.0151 < 0.05) between the partial strong
model (M4b) and the strict model (M5), indicating a lack of fit when also constraining
error variance to be invariant in the two groups. According to [64], strict measurement
invariance is not obligatory, and we could proceed to evaluating the structural model
(analysis of RQ2).

5.4. Structural Model Analysis
5.4.1. Structural Model Evaluation

Since we confirmed RQ1, we proceeded with evaluating the structural model fit. We
adopted two variants of the structural model, SM1 and SM2, and performed MInv tests.
In SM1, the structural coefficients (paths) between the groups are freely estimated, as are
the loadings and intercepts (except for the intercepts of additional points and e-activities),
while in SM2, the structural coefficients were constrained to be equal between the groups.

The results of the tests are given in Table 7. It can be seen that the fit of both models,
SM1 and SM2, was good. The fit of SM2 was as follows: χ2 = 2481.29; df = 1289; CFI = 0.894;
and RMSEA = 0.061 (90% CI: 0.057, 0.064). The χ2 test of the two nested models and
small or negligible differences in the fit indices show that models SM1 and SM2 are not
significantly different at a 5% significance level (p = 0.000). This implies that SM2, the
simpler model with equal paths between groups, is preferred. Moreover, it implies that
both groups of respondents (pre-pandemic and pandemic) perceived the impact of the
factors within the conceptual model from [19] in the same way. Thus, from this point of
view, the two populations of students are fully comparable, which provides part of the
answer to RQ2.
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Table 7. Testing measurement invariance of structural coefficients.

Structural Model (SM) χ2 df p CFI SRMR RMSEA RMSEA

(Model Comparison) (∆χ2) (∆df) (∆CFI) (∆SRMR) (∆RMSEA) 90% CI

SM1 Partial strong invariance 2472.28 1282 / 0.894 0.090 0.061 0.057, 0.065

SM2 Structural coefficients 2365.56 1289
0.2976

0.894 0.094 0.061
0.057, 0.064

(SM1) −106.72 7 0 0.004 0

5.4.2. Hypotheses Testing

The next step is to evaluate the structural paths and test the hypotheses from Table 2.
The results are given in Table 8. The unstandardized coefficient (b) and the standardized
coefficient (β), which reflect the relationships among the model constructs (i.e., latent
variables) in terms of magnitude and statistical significance, are listed for both groups
(pre-pandemic and pandemic). Corresponding z-values and p-values are also provided.

Table 8. Summary of research hypotheses testing.

Hypothesis/Path Group b β z p Hypothesis Supported?

H1a: MC→ PLMA Pre-pandemic
−1.088

−0.678 ***
−6.909 0.000 Yes

Expected sign: − Pandemic −0.698 ***

H1b: BE→ PLMA Pre-pandemic −0.107 *

Expected sign: − Pandemic
−0.120

−0.116 *
−1.812 0.070 No

H2: PLMA→MA Pre-pandemic
−6.379

−0.221 ***
−4.134 0.000 Yes

Expected sign: − Pandemic −0.199 ***

H3: BKSS→ SEMCU Pre-pandemic
2.936

0.331 ***
3.789 0.000 Yes

Expected sign: + Pandemic 0.375 ***

H4: SEMC→MA Pre-pandemic
2.766

0.875 ***
9.700 0.000 Yes

Expected sign: + Pandemic 0.758 ***

H5: CT→ PUTLM Pre-pandemic
0.512

0.460 ***
8.939 0.000 Yes

Expected sign: + Pandemic 0.452 ***

H6: PUTLM→MA Pre-pandemic −0.011 *

Expected sign: + Pandemic
−0.253

−0.009 *
−0.320 0.749 No

Note: Structural coefficient invariance was confirmed, which means unstandardized coefficients and z-values are
the same between groups, while there may be small changes in standardized coefficients. *** p < 0.001, * p < 0.05.

As can be seen in Table 8, five out of seven hypotheses were confirmed, and two (H1b
and H6) were rejected at the 5% significance level.

5.4.3. Final Model

To find the most parsimonious final model, the nested models approach was applied,
in which insignificant paths were iteratively eliminated from the model.

In the first step, the non-significant path PUTLM→MA (H6) was eliminated. The new
model was compared to SM2, and a non-significant Chi-squared difference (∆χ2 = 0.892;
∆df = 1; p = 0.3448) justified the elimination. Consequently, the path CT→ PUTLM (H5)
was also eliminated, implying that the constructs CT and PUTLM could be decoupled from
the rest of the model.

In the next step, the non-significant path BE→ PLMA (H1b) was eliminated. A non-
significant Chi-squared difference (∆χ2 = 2.708; ∆df = 1; p = 0.0998) again justified the
elimination and indicated acceptance of the simpler model.
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Finally, four significant paths (H1a, H2, H3, and H4) remained in the final structural
model. The fit of the final model was good, with index values as follows: χ2 = 1584.16,
df = 678, CFI = 0.874, and RMSEA = 0.078 (90% CI: 0.073, 0.083).

The structural paths of the final model were than evaluated, and the results are
presented in Figure 7.
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The results confirmed that all of four hypotheses (H1a, H2, H3, and H4) could be
supported at the 0.1% significance level (H1a: βpp = −0.736, βp = −0.773, z = −7.332,
p = 0.000; H2: βpp =−0.225, βp =−0.199, z =−4.165, p = 0.000; H3: βpp = 0.331, βp = 0.374,
z = 3.793, p = 0.000; H4: βpp = 0.873, βp = 0.759, z = 9.645, p = 0.000). The coefficient of
determination for MA regarding the pre-pandemic population of students is R2

pp = 0.854,
while the corresponding value for the pandemic population is R2

p = 0.661.

6. Discussion and Conclusions

Due to the global crisis caused by the COVID-19 pandemic in 2020, universities all over
the world underwent a complete transition to online education. Faculty members with little
to no experience in online teaching quickly found themselves teaching all of their courses
entirely online [18]. This transition was especially challenging in university mathematics
education, where face-to-face lectures combined with tutorials are well established and
commonly used forms of instruction (Bergsten (2007), Rach and Heinze (2017) as cited
in [32]). Even before the pandemic, it was known that running courses entirely online was
more likely to cause difficulties for students in mathematics than in other disciplines [70].

Several studies tried to explain the impact of the rapid transition to online mathematics
teaching during the pandemic on students’ academic development [12–17,24,26,28]. In
April 2021, Soesanto et al. [9] encouraged researchers to bridge the still large research gap
regarding the causality of implementing online mathematics learning in times of crisis in
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order to contribute to developing pedagogical strategies to improve university students’
mathematics performance and attitudes.

In order to provide complementary evidence of the impact of online mathematics
teaching at the tertiary level of education, the present research compares populations
of university students in social sciences in Slovenia between pre-pandemic and during
the pandemic in terms of their mathematics achievement and the factors influencing
their achievement. The results of two-stage structural equation modeling confirm that the
conceptual model developed in our previous study [19] was also applicable to the pandemic
population of students (RQ1). The same factors relevant to mathematics achievement in
the pre-pandemic population (mathematics confidence, perceived level of math anxiety,
background knowledge from secondary school, and self-engagement in mathematics
courses at university) proved to be relevant also for the pandemic population (RQ2).
Moreover, both populations perceived the impact of the factors within the conceptual
model in the same way, and the magnitude of the effects of given factors is comparable.
The structural paths of the final model are listed below:

H1a: Mathematics confidence negatively affects the perceived level of math anxiety.

H2: Perceived level of math anxiety negatively affects the achievement in mathematics.

H3: Background knowledge from secondary school positively affects the self-engagement and moti-
vation to fulfil obligations during mathematics course at university.

H4: Self-engagement in mathematics course at university positively affects the achievement
in mathematics.

The nested models approach confirmed that all four hypotheses (H1a, H2, H3, and H4)
could be supported at the 0.1% significance level (see Section 5.4.3). Advanced statistical
analysis showed that causal and correlational relationships between mathematical achieve-
ment factors remained unchanged. From this point of view, no statistically significant
differences between the populations were confirmed. For both populations (pre-pandemic
and pandemic), mathematics confidence, perceived level of math anxiety, background
knowledge from secondary school, and self-engagement in mathematics courses at univer-
sity were confirmed as influential. Similar values of standardized path coefficient β prove
that the magnitude of the effects of a particular factor are also comparable. Our results
therefore proved that no increased negative impact on achievement in mathematics was
found for any of the factors. These results support previous studies reporting only minor
or no negative effects of distance learning on mathematics achievement [16–18].

In addition, the results showed a fairly high value of the coefficient of determination for
mathematics achievement for both groups of students (0.854 and 0.661), suggesting that the
variables “Perceived Level of Math Anxiety” and “Self-Engagement in Mathematics Course
at University” together explain a substantial proportion of the total variance. However,
given that the proportion of unexplained influences for the “pandemic” students is 33.9%,
this likely indicates that their learning outcomes are also influenced by other factors that
were not considered in the present model. We intend to focus on identifying these factors
in our future research.

Given the general belief in society and commonly expressed assumptions about the
negative effects of COVID-19-related measures on learning outcomes, we were quite
surprised to find no significant differences in mathematics achievement between the
two groups. The following is a reflection on the possible reasons for such an outcome.
We believe that the results reflect students’ and teachers’ extraordinary efforts to success-
fully implement online mathematics teaching. For the pandemic population, all courses
were redesigned for distance education using the Moodle e-learning environment and the
MS Teams video conferencing system. We see the most important reasons for successful
outcomes of the online learning process in:
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• familiarity with the Moodle learning platform. Even before the pandemic, parts
of some courses at our faculty were conducted online via Moodle. Therefore, the
professors had at least basic knowledge of and some experience with preparing lessons,
quizzes, and other e-activities available in this environment;

• well-adjusted study materials. We strived to construct an authentic and engaging
online learning experience. A number of online study materials were made available,
including recorded classes and tutorials. In the regular annual student survey at
the end of the course, these recordings were highlighted as extremely helpful and
important in enriching the learning experience. This is consistent with the findings of
Busto et al. [71]. Similarly, in [18], recordings were reported as a useful resource for
re-watching portions of a lecture, especially in mathematics courses, where lessons are
often broken down by concepts using specific examples;

• a positive attitude of students. We agree with Takács et al. [11], who found that
students were capable of effectively adapting to the virtual teaching modality. They
recently explored the characteristics and changes in coping skills of university students
in three age groups. They found that students pre-pandemic and during the pandemic
did not differ with regard to coping skills, but confirmed changes over the past 20 years.
The younger students were found to be fast at processing information and less socially
efficient compared to older students. Students of generation Z (born between 1995
and 2012) generally see new situations as a positive challenge and deal with them
creatively. Vergara [72] also found that students had a positive attitude toward learning
mathematics and strong persistence despite the challenges they encountered;

• accessibility and responsiveness of professors. The lack of communication between
students (most of the first-year students did not know each other) led to an increased
volume of messages and questions addressed directly to the professors. Although it
was very time-consuming, we tried to respond in a timely manner. Timely feedback
on student work is highly encouraged so that they will maintain a positive outlook in
terms of their capabilities [73].

In summary, the results of our research show that with proper planning, mathematics
lectures and tutorials can be successfully conducted online. At the same time, we are
aware that it is impossible to ensure the same conditions for all students, especially in
providing adequate study space, sufficient technical accessories, and a reliable internet
connection [16,73]. In addition, COVID-19 despair and the social, psychological, and emo-
tional stress that comes with it can significantly determine poor student performance [31].
The impact of the pandemic on stress, mental health, and coping behavior for university
students has been well-documented from various perspectives [31,52,74–76]. In our case,
students’ responses to COVID-19-related stressors as described in [52] show that students
during the pandemic felt more socially isolated, felt as if they were missing something,
and were more worried about their future career, family, and friends compared to the
pre-pandemic time. In order to expand the mathematics achievement model with social,
psychological, and emotional stressors, other established psychological scales could be
used in future research to more accurately assess the impact of the pandemic on students’
mental health and its correlation with mathematics achievement.

There are also some limitations to our study that should be noted. First, all data
were collected from a single faculty of a Slovenian university. Consequently, the extent
to which the results presented here are applicable to other types of institutions is unclear.
Our sampling technique relied on voluntary participation, which increases selection bias.
In addition, student achievement in mathematics could be linked to a modified format of
assessment tools or cheating on online exams during the pandemic. However, it should
be emphasized that only a small portion of the assessment (around 20%) was undertaken
remotely. In this sense, we believe that these aspects are likely to have played a minor role
in our setting.
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Appendix A

Table A1. Parameter estimates, error terms, and z-values for measurement model.

Construct Questionnaire Item Unst. Factor Loading Error Term Z-Value Stand. Factor Loading

Mathematics Confidence (MC)

MC1 1.000 - a - a 0.563
MC2 1.607 0.146 11.013 0.806
MC3 1.374 0.130 10.603 0.757
MC4 2.002 0.173 11.558 0.866

Behavioral Engagement (BE) BE3 1.000 - a - a 0.728
BE4 1.237 0.113 10.941 0.896

Mathematics Test Anxiety (MTA)

MTA1 1.000 - a - a 0.735
MTA2 0.928 0.053 17.359 0.758
MTA3 1.018 0.047 21.758 0.811
MTA4 1.031 0.042 24.366 0.811
MTA5 0.943 0.070 13.516 0.687
MTA6 1.090 0.070 15.490 0.806
MTA7 1.084 0.068 15.906 0.767
MTA9 0.858 0.058 14.831 0.639
MTA10 0.815 0.068 11.986 0.580

Numerical Task Anxiety (NTA)

NTA2 1.000 - a - a 0.920
NTA3 0.991 0.037 26.950 0.931
NTA4 0.986 0.033 30.322 0.925
NTA5 1.000 0.050 19.970 0.857

Mathematics Course Anxiety (MCA)

MCA1 1.000 - a - a 0.660
MCA2 1.330 0.159 8.365 0.730
MCA3 1.156 0.089 13.048 0.724
MCA4 1.146 0.099 11.597 0.695

Perceived Level of Mathematics
Anxiety (PLMA)

MTA 1.000 - a - a 0.814
NTA 0.401 0.088 4.533 0.379
MCA 0.735 0.097 7.613 0.801

Background Knowledge from
Secondary School (BKSS)

Grade in mathematics in final year 1.000 - a - a 0.936
Grade in mathematics at matura 0.727 0.082 8.896 0.649

Final grade in high school 0.533 0.049 10.954 0.594

Self-Engagement in Mathematics
Course at University (SEMCU)

e-Activities 1.000 - a - a 0.783
Additional points 0.268 0.039 6.776 0.544

Confidence With Technology (CT)

CT1 1.000 - a -a 0.880
CT2 0.689 0.044 15.834 0.721
CT3 1.115 0.056 19.849 0.848
CT4 0.782 0.053 14.650 0.658

Perceived Usefulness of Technology
in Learning Mathematics (PUTLM)

PUTLM1 1.000 - a - a 0.880
PUTLM2 0.689 0.044 15.834 0.721
PUTLM3 1.115 0.056 19.849 0.848
PUTLM4 0.782 0.053 14.650 0.658

Note: - a Indicates parameter fixed at 1 in original solution. Fit indices: χ2 = 1392.42, df = 570, χ2/df = 2.44,
SRMR = 0.064, CFI = 0.906, RMSEA = 0.055, 90% CI for RMSEA: (0.052, 0.069).
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