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Abstract: This paper develops a new implicit solution procedure for multibody systems based on a
three-sub-step composite method, named TTBIF (trapezoidal–trapezoidal backward interpolation
formula). The TTBIF is second-order accurate, and the effective stiffness matrices of the first two
sub-steps are the same. In this work, the algorithmic parameters of the TTBIF are further optimized to
minimize its local truncation error. Theoretical analysis shows that for both undamped and damped
systems, this optimized TTBIF is unconditionally stable, controllably dissipative, third-order accurate,
and has no overshoots. Additionally, the effective stiffness matrices of all three sub-steps are the same,
leading to the effective stiffness matrix being factorized only once in a step for linear systems. Then, the
implementation procedure of the present optimized TTBIF for multibody systems is presented, in which
the position constraint equation is strictly satisfied. The advantages in accuracy, stability, and energy
conservation of the optimized TTBIF are validated by some benchmark multibody dynamic problems.

Keywords: three sub-step; optimization; third-order accuracy; energy-conservation; multibody system
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1. Introduction

For solving dynamic problems after spatial discretization, time integration methods are
a powerful numerical tool. The first one was originally developed for structural dynamic
systems and was then generalized to multibody systems. Structural dynamic systems
are governed by ordinary differential equations (ODEs), whereas multibody systems are
typically formulated as a set of differential-algebraic equations (DAEs) [1]. The introduction
of constraint equations results in the numerical treatment of DAEs being more challenging
than that of ODEs [2]. By differentiating position constraints with respect to time, the DAEs
can be transformed into ODEs; hence, time integration methods developed for structural
dynamic systems can be directly used to solve multibody systems. However, this procedure
is costly [2] and produces numerical drifts [3–5]. Therefore, in the simulation of multibody
systems, the direct discretization of DAEs has gained more attention.

Generally, conventional time integration methods [6,7] are divided into two categories,
explicit and implicit methods [8]. Explicit methods [8–10] are not suitable for solving
DAEs directly because they cannot satisfy constraint equations at the position level. In
contrast, implicit methods together with an iterative procedure (e.g., Newton–Raphson
method) are applicable. Therefore, the well-known trapezoidal rule (TR), also denominated
Newmark’s constant average acceleration method [8], the backward differentiation formula
(BDF) [11], the generalized-α method [12,13], and the Hilber–Hughes–Taylor-α method
(HHT-α) [14] have been employed in the solutions of DAEs. The non-dissipative TR can
keep the energy of systems, but it cannot filter out unwanted or spurious high-frequency
information [15]. The asymptotic annihilating (or L-stable) BDF is particularly useful for
stiff problems, whereas it cannot automatically start [11]. The controllably dissipative
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(or A-stable) generalized-α method and HHT-α method are more popular in multibody
systems [16–20]. However, they both use the time weighted residual representation of
motion equations, resulting in their acceleration being first-order accurate [21].

To our knowledge, there are many excellent implicit methods for structural dynamics,
such as the single-step parameters methods [21,22], energy momentum methods [23–25],
linear multistep methods [26–29], and composite methods [30–40]. Using them to simulate
multibody systems seems natural. Among these methods, the self-starting composite meth-
ods possessing advantages in accuracy, efficiency, dissipation, and stability have become
more attractive in recent decades. The composite methods divide a time step into several
sub-steps, in which different methods can be adopted. The L-stable Bathe method [30,31]
proposed in 2005 is a representative composite method. In the Bathe method, the TR is used
in the first sub-step to ensure low-frequency accuracy, and the second sub-step adopts the
BDF to provide numerical dissipation in the high-frequency range. Adopting the same idea,
some more accurate composite methods [32–35] with L-stability, such as the TR-TR-BDF
(TTBDF) [32], the Wen method [33], and the TR-TR-TR-BDF (TTTBDF) [34], were proposed.
For flexibly controlling the amount of dissipation, the controllably dissipative composite
methods [36–40] based on the TR and the backward interpolation formula (BIF) were
developed, such as the ρ∞-Bathe method [37], the Kim method [38], and the TR-TR-BIF
(TTBIF) [39]. Among them, the three-sub-step TTBIF [39] proposed by the present authors
has been proved to have excellent performance in linear and nonlinear structural dynamics,
and it is superior to the ρ∞-Bathe method and the Kim method in some aspects. Addition-
ally, the TTBIF has been employed in seismic response analysis by other researchers [41,42],
further showing its superiority.

In this context, the three-sub-step TTBIF [39] is further optimized and generalized
to multibody systems here. The algorithmic parameters which can minimize local trun-
cation errors are found in this work, and the numerical properties, including spectral
characteristics, overshoot characteristics, and convergent rates of the present optimized
TTBIF for both undamped and damped systems are deliberately investigated. Then, the
solution procedure for multibody systems of the present TTBIF is given, and its validation
is demonstrated by some benchmark multibody dynamic problems.

This paper is organized as follows. In Section 2, the governing equation of the multi-
body system, the updating formulations, and the optimized parameters of the TTBIF are given.
The solution procedure of the present TTBIF for multibody systems is provided in Section 3.
Then, the numerical properties of the present TTBIF are analyzed in Section 4. The numerical
experiments are presented in Section 5. Finally, the conclusions are drawn in Section 6.

2. Formulation

This paper develops an effective implicit solution procedure for multibody systems.
In this section, we first describe the governing equations of multibody systems, and then
provide the updating equations and optimized parameters of the present TTBIF.

2.1. Governing Equations

The governing equations of multibody systems, in the absence of nonlinear hysteretic
forces [43–45], can be described as{

M(q)
..
q + ΦT

q(q, t)λ = Q
(
q,

.
q, t
)

Φ(q, t) = 0
(1)

where M is the system’s mass matrix; q is the generalized coordinate vector, and the over
dot represents its derivative with respect to time t; Q is the generalized force vector; Φ is the
position constraint equation; Φq(q, t) = ∂ Φ(q, t)/∂q is the constraint’s Jacobian matrix; λ is
the Lagrange multiplier vector. Equation (1) can be directly solved by the implicit methods,
such as the TR, BDF, and generalized-α method. By differentiating the position constraints
Φ with respect to time twice, the constraint equation given in Equation (1) turns into
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(
Φq(q, t)

.
q + Φt(q, t)

)
t
= 0→

(
Φq(q, t)

.
q
)

q

.
q + Φq(q, t)

..
q + 2Φqt(q, t)

.
q + Φtt(q, t) = 0 (2)

Then, Equation (1) can be reformulated as M(q)
..
q + ΦT

q(q, t)λ = Q
(
q,

.
q, t
)

Φq(q, t)
..
q +

(
Φq(q, t)

.
q
)

q

.
q + 2Φqt(q, t)

.
q + Φtt(q, t) = 0 (3)

or [
M(q) ΦT

q(q, t)
Φq(q, t) 0

][ ..
q
λ

]
=

[
Q
(
q,

.
q, t
)

−
(

Φq(q, t)
.
q
)

q

.
q− 2Φqt(q, t)

.
q−Φtt(q, t)

]
(4)

where �,t = ∂�/∂t, �,q = ∂�/∂q, �,qt = ∂2�/∂q∂t, and �,tt =∂2�/∂t2. Most time integration
methods developed for structural dynamic systems can be used to solve Equation (4).
However, transforming DAEs (1) into ODEs (4) causes violations of the constraints in
position and velocity, resulting in unacceptable global results. For this reason, the TTBIF
given in Section 2.2 is directly used to deal with DAEs (1) in this paper.

2.2. Updating Equations of the TTBIF

The TTBIF consists of three sub-steps, [t, t + γ1∆t], [t + γ1∆t, t + γ2∆t], and [t + γ2∆t,
t + ∆t], in which γ1 and γ2, respectively, stand for the ratios of the first sub-step size and
second sub-step size to the entire step size ∆t. In the TTBIF, the first two sub-steps adopt
TR for preserving as much low-frequency content as possible. The updating equations of
the first-sub-step are

M
(

qt+γ1∆t

) ..
qt+γ1∆t + ΦT

q

(
qt+γ1∆t, t + γ1∆t

)
λt+γ1∆t = Q

(
qt+γ1∆t,

.
qt+γ1∆t, t + γ1∆t

)
Φ
(

qt+γ1∆t, t + γ1∆t
)
= 0

qt+γ1∆t = qt +
1
2 γ1∆t

( .
qt +

.
qt+γ1∆t

)
.
qt+γ1∆t =

.
qt +

1
2 γ1∆t

( ..
qt +

..
qt+γ1∆t

) (5)

from which the state vectors, qt+γ1∆t,
.
qt+γ1∆t,

..
qt+γ1∆t, and λt+γ1∆t, at the moment t + γ1∆t

can be solved, and they are known information in the solution of the second sub-step. The
displacement, velocity, acceleration, and Lagrange multiplier at the moment t + γ2∆t are
updated by

M
(

qt+γ2∆t

) ..
qt+γ2∆t + ΦT

q

(
qt+γ2∆t, t + γ2∆t

)
λt+γ2∆t = Q

(
qt+γ2∆t,

.
qt+γ2∆t, t + γ2∆t

)
Φ
(

qt+γ2∆t, t + γ2∆t
)
= 0

qt+γ2∆t = qt+γ1∆t +
1
2 (γ2 − γ1)∆t

( .
qt+γ1∆t +

.
qt+γ2∆t

)
.
qt+γ2∆t =

.
qt+γ1∆t +

1
2 (γ2 − γ1)∆t

( ..
qt+γ1∆t +

..
qt+γ2∆t

) (6)

The four-point BIF is employed in the last sub-step, and its updating equations have
the forms

M
(
qt+∆t

) ..
qt+∆t + ΦT

q
(
qt+∆t, t + ∆t

)
λt+∆t = Q

(
qt+∆t,

.
qt+∆t, t + ∆t

)
Φ
(
qt+∆t, t + ∆t

)
= 0

qt+∆t = qt + ∆t
(

θ0
.
qt + θ1

.
qt+γ1∆t + θ2

.
qt+γ2∆t + θ3

.
qt+∆t

)
.
qt+∆t =

.
qt + ∆t

(
θ0

..
qt + θ1

..
qt+γ1∆t + θ2

..
qt+γ2∆t + θ3

..
qt+∆t

) (7)

One can find from Equations (5)–(7) that the TTBIF has six algorithmic parameters,
θ0, θ1, θ2, θ3, γ1, and γ2; and the values of them are closely related to the numerical
properties of the TTBIF. These parameters were designed in the previous work [39] for
satisfying the basic requirements, including second-order accuracy, unconditional stability,
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and controllable dissipation, and they were written as the functions of ρ∞ (the spectral
radius at the frequency limit [8]), as follows:

θ0 =
4c2 + c1

√
2(ρ∞ + 1)c3

4c3
(8)

θ3 =
4γ1θ0 − 3γ1 + 1
ρ∞γ1 − 3γ1 + 2

(9)

θ2 =
2γ1(θ0 + θ3 − 1)− 2θ3 + 1

2γ1
(10)

θ1 =
4γ1(1− θ3 − θ0) + 2θ3 − 1

2γ1
(11)

where
c1 = −2 + 5γ1 − 3γ2

1 − ρ∞γ1 + ρ∞γ2
1 (12)

c2 =
(

2 + 2γ1 − 11γ2
1 + 3γ3

1

)
+ 2ρ∞

(
1− 3γ1 + 3γ2

1 + γ3
1

)
+ γ2

1ρ2
∞(1− γ1) (13)

c3 = 8
(

2− 4γ1 + γ2
1 + ρ∞γ2

1

)
(14)

0 < γ1 <
2−

√
2(1− ρ∞)

1 + ρ∞
or γ1 >

2 +
√

2(1− ρ∞)

1 + ρ∞
(15)

γ2 = 2γ1 (16)

Here are some remarks for the above algorithmic parameters. Equation (8) ensures
that the TTBIF is unconditionally stable for undamped systems. The TTBIF has the ability to
control the degree of numerical dissipation when Equation (9) holds. When Equations (10)
and (11) hold, the TTBIF is second-order accurate in displacement, velocity, and acceleration.
Additionally, the value of γ1 is required to be located in the range given in Equation (15) to
ensure that the value of c3 is positive (or avoids the value of θ0 is imaginary), and the value
of γ2 is assumed to be twice that of γ1, leading to the effective stiffness matrices of the first
two sub-steps being the same.

2.3. Further Optimization of the TTBIF

From Equations (8)–(16), one can find that the numerical properties of the TTBIF
closely depend on the value of γ1. In this section, the value of γ1 is optimized to minimize
the local truncation errors [8] which can be used to evaluate the numerical accuracy of a
time integration method. It can be seen in Equations (5)–(7) that the difference formulas of
displacement and velocity are the same in the TTBIF; therefore, Equations (5)–(7) can be
reformulated as

yt+γ1∆t = yt +
1
2 γ1∆t

( .
yt +

.
yt+γ1∆t

)
yt+γ2∆t = yt+γ1∆t +

1
2 (γ2 − γ1)∆t

( .
yt+γ1∆t +

.
yt+γ2∆t

)
yt+∆t = yt + ∆t

(
θ0

.
yt + θ1

.
yt+γ1∆t + θ2

.
yt+γ2∆t + θ3

.
yt+∆t

) (17)

where yT = [qT .
qT]. Generally, the numerical properties of time integration methods are

evaluated by the single degree-of-freedom equation
..
q + 2ξω

.
q + ω2q = 0 (ξ and ω stand for

the damping ratio and natural frequency, respectively) [8], which is common and sufficient
owing to the mode superposition principle. The second-order equation

..
q + 2ξω

.
q + ω2q = 0

can be equivalently rewritten as the following first-order equation [27]:

.
y = ηy, η =

(
−ξ ± i

√
1− ξ2

)
ω (18)
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Thus, the above equivalent model (18) is used in the optimization of algorithmic
parameters to simplify the analysis. Applying Equation (17) to Equation (18) yields the
following recursive equation:

yt+∆t = A(τ)yt, τ = η∆t (19)

where A represents the amplification factor, and has the form as

A(τ) =
τ3(γ2

1θ1 − γ2
1θ0 − γ2

1θ2
)
+ τ2(4γ1θ0 − 4γ1θ2 − γ2

1
)
+ τ

(
4γ1 − 4θ0 − 4θ1 − 4θ2

)
− 4

τ3γ2
1θ3 + τ2

(
−γ2

1 − 4γ1θ3
)
+ τ

(
4γ1 + 4θ3

)
− 4

(20)

The detailed derivations of recursion Equations (19) and (20) can be found in Appendix A.
For discussing the accuracy of the TTBIF, the local truncation error σ [8] is introduced here.
Its definition is

σ = A(τ)− Aexact(τ), Aexact(τ) = exp(τ) (21)

If σ = O(τn+1), the method is said to be nth-order accurate, which requires that up to
nth-derivatives of A at τ = 0 are all equal to 1; i.e.,

A(0) = A(1)(0) = · · · = A(n)(0) = 1 (22)

It can be found from Equation (20) together with Equations (10) and (11) that A(0) = 1,
A(1)(0) = 1, A(2)(0) = 1, and

A(3)(0) =
9γ1

2
+ 3θ3 − 9γ1θ3 + 6γ2

1θ0 + 6γ2
1θ3 − 6γ2

1 (23)

Thus, the TTBIF is at least second-order accurate, and when A(3)(0) = 1 holds, the
TTBIF can obtain third-order accuracy for linear systems. The changes of A(3)(0) with γ1
are plotted in Figure 1, where in one can find that:

(1) for the case of 0 < γ1 < [2 −
√

2(1 − ρ∞)]/(1 + ρ∞), the accuracy of the TTBIF cannot
be third-order, but the minimum local truncation error σ = O(τ3) can be determined
by ϕ(γ1, ρ∞) = ∂

(
A(3)(0) − 1)/∂γ1 = 0, refer to Figure 1a;

(2) for the case of γ1 > [2 +
√

2(1 − ρ∞)]/(1 + ρ∞), the TTBIF can be third-order accurate,
and the corresponding optimal γ1 can be determined by A(3)(0) = 1;

(3) additionally, we found that γ1−2θ3 = 0 holds when the optimal γ1 obtained by
ϕ(γ1, ρ∞) = 0 is adopted; then, the effective stiffness matrices of all three sub-steps
are the same. This is important for linear ODEs, leading to the effective stiffness
matrix being factorized only once in three sub-steps, as in single-step methods; refer
to Appendix B.

The expressions of the optimal γ1 are complicated, so its numerical values obtained
by the bisection method are listed in Tables 1 and 2, ensuring that (γ1−2θ3) is almost zero,
as γ1−2θ3 ≈ 10−16.
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Figure 1. Change of (A(1)(0) − 1) with γ1. (a) 0 < γ1 < (2 −
√

2(1 − ρ∞))/(1 + ρ∞),
(b) γ1 > (2 +

√
2(1 − ρ∞))/(1 + ρ∞) (ρ∞ ∈ [0, 0.6]), (c) γ1 > (2 +

√
2(1 − ρ∞))/(1 + ρ∞) (ρ∞ ∈ [0.7, 0.95]).

Table 1. Accuracy of the TTBIF for the case of 0 < γ1 < (2 −
√

2(1 − ρ∞))/(1 + ρ∞).

ρ∞ γ1 γ1 − 2θ3 n (Accuracy Order) ϕ(γ1, ρ∞) = 0 A(3)(0) = 1

0 0.360850612858797128269166267064 −3.3307 × 10−16 2 Yes No
0.1 0.357238916409318421781603138200 2.7756 × 10−16 2 Yes No
0.2 0.353891613236446119002830462643 3.8858 × 10−16 2 Yes No
0.3 0.350771031685691357865125234250 −5.5511 × 10−17 2 Yes No
0.4 0.347847215754394957955227697970 −1.1102 × 10−16 2 Yes No
0.5 0.345095922844178112406277539906 0 2 Yes No
0.6 0.342497237181383015615320747048 1.6653 × 10−16 2 Yes No
0.7 0.340034583544953015899346977758 1.6653 × 10−16 2 Yes No
0.8 0.337694009358335747749068721842 0 2 Yes No
0.9 0.335463651513773966300486501975 2.2204 × 10−16 2 Yes No
1 1/3 1.6653 × 10−16 2 Yes No
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Table 2. Accuracy of the TTBIF for the case of γ1 > (2 +
√

2(1 − ρ∞))/(1 + ρ∞).

ρ∞ γ1 γ1 − 2θ3 n (Accuracy Order) ϕ (γ1, ρ∞) = 0 A(3)(0) = 1

0 4.37120019471008016525828007444 1.7764 × 10−15 2 Yes No
0.1 3.86720615297079833146530716573 0 2 Yes No
0.2 3.44197544571550477178258216569 −1.7764 × 10−15 2 Yes No
0.3 3.07637810817689875070626896811 3.9968 × 10−15 2 Yes No
0.4 2.75641330487022065008264507216 2.6645 × 10−15 2 Yes No
0.5 2.47130235794770540209427935717 −7.1054 × 10−15 2 Yes No
0.6 2.21211453543800466240456025712 −8.8818 × 10−16 2 Yes No
0.7 1.64139639997267794413460251235 9.1071 3 No Yes

3.47338081413162491628554562340 2.1307 3 No Yes
1.97043992476900261510531844803 2.6645 × 10−15 2 Yes No

0.8 5.85462097569634387639325723285 4.7010 3 No Yes
1.73618888723806906658432806893 −1.7097 × 10−14 2 Yes No

0.9 12.6079265663953545839603975764 11.5479 3 No Yes
1.49018874467779463098199628280 3.7748 × 10−15 2 Yes No

0.95 25.9730301544759925036487402394 24.9458 3 No Yes
1.34386843962051960588155452569 3.0198 × 10−14 2 Yes No

3. Implementation

For avoiding the numerical drifts, the multibody systems governed by DAEs (1) are
directly solved by the TTBIF, and its procedure of one loop t→ t + γ1 ∆t→ t + γ2 ∆t→ t+
∆t is shown in Figure 2. In calculations, the increments x = [∆

..
qT ∆λT] T are calculated by

the Newton–Raphson technique, as follows:

Jx = G→

 ∂G1
∂

..
q

∂G1
∂λ

∂G2
∂

..
q

∂G2
∂λ


t

[
∆

..
q

∆λ

]
=

[
G1
G2

]
t

(24)

where t = t + γ1 ∆t, t + γ2 ∆t, or t + ∆t, and the vector G = [GT
1 GT

2 ] T has the forms G1 = M
(

qt

) ..
qt + ΦT

q

(
qt, t

)
λt −Q

(
qt,

.
qt, t

)
G2 = 1

α2 Φ
(

qt, t
) (25)

where α = γ1∆t/2 (or θ3∆t). Then, the Jacobian matrix J can be derived from Equation (25), as

∂G1
∂

..
q

=

(
M + α2

(
∂M
∂q

..
q +

∂ΦT
q

∂q λ− ∂Q
∂q

)
− α ∂Q

∂
.
q

)∣∣∣∣
t

∂G1
∂λ = ΦT

q

∣∣∣
t

∂G2
∂

..
q

= Φq

∣∣∣
t

∂G2
∂λ = 0

(26)

From Equations (24)–(26), one can find that the introduction of α can ensure that all
blocks of J are O(∆t0), avoiding the Jacobian matrix J becoming ill-conditioned from ∆t
being too small. Newton–Raphson iteration stops if G1|t < ε (the iteration threshold error)

is satisfied; then, we have
..
qt =

..
q(i)t .
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Figure 2. Computational flowchart of the TTBIF for multibody systems governed by Equation (1).

4. Numerical Properties

The spectral characteristic, overshoot characteristic, and convergence rate of the TTBIF
for undamped and damped systems are analyzed in this section. Hereinafter, the TTBIFs using
the optimal γ1 provided in Tables 1 and 2 are called TTBIFa and TTBIFbn, respectively, in which
n represents accuracy order. Consider the following single degree-of-freedom test equation [8]

..
q + 2ξω

.
q + ω2q = f (t) (27)

where ξ and ω stand for the damping ratio and natural frequency, respectively, and f (t) is
the external force. The above test equation (Equation (27)) is used to analyze the numerical
properties of the TTBIF below.

4.1. Spectral Characteristics

The numerical stability, dissipation capability, and low-frequency accuracy of a time in-
tegration method can be evaluated by spectral characteristics [8]. Applying Equations (5)–(7)
to the test equation (Equation (27)) can yield the following recursive equations: qt+∆t

∆t
.
qt+∆t

∆t2 ..
qt+∆t

 =

A11 A12 A13
A21 A22 A23
A31 A32 A33

 qt
∆t

.
qt

∆t2 ..
qt

 = A

 qt
∆t

.
qt

∆t2 ..
qt

 (28)

where A represents the amplification matrix, and its elements refer to Appendix C. Then,
the characteristic polynomial of A can be derived from Equation (28), as

λ3 − A1λ2 + A2λ− A3 = 0 (29)

where A1, A2, and A3 represent the trace, the sum of 2 × 2 principle minors, and the
determinant of A, respectively. For a convergent time integration method, three non-zero
characteristic roots of A satisfy |λ3| ≤ |λ1,2| ≤ 1, where λ1,2 are a pair of conjugate
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complex numbers, referred to as the principal roots, and λ3 is the spurious root. The
definition of spectral radius [8] is

ρ = max{|λ1|, |λ2|, |λ3|} (30)

The numerical damping ratio [8] and the period elongation ratio [8] can be derived
from Equation (29), which are employed to evaluate the amplitude and phase accuracy.
Their definitions are

numerical damping ratio : ξ = − ln(ρ)
2ω∆t

(31)

period elongation ratio : PE =
T − T

T
=

ω−ω

ω
(32)

where ω∆t = arctan(b/a), and a and b are real and imaginary parts of the principal roots
λ1,2, respectively.

Figure 3 shows the variations of TTBIFa’s spectral radius vs. Ω = ω∆t, and the results
of the TTBIFbn are plotted in Figure 4. It can be seen that:

(1) the TTBIFa and the TTBIFbn are unconditionally stable for undamped and
damped systems;

(2) ξ only affects ρ in the middle-frequency range;
(3) if ξ = 0, the range corresponding to ρ(Ω) → 1 of the TTBIFa is wider than that of

the TTBIFbn;
(4) the size of γ1 has little effect on ρ of the TTBIFbn—refer to Figure 4a–c;
(5) if 0 < ξ ≤ 1, the TTBIFa and the TTBIFbn nearly have the same ρ for 0 < Ω ≤ 1.

Figure 3. Spectral radius of the TTBIFa vs. Ω. (a) ρ∞ = 1, (b) ρ∞ = 0.8, (c) ρ∞ = 0.6, (d) ρ∞ = 0.4,
(e) ρ∞ = 0.2, (f) ρ∞ = 0.
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Figure 4. Spectral radius of the TTBIFbn vs. Ω. (a) ρ∞ = 0.9 (n = 2: black, solid; n = 3: red, dash),
(b) ρ∞ = 0.8 (n = 2: black, solid; n = 3: red, dash), (c) ρ∞ = 0.7 (n = 2:black, solid; n = 3, γ1 = 1.64: red,
dash; n = 3, γ1 = 3.47: blue, dash), (d) ρ∞ = 0.6, (e) ρ∞ = 0.4, (f) ρ∞ = 0.

In addition, the spectral radius curves shown in Figures 3 and 4 can help the users to
choose a reasonable time step size. To stably solve nonlinear systems, the dissipative TTBIF
(ρ∞ < 1) is recommended. For dynamic problems with strong nonlinearity, the smaller ρ∞ is
recommended, and the larger ρ∞ can be used for dynamic problems with weak nonlinearity.
Once the value of ρ∞ is selected, the time step size can be determined by ρ(ωcr∆t) = 0.95,
improving stability and keeping low-frequency accuracy. Herein, the ωcr represents the
maximum frequency that needs to be kept, which can be calculated by the mass matrix and
Jacobin matrix at the initial moment.

In the following, the accuracy of the TTBIF is compared to those of other time inte-
gration methods, including the generalized-α method [12], the SS2 method [26], and the
Bathe method [31]. The changes of ρ with δΩ = ω∆t/n are plotted in Figure 5, in which
δΩ = ω∆t/n can ensure that the accuracy comparison is conducted under the same cost
for all methods. It follows that for 0 ≤ ρ∞ < 1, the range corresponding to ρ(Ω)→ 1 of the
TTBIFa is the widest, whereas that of the TTBIFb is the narrowest.

To compare the spectral characteristics of different methods in the presence of damping
ratio, the numerical spectral radius and the exact spectral radius ρexact = exp(−ξΩ) [46] are
shown in Figure 6. It can be concluded that:

(1) if ξ 6= 0, the generalized-α method may be unstable, as ρ(Ω) > 1;
(2) if ρ∞ = 1, the physical damping has no effect on the ρ of the SS2 method, and if

0 ≤ ρ∞ < 1, the ρ of the SS2 method agrees well with the exact one in the range of
0 < Ω ≤ 0.3;

(3) the ρ of the Bathe method matches well with the exact one in the range of 0 < Ω ≤ 1;
(4) in the range of 0 < Ω ≤ 4, the ρ of the TTBIFa agrees well with the exact one, and the

ρ of the TTBIFb is consistent with the exact one in the range of 0 < Ω ≤1.
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Figure 5. Spectral radii of the generalized-α method (G-α), SS2 method, Bathe method, and
TTBIF vs. δΩ (ξ = 0).

Figure 6. Spectral radius of the generalized-α method, SS2 method, Bathe method, TTBIF vs. Ω

(ξ = 1). (a) Generalized-α method, (b) SS2 method, (c) Bathe method, (d) TTBIF.

It can be found that for both undamped and damped systems, the TTBIFa’s spectral
radius is more accurate than those of other methods. Then, the amplitude and phase
accuracy are further compared, as shown in Figures 7 and 8, in which one can see that:

(1) the TTBIFa exhibits desirable amplitude and phase accuracy for δΩ ∈ (0, 1];
(2) the TTBIFb2 has considerable amplitude and phase errors in the low-frequency range,

but the third-order accurate TTBIFb3 has the highest phase accuracy in the range of
δΩ ∈ (0, 0.1].

Hence, the use of TTBIFb2 is not recommended owing to its larger numerical errors,
and the TTBIFb3 can be applied to damped systems considering that it can quickly damp
out the unwanted information and it has higher phase accuracy. Similar phenomena can
be observed for other TTBIFb2 and TTBIFb3 under different ρ∞; thus, they are not plotted
herein for brevity.
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Figure 7. Numerical damping ratios of the generalized-α method (G-α), SS2 method, Bathe method,
and TTBIF vs. δΩ.

Figure 8. Period elongation ratios of the generalized-α method (G-α), SS2 method, Bathe method,
and TTBIF vs. δΩ.

4.2. Overshoot Characteristics

The overshooting phenomenon may occur in the first several time steps. For a con-
vergent method, there is no overshoot as Ω→ 0, so only the case of Ω→ ∞ needs to be
considered. The analysis of overshooting should take into account the effect of physical
damping. With physical damping, first-order overshooting components enter into several
well-known time integration methods [47] which were previously thought to exhibit zero-
order overshooting. Therefore, this section discusses the overshoot characteristics of the
TTBIF for undamped (ξ = 0) and damped (ξ = 1) cases. If Ω→ ∞, the recursive schemes of
the TTBIF at the first step (t = 0) can be derived from Equation (28); i.e.,

qt+∆t ≈ 0 (33)

∆t
.
qt+∆t ≈

2γ3
1θ1θ3 − γ4

1θ3 − 2γ3
1θ2θ3

γ4
1θ2

3
qt +

γ4
1θ1θ3 − γ4

1θ0θ3 − γ4
1θ2θ3

γ4
1θ2

3
∆t

.
qt (34)

∆t2 ..
qt+∆t ≈

2γ3
1θ1−2γ3

1θ2−γ4
1+4γ2

1θ1θ3−12γ2
1θ2θ3

γ4
1θ2

3
qt+

γ4
1θ1−γ4

1θ0−γ4
1θ2−γ4

1θ3+4γ3
1θ1θ3−8γ3

1θ2θ3

γ4
1θ2

3
∆t

.
qt+

γ4
1θ1θ3−γ4

1θ0θ3−γ4
1θ2θ3

γ4
1θ2

3
∆t2 ..

qt

(35)
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The above equations disclose that when Ω→∞ with a large ∆t, displacement, velocity,
and acceleration of the TTBIF in the first step decay to constants for arbitrary conditions. It
can be seen in Equations (33)–(35) that the overshoot characteristics of the TTBIF are inde-
pendent of the value of γ1, so this section discusses the TTBIFa only; refer to Figures 9–12.
The test equation (Equation (27)), two initial conditions are considered, including two
situations, q(0) = 0,

.
q(0) = 1 and q(0) = 1,

.
q(0) = 0. One can see in Figures 9–12 that the TTBIF

does not have the overshoots for these two initial conditions, and the physical damping
has no influence on the overshoot characteristics of the TTBIF.

Figure 9. Displacement, velocity, and acceleration of the TTBIFa vs. ∆t/T for the case of ξ = 0, q(0) = 1,
and

.
q(0) = 0.

Figure 10. Displacement, velocity, and acceleration of the TTBIFa vs. ∆t/T for the case of ξ = 1,
q(0) = 1, and

.
q(0) = 0.
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Figure 11. Displacement, velocity, and acceleration of the TTBIFa vs. ∆t/T for the case of ξ = 0,
q(0) = 0, and

.
q(0) = 1.

Figure 12. Displacement, velocity, and acceleration of the TTBIFa vs. ∆t/T for the case of ξ = 1,
q(0) = 0, and

.
q(0) = 1.

4.3. Convergence Rates

The decrease rate of the absolute error as the step size decreases at a certain moment
is defined as the convergence rate, which is usually employed to evaluate the accuracy
order of a time integration method by displacement, velocity, and acceleration. In the test
equation (Equation (27)), we assume that ξ = 2

√
5, ω =

√
5, and f (t) = sin2t; and the exact

solution is x(t) = exp(−2t)(cost + 2sint) − (8cos2t − sin2t)/65. The absolute errors of the
TTBIF at time t = 1 are shown in Figure 13, in which one can see that:

(1) the TTBIFa method is strictly second-order accurate for displacement, velocity, and
acceleration, and its computational accuracy can be improved with an increase in ρ∞;

(2) the TTBIFb3 method can be third-order accurate for displacement, velocity,
and acceleration;

(3) the generalized-α method (G-α) is first-order accurate for acceleration when ρ∞ < 1.
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Figure 13. Absolute errors in displacement, velocity, and acceleration vs. ∆t.

The theoretical analysis given in this section illustrates that:

(1) the low-frequency responses of the TTBIFa are more accurate, and it has the ability to
damp out high-frequency modes; therefore, the TTBIFa are applicable to conservative
systems and stiff systems;

(2) the low-frequency response accuracy of the TTBIFb2 is low, so the TTBIFb2 is
not practical;

(3) the TTBIFb3 has strong numerical dissipation and lower numerical dispersion; hence,
the TTBIFb3 is more suitable for damped systems.

Here, we provide a summary of the above time integration methods, and their accu-
racy, type of numerical dissipation, low-frequency accuracy, and scope of application are
provided in Table 3, in which one can find that:

(1) the generalized-α method [12], the Bathe method [31], and the TTBIF have been
applied to multibody dynamic systems governed by DAEs;

(2) among these methods, only TTBIF can achieve third-order accuracy for displacement,
velocity, and acceleration, and it has numerical dissipation;

(3) the ρ∞-Bathe method [37] and the Kim method [38], developed for structural dynamic
systems governed by ODEs, have the same accuracy in the low-frequency range as
the Bathe method [31] for the dissipative case ρ∞ = 0;

(4) from the values of ξ and PE, one can see that among the second-order accurate
methods, the TTBIFa’s low-frequency accuracy, including amplitude and phase, is the
highest, meaning that it can give more accurate predictions when applied to dynamic
problems, including structural dynamics and the multibody systems.

Table 3. Numerical characteristics of some advanced time integration methods.

Method
Number of
Sub-Step Dissipation

Accuracy (ξ 6= 0, f 6= 0) Low-Frequency
(ξ = 0, δΩ = 1, ρ∞ = 0) Scope of Application

Dis. Vel. Acc. ξ PE ODEs DAEs

Generalized-α [12] 1 A-stability 2 2 1 0.06118 0.24744 Yes Yes
Bathe [31] 2 L-stability 2 2 2 0.01214 0.10516 Yes Yes

ρ∞-Bathe [37] 2 A-stability 2 2 2 0.01214 0.10516 Yes No
Kim [38] 2 A-stability 2 2 2 0.01214 0.10516 Yes No

TTBDF [32] 3 L-stability 2 2 2 0.00213 0.11003 Yes No
TTBIFa

3 A-stability 2 2 2 0.00108 0.10479
Yes YesTTBIFb3 3 3 3 / /
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5. Numerical Experiments

To validate the desirable performances of the TTBIF, several benchmark multibody
dynamic experiments are presented in this section. The generalized-α method [12], the SS2
method [26], and the Bathe method [31], are also considered. To ensure that the accuracy
comparison was conducted with the same computational cost, the time step size relations
of these methods were ∆t(Generalized-α method) = ∆t(SS2) = ∆t(Bathe)/2 = ∆t(TTBIF)/3.
Therefore, in all examples, only the size of the generalized-α method is provided, and the
reference solutions were obtained by the generalized-α method using a small time step size.

5.1. Flexible Beam

To show the advantages of the TTBIFa in stability, energy-conservation, and accuracy,
this example considers a flexible beam model [48], as shown in Figure 14. The model param-
eters are: the length l = 3 m, the radius r = 0.02 m, the modulus of elasticity E = 2 × 106 Pa,
and the density ρ = 7200 kg/m3. In the original configuration, the beam is horizontal and
has zero initial velocity. The beam is discretized by 20 elements. For damping out numerical
oscillations induced by the spatial discretization, the ρ∞ = 0 is used in all methods.

Figure 14. Flexible beam model. (a) Cantilever beam under the effect of gravity, (b) simply supported
beam under the effect of gravity, (c) cantilever beam under the effect of vertical concentrated force.

The cantilever beam under the effect of gravity is considered first, in which the time
step size of the generalized-α method is 0.001 s. In this case, the beam is assumed to fall
under the effect of gravity, as g = 9.81 m/s2. The configurations of the cantilever beam at
different moments are plotted in Figure 15, and the results are provided by the TTBIFa.
One can see that this model represents an extreme case of a large deformation problem
that involves high inertia forces. The free falling beam is a conservative system, and its
mechanical energy (or total energy), consisting of the kinetic energy, the strain energy, and
the potential energy, should be zero. Figure 16 shows the variations of the energy with
time. It can be seen that (1) the generalized-α method loses stability, and the other methods
can give convergent results; (2) among the convergent methods, with the increase in time,
the total energies of the SS2 method and the Bathe method show considerable attenuation,
whereas the TTBIFa preserves energy well.
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Figure 15. Configurations of the cantilever beam under the effect of gravity at different times.

Figure 16. Time history of energies for the cantilever beam under the effect of gravity.
(a) Generalized-α, (b) SS2, (c) Bathe, (d) TTBIFa.

Then, the simply supported beam is considered to compare the accuracies of these
methods, and the size of the generalized-α method is also 0.001 s. In the second case, the
flexible beam is accelerated by increasing the gravity constant to g = 30 m/s2. The numerical
results and the absolute errors at mid-point of the beam are plotted in Figures 17–19. It
can be clearly seen that the TTBIFa’s accuracy is the highest. Last, the accuracies of these
methods in solving the problem of a flexible beam under the effect of vertical concentrated
force f = 100 N, as shown in Figure 14c, are investigated, in which the size of the generalized-
α method is assumed to be 0.001 s. The displacements of these methods for the case (x = l) and
the case (x = l/2) are shown in Figures 20 and 21, respectively. It can be seen that the TTBIFa has
a considerable advantage in the aspect of accuracy.
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Figure 17. Displacement and absolute errors at mid-point for the simply supported beam under the
effect of gravity.

Figure 18. Velocity and absolute errors at mid-point for the simply supported beam under the effect
of gravity.

Figure 19. Acceleration and absolute errors at mid-point for the simply supported beam under the
effect of gravity.
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Figure 20. Displacement and absolute errors for cantilever beam subjected to the concentrated force
at the free end (x = l).

Figure 21. Displacement and absolute errors for cantilever beam subjected to the concentrated force
at mid-point (x = l/2).

5.2. Slider–Pendulum

As shown in Figure 22, the second example considers a slider–pendulum model [49]
to demonstrate the accuracy and dissipation of the TTBIFa in dealing with rigid multibody
systems. The slider is constrained by the spring, and one end of the pendulum is hinged
to the center of mass of the slider. The system parameters are m1 = m2 = 1 kg, L = 1 m,
J2 = 1/12 kg·m2, g = 9.81 m/s2, k = 1 N/m, and 1016 N/m for the compliant and stiff systems.
ρ∞ = 0 is used in all methods, and the time step size of the generalized-α method is 0.06 s.

Figure 22. Slider-pendulum model.
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The compliant case (k = 1 N/m) is considered first, in which the slider is motivated
by the horizontal velocity v0 = 1 m/s. Figures 23–25 show that the TTBIFa performs best
in the simulations. The results of the two single-step methods, the generalized-α method
and the SS2 method, become more inaccurate with time. Additionally, the performances
of these methods in dealing with numerical drifts are also considered here. The position
constraint equation of this model has the form

Φ =

[
Φ1
Φ2

]
=

[
x2 − x1 − L

2 sin θ

y2 +
L
2 cos θ

]
=

[
0
0

]
(36)

The variations of Φ1 and Φ2 vs. time are plotted in Figure 26. It can be observed that
the TTBIFa behaves best in eliminating the drift phenomenon.

Then, the stiff case (k = 1016 N/m) is considered, in which the pendulum is motivated
by the horizontal velocity v0 = 1 m/s. The time histories of x1 and θ are shown in Figure 27,
from which one can see that all methods can effectively filter out the high-frequency
information induced by the stiff constraint. Additionally, among these methods, the
calculation accuracy of the TTBIFa is the highest.

Figure 23. Results of x1 and θ for the compliant case.

Figure 24. Results of
.
x1 and

.
θ for the compliant case.
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Figure 25. Results of
..
x1 and

..
θ for the compliant case.

Figure 26. Results of position constraint for the compliant case.

Figure 27. Time histories of x1 and θ for the stiff case.

5.3. Moving Cable

The last example considers a moving cable model, as shown in Figure 28, to test the
performances of the TTBIFa and the TTBIFb3 in solving damped problems. The cable
with spatial moving and axial material flow is part of the arresting-cable system [50]. The
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absolute nodal coordinate formulation (ANCF) in the framework of the arbitrary Lagrange–
Euler (ALE) description is adopted to deal with the geometric nonlinearity and variable
length of the moving cable elements. The model has two flexible ALE cable elements, and
12 degrees of freedom. Partial spatial movements or material flows of these nodes are given
and realized by the kinematic time-varying constraint Φ, as follows:

Φ =



x1
x2 − l/2 + f (t)

x3 − l
y1 − f (t)
y3 − f (t)

z1
z3

p1 + 0.5 f (t)
p3 − l + 0.5 f (t)


=



0
0
0
0
0
0
0
0
0


, f (t) =

{
0, t < 5
1, t ≥ 5

(37)

Figure 28. Moving cable model (β is the stiffness proportional to the Rayleigh damping factor).

The ρ∞ = 0 is used in the generalized-α method, the SS2 method, and the TTBIFa to
quickly filter out the numerical oscillations introduced by time-varying Φ. In addition,
the third-order accurate TTBIFb3 with ρ∞ = 0.7 and γ1 = 1.64 is also considered here.
In this example, the time step size of the generalized-α method is set to 0.01 s. The
kinematic characteristics of mid-node 2 in the horizontal and vertical directions are shown
in Figures 29–31, in which one can see that the TTBIFb3 is the most accurate, followed by
the TTBIFa. In addition, it can be found from Figure 31 that the acceleration calculated by
the generalized-α method has larger errors compared with other methods.
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Figure 29. Displacement of mid-node 2.

Figure 30. Velocity of mid-node 2.

Figure 31. Acceleration of mid-node 2.

6. Conclusions

The authors constructed a three-sub-step composite time integration method with
controllable numerical dissipation in 2020, which was named as TTBIF [39]. This work
presented a deep understanding of the TTBIF, and the algorithmic parameters of the TTBIF
was further optimized, so two new optimized schemes of the TTBIF were developed and
applied to the simulations of multibody systems.



Mathematics 2022, 10, 2375 24 of 28

The main contributions of this study can be summarized as follows:

(1) The algorithmic parameter of the TTBIF (γ1) was optimized in this work to minimize
local truncation error, yielding two new optimized schemes, the TTBIFa and the TTB-
IFbn (n = 2,3). The second-order accurate TTBIFa can accurately keep low-frequency
information, and all sub-steps share the same effective stiffness matrix. The TTB-
IFb3 is third-order accurate, and possesses lower period errors than the second-order
methods. Since the TTBIFb3 also has high dissipation capability, the TTBIFb3 is more
suitable for damped systems.

(2) The effects of algorithmic parameters on stability, dissipation, dispersion, overshoot,
and convergence rate for damped and undamped systems were obtained in this work.
The investigation is an important theoretical supplement for the TTBIF [39].

(3) The calculation formulation of the TTBIF was extended for the dynamic analysis of
multibody systems, which can be borrowed for other implicit multi-sub-step methods,
such as the TTBDF [32], the Wen method [33], and the TSSBN method [51].

(4) The numerical experiments demonstrated that the second-order accurate, controllably
dissipative, unconditionally stable TTBIFa exhibits advantages in accuracy, dissipa-
tion, stability, and energy-conservation, so it seems to be a good candidate for the
response analysis of multibody systems.
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Appendix A. Derivations of the Recursion Equation

From the first relation given in Equation (17), the formulation of the first-sub-step can
be rewritten as

.
yt+γ1∆t =

2
(
yt+γ1∆t − yt

)
− γ1∆t

.
yt

γ1∆t
(A1)

Substituting the above expression (A1) into the equilibrium Equation (18) at t and t +
γ1∆t can lead to

yt+γ1∆t =
(2 + γ1τ)

(2− γ1τ)
yt, τ = η∆t (A2)

In terms of the second relation shown in Equation (17), the difference relations in the
second sub-step can be reformulated as

.
yt+γ2∆t =

2
(
yt+γ2∆t − yt+γ1∆t

)
− (γ2 − γ1)∆t

.
yt+γ1∆t

(γ2 − γ1)∆t
, γ2 = 2γ1 (A3)

Together with Equation (A2) and the equilibrium equation (Equation (18)) at t, t +
γ1∆t and t + t + γ2∆t, we can get that

yt+γ2∆t =
(2 + γ1τ)2

(2− γ1τ)2 yt (A4)

The last relation provided in Equation (17) can be rewritten as

.
yt+∆t =

(yt+∆t − yt)− ∆t
(

θ0
.
yt + θ1

.
yt+γ1∆t + θ2

.
yt+γ2∆t

)
θ3∆t

(A5)
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Applying Equation (A2), Equation (A4), and the equilibrium equation (Equation (18))
at t, t + γ1∆t, t + γ2∆t, and t + ∆t to Equation (A5) can yield the following recursion equation.

yt+∆t =
τ3(γ2

1θ1 − γ2
1θ0 − γ2

1θ2
)
+ τ2(4γ1θ0 − 4γ1θ2 − γ2

1
)
+ τ

(
4γ1 − 4θ0 − 4θ1 − 4θ2

)
− 4

τ3γ2
1θ3 + τ2

(
−γ2

1 − 4γ1θ3
)
+ τ

(
4γ1 + 4θ3

)
− 4

yt := Ayt (A6)

where A represents the TTBIF’s amplification factor.

Appendix B. Effective Stiffness Matrices and Load Vectors of the TTBIF

Consider the following linear ODEs:

M
..
x + C

.
x + Kx = R(t) (A7)

where M, C, and K are the constant matrices; R is the external load vector. Applying the
updating equations given in Equations (5)–(7) to Equation (A1) can yield the following
time-stepping equations: 

_
K1xt+γ1∆t =

_
R1

_
K2xt+γ2∆t =

_
R2

_
K3xt+∆t =

_
R3

(A8)

where the effective stiffness matrices are

_
K1 =

4
γ2

1∆t2
M +

2
γ1∆t

C + K (A9)

_
K2 =

4(
γ2 − γ1

)2∆t2
M +

2(
γ2 − γ1

)
∆t

C + K (A10)

_
K3 =

1
θ2

3∆t2
M +

1
θ3∆t

C + K (A11)

and the effective load vectors have the forms

_
R1 = R(t + γ1∆t) + M

(
4

γ2
1∆t2

xt +
4

γ1∆t
.
xt +

..
xt

)
+ C

(
2

γ1∆t
xt +

.
xt

)
(A12)

_
R2 = R(t + γ2∆t) + M

(
4

(γ2−γ1)
2
∆t2

xt+γ1∆t +
4

(γ2−γ1)∆t
.
xt+γ1∆t +

..
xt+γ1∆t

)
+C
(

2
(γ2−γ1)∆t

xt+γ1∆t +
.
xt+γ1∆t

) (A13)

_
R3 = R(t + ∆t)+

M
(

1
θ2

3∆t2 xt +
1

θ2
3∆t

(
θ2

.
xt+γ2∆t + θ1

.
xt+γ1∆t + (θ3 + θ0)

.
xt
)
+ 1

θ3

(
θ2

..
xt+γ2∆t + θ1

..
xt+γ1∆t + θ0

..
xt
))

+

C
(

1
θ3∆t xt +

1
θ3

(
θ2

.
xt+γ2∆t + θ1

.
xt+γ1∆t + θ0

.
xt
)) (A14)

Appendix C. The Elements of the Amplification Matrix of the TTBIF

A11 =
[(1 + 2ξτθ3) + (θ2 + 2ξτθ3θ2)b21 + (θ1 + 2ξτθ3θ1)a21 + θ3θ2b31 + θ3θ1a31](

1 + 2ξτθ3 + θ2
3τ2
) (A15)

A12 =
[θ3θ2b32 + θ3θ1a32 + (θ2 + 2ξτθ3θ2)b22 + (θ1 + 2ξτθ3θ1)a22 + (2ξτθ3θ0 + θ0 + θ3)](

1 + 2ξτθ3 + θ2
3τ2
) (A16)
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A13 =
[(θ1 + 2ξτθ3θ1)a23 + θ3θ2b33 + θ3θ1a33 + θ3θ0 + (θ2 + 2ξτθ3θ2)b23](

1 + 2ξτθ3 + θ2
3τ2
) (A17)

A21 =
(A11 − 1− θ2b21 − θ1a21)

θ3
, A22 =

(A12 − θ2b22 − θ1a22 − θ0)

θ3
, A23 =

(A13 − θ2b23 − θ1a23)

θ3
(A18)

A31 =
(A21 − θ2b31 − θ1a31)

θ3
, A32 =

(A22 − 1− θ2b32 − θ1a32)

θ3
, A33 =

(A23 − θ2b33 − θ1a33 − θ0)

θ3
(A19)

where

a11 =
(4 + 4γ1ξτ)(

4 + 4γ1ξτ + γ2
1τ2
) , a12 =

(
4γ1 + 2ξτγ2

1
)(

4 + 4γ1ξτ + γ2
1τ2
) , a13 =

γ2
1(

4 + 4γ1ξτ + γ2
1τ2
) (A20)

a21 =
2(a11 − 1)

γ1
, a22 =

(2a12 − γ1)

γ1
, a23 =

2a13

γ1
(A21)

a31 =
2a21

γ1
, a33 =

2a22 − 2
γ1

, a33 =
2a23 − γ1

γ1
(A22)

b11 = a2
11 + a12a21 + a13a31, b12 = a11a12 + a12a22 + a13a32, b13 = a11a13 + a12a23 + a13a33 (A23)

b21 = a21a11 + a22a21 + a23a31, b22 = a21a12 + a2
22 + a23a32, b23 = a21a13 + a22a23 + a23a33 (A24)

b31 = a31a11 + a32a21 + a33a31, b32 = a31a12 + a32a22 + a33a32, b33 = a31a13 + a32a23 + a2
33 (A25)
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